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Abstract
In this paper, the problem of exponential lag synchronization for a class of neural
networks with mixed delays including discrete and distributed delays is investigated
via adaptive intermittent control. Based on piecewise analytic method, some
sufficient conditions for globally exponential lag synchronization are established
through constructing a piecewise continuous auxiliary function. It is noted that both
the control periods and the control widths in our adaptive intermittent control
strategy are allowed to be nonidentical, which extends the scope of application of
periodically intermittent control with fixed both control period and control width
employed widely in previous works. Moreover, it is shown that the derived globally
exponential lag synchronization criteria are related to the control rates rather than the
control periods, which facilitates the choice of the control periods for practical
problems. Finally, a numerical example is given to illustrate the correctness of the
obtained theoretical results.
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1 Introduction
Since the pioneering work of Pecora and Carroll [1], synchronization of chaotic systems
has attracted much attention from researchers in various fields because of its potential
applications in secure communication, signal processing, biological systems and so on [2,
3]. Up to now, several different kinds of synchronous patterns have been discovered and
deeply studied, such as complete synchronization [1], generalized synchronization [4],
phase synchronization [5], lag synchronization [6] and projective synchronization [7].

Lag synchronization, defined as the state of the drive system is delayed by a positive
constant in comparison with that of the response system, is an interesting phenomenon
and has been observed in neural models, electronic circuits and lasers [3, 8–11]. In many
practical situations, due to the finite transmission speed of signals, it is more reasonable
to require the response system to synchronize with the drive system at a time lag rather
than at exactly the same time [12–15]. For example, in a telephone communication sys-
tem, the voice one hears on the receiver side at time t is the voice from the transmitter side
at time t – τ [12, 13]. Therefore, how to effectively make two chaotic systems achieve lag
synchronization is an important issue which deserves detailed investigation. Additionally,
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in implementation of neural networks, time delays always exist in the signal transmission
among neurons owing to the finite switching speed of neurons and amplifiers, which will
affect the dynamical behaviors of neural networks [13, 16–18]. Hence, time delays should
be taken into account when exploring the dynamics of neural networks. In the light of
these facts, many efforts have been made devoted to the study of lag synchronization of
delayed chaotic systems and delayed neural networks in recent years [11–15, 19–23]. For
instance, the problem of lag synchronization control for memristor-based coupled de-
layed neural networks with parameter mismatches was explored in [11]. In [12], the effect
of parameter mismatch on lag synchronization of coupled delayed systems was investi-
gated by periodically intermittent control. In [13], the exponential lag synchronization for
neural networks with mixed delays was considered via periodically intermittent control.
In [21], the lag synchronization for competitive neural networks with mixed delays and
uncertain hybrid perturbations was studied via adaptive control. In [23], the adaptive lag
synchronization of Cohen-Grossberg neural networks with discrete delays was discussed.

In order to guarantee synchronization between two chaotic systems can be realized,
several control schemes have been proposed, such as feedback control, adaptive control,
intermittent control and impulsive control [12–15, 19–32]. Intermittent control, as a dis-
continuous control method, has been adopted in engineering fields in view of its conve-
nient implementation in engineering control [33–38]. Recently, an intermittent control
scheme with fixed both control period and control width, namely periodically intermit-
tent control scheme, has been developed to study the synchronization problem for chaotic
systems as well as dynamical networks; see [12, 13, 28–43] and references cited therein.
However, in practical applications, the requirement that both control period and control
width be fixed is evidently unreasonable. Actually, a more reasonable intermittent control
is nonperiodic (or aperiodic), where both control period and control width are allowed
to be variable [44, 45]. Obviously, nonperiodically intermittent control is more feasible
than the periodically intermittent one, as the latter can be regarded as a special case of the
former. Therefore, it is necessary to investigate the synchronization problem under non-
periodically intermittent control. Presently, some initial work has been done on this topic
[44–53]. In [44–46], the synchronization of delayed dynamical networks via nonperiodi-
cally intermittent pinning control was studied. In [47], the adaptive synchronization prob-
lem for neural networks with stochastic perturbation under nonperiodically intermittent
control was considered. In [48], the authors investigated the synchronization of chaotic
systems with mixed delays by using nonperiodically intermittent control strategy. In [49,
50], the authors discussed the problem of adaptive outer synchronization between two
delayed dynamical networks via nonperiodically intermittent pinning control. In [52], the
aperiodically intermittent synchronization for directed dynamical networks with switch-
ing topologies was investigated.

As is well known, in real applications, obtaining the identical parameters of the drive
and response systems directly is impossible. For such case, adaptive approach can be ap-
plied to deal with the synchronization problem [14, 21, 23]. Moreover, in biological neural
networks, it often has a spatial extent because of the presence of parallel pathways with a
variety of axon sizes and lengths [54–56]. Therefore, there exists a distribution of trans-
mission delay, which is not suitable to be modeled with discrete delay. A more appropriate
approach is to incorporate the distributed delay in the neural networks model. However,
to the best of our knowledge, there are few studies concerned with the lag synchronization
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problem for neural networks with distributed delay via adaptive nonperiodically intermit-
tent control.

Motivated by the above discussion, this paper aims to study the problem of exponen-
tial lag synchronization for a class of neural networks with both discrete and distributed
delays via adaptive nonperiodically intermittent control. By introducing a piecewise con-
tinuous auxiliary function, some sufficient conditions for globally exponential lag synchro-
nization are established by virtue of piecewise analytic method. A numerical example is
finally provided to demonstrate the effectiveness of the proposed control methodology.
The main contributions of this paper can be outlined as follows: (1) different from the pe-
riodically intermittent control adopted in previous works [12, 13, 28–43], here the adaptive
intermittent control is nonperiodic with non-fixed both control period and control width,
which extends the intermittent control strategy’s application scope; (2) unlike in the refer-
ences [39–41, 50], the candidate Lyapunov function introduced in this paper is piecewise
continuous, and then by means of which, some criteria ensuring globally exponential lag
synchronization are established; (3) the derived theoretical results indicate that the lag
synchronization criteria are related to the control rates rather than the control periods,
which is propitious to selecting the control periods in practical applications.

2 Model description and preliminaries
Consider a class of neural networks with both discrete and distributed delays given by

ẋi(t) = –ci
(
xi(t)

)
+

n∑

j=1

aijfj
(
xj(t)

)
+

n∑

j=1

bijgj
(
xj(t – τj)

)

+
n∑

j=1

dij

∫ t

t–σj

hj
(
xj(s)

)
ds + Ii, i ∈ T = {1, 2, . . . , n}, (1)

where xi(t) denotes the state of the ith neuron at time t, fj(·), gj(·) and hj(·) are the neu-
ron activation functions of the jth neuron. The constants aij, bij and dij are the connection
weight, the discrete-delay connection weight and the distributed-delay connection weight
of the jth neuron on the ith neuron, respectively. Ii is an external input, ci(·) corresponds
to the rate with which the potential of the ith neuron will be reset to the resting state in
isolation [54]. τj ≥ 0 is the transmission delay, while σj ≥ 0 describes the distributed delay.
The initial condition of neural networks (1) is given by xi(υ) = ϕi(υ), –η ≤ υ ≤ 0, i ∈ T,
where η = max{τ ,σ }, τ = maxj∈T{τj}, σ = maxj∈T{σj}, ϕ(υ) = (ϕ1(υ),ϕ2(υ), . . . ,ϕn(υ))� ∈
C([–η, 0],Rn), and C([–η, 0],Rn) denotes the Banach space of all continuous functions
mapping [–η, 0] into R

n with norm defined by ‖ϕ‖ = supυ∈[–η,0]{maxj∈T |φj(υ)|}.
To proceed, we make the following assumptions for system (1).

Assumption 1 For each i ∈ T, function ci(·) : R → (0, +∞) is continuous and monotone
increasing, i.e., there exists a positive constant Ci > 0 such that

ci(s1) – ci(s2)
s1 – s2

≥ Ci

for all s1, s2 ∈R and s1 	= s2.
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Assumption 2 For each j ∈ T, functions fj(·), gj(·) and hj(·) are Lipschitz continuous, i.e.,
there exist positive constants Fj > 0, Gj > 0 and Hj > 0 such that

∣∣fj(s1) – fj(s2)
∣∣ ≤ Fj|s1 – s2|,

∣∣gj(s1) – gj(s2)
∣∣ ≤ Gj|s1 – s2|,

∣∣hj(s1) – hj(s2)
∣∣ ≤ Hj|s1 – s2|,

for all s1, s2 ∈R.

In this paper, we aim to drive system (1) to achieve lag synchronization via adaptive
intermittent control in drive-response configuration. Therefore, we regard system (1) as
the drive system and design the following response system:

ẏi(t) = –ci
(
yi(t)

)
+

n∑

j=1

aijfj
(
yj(t)

)
+

n∑

j=1

bijgj
(
yj(t – τj)

)

+
n∑

j=1

dij

∫ t

t–σj

hj
(
yj(s)

)
ds + Ii + ui(t), i ∈ T, (2)

where yi(t) represents the state of the ith neuron at time t, the initial values of the response
system (2) are yi(υ) = ψi(υ), –η ≤ υ ≤ 0, i ∈ T and ψ(υ) = (ψ1(υ),ψ2(υ), . . . ,ψn(υ))� ∈
C([–η, 0],Rn), ui(t) is an adaptive nonperiodical intermittent controller described by

ui(t) = –ki(t)
(
yi(t) – xi(t – ω)

)
(3)

in which ω ≥ 0 is propagation delay between the output of the response system and that
of the drive system, and ki(t) is the adaptive intermittent feedback control gain given by

ki(t) =

⎧
⎪⎪⎨

⎪⎪⎩

ki(0), t = 0,

ki(tl + δl), t = tl+1,

0, tl + δl < t < tl+1,

(4)

with the updating law

k̇i(t) = hi exp{ρ0t}(yi(t) – xi(t – ω)
)2, tl ≤ t ≤ tl + δl, (5)

where m ∈ N
+ = {1, 2, . . .}, ρ0 > 0 is a positive constant, hi > 0 and ki(0) > 0 for i ∈ T. The

time sequence {tl}+∞
l=1 satisfies 0 = t1 < t2 < · · · < tl < · · · and liml→+∞ tl = +∞. The time

span [tl, tl+1) is the time of the lth period, and (tl+1 – tl) is referred to as the lth control
period; [tl, tl + δl] is the lth work time, and δl > 0 is referred to as the lth control width
(control duration); (tl + δl, tl+1) is the lth rest time, and (tl+1 – tl) – δl > 0 is referred to as
the lth rest width (rest duration).

Remark 1 Note that controller (3) is a kind of nonperiodical control, and each control
period is composed of work time and rest time. During the work time (tl ≤ t ≤ tl + δl),
the controller is performed according to the adaptive update law (5), while it is removed
during the rest time (tl + δl < t < tl+1). It should be stressed that here the control period
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(tl+1 – tl) and control width δl are both non-fixed, and hence this control strategy is more
general. Obviously, when tl+1 – tl ≡ T and δl ≡ δ, l ∈N

+, the adaptive intermittent control
type becomes the periodic one, which has been studied in [39–41].

For convenience of analysis, let T0 = T̄0 = t1, Tl = tl+1 – tl , T̄l =
∑l

j=0 Tj, and θl = δl/Tl ,
l ∈ N

+, where θl is called the lth control rate. Then we get tl = T̄l–1 and δl = θlTl , l ∈ N
+.

Suppose that x(t) = (x1(t), x2(t), . . . , xn(t))� and y(t) = (y1(t), y2(t), . . . , yn(t))� are solutions
of systems (1) and (2) with different initial conditions, respectively. Denote zi(t) = yi(t) –
xi(t – ω) be the synchronous error between the states of the drive system (1) and response
system (2), then we can obtain the following error system:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

żi(t) = –c̃i(zi(t)) +
∑n

j=1 aijf̃j(zj(t)) +
∑n

j=1 bijg̃j(zj(t – τj))
+

∑n
j=1 dij

∫ t
t–σj

h̃j(zj(s)) ds – ki(t)zi(t), T̄l–1 ≤ t ≤ T̄l–1 + θlTl,
żi(t) = –c̃i(zi(t)) +

∑n
j=1 aijf̃j(zj(t)) +

∑n
j=1 bijg̃j(zj(t – τj))

+
∑n

j=1 dij
∫ t

t–σj
h̃j(zj(s)) ds, T̄l–1 + θlTl < t < T̄l,

(6)

where i ∈ T, l ∈ N
+, c̃i(zi(t)) = ci(yi(t)) – ci(xi(t – ω)), f̃j(zj(t)) = fj(yj(t)) – fj(xj(t – ω)), g̃j(zj(t –

τj)) = gj(yj(t – τj)) – gj(xj(t – τj – ω)), and h̃j(zj(s)) = hj(yj(s)) – hj(xj(s – ω)).
In order to define the initial condition of system (6), we supplement the state xi(t) on

[–η – ω, –η] as xi(υ) = ϕi(–η), –η – ω ≤ υ ≤ –η, i ∈ T. For i ∈ T, through introducing the
notation ϕ̄i(υ) with

ϕ̄i(υ) =

⎧
⎨

⎩
ϕi(υ), –η ≤ υ ≤ 0,

ϕi(–η), –η – ω ≤ υ ≤ –η,

then the initial condition of system (6) is given by zi(υ) = ψi(υ) – ϕ̄i(υ – ω), –η ≤ υ ≤ 0,
i ∈ T.

Definition 1 The drive system (1) and response system (2) are said to be globally expo-
nentially lag synchronized, if for any initial values ψ(s),ϕ(s) ∈ C([–η, 0],Rn), there exist
positive constants M > 0 and ε > 0 such that

∥∥y(t) – x(t – ω)
∥∥ ≤ M exp{–εt}, t ≥ 0.

If ω = 0, the synchronization is complete synchronization.

3 Main results
In this section, by the adaptive nonperiodical intermittent controllers (3)-(5), we consider
the globally exponential lag synchronization between the drive-response systems (1) and
(2). Some criteria ensuring the globally exponential lag synchronization will be established
by means of piecewise analytic method. For convenience, we introduce the following no-
tations.

For κ ∈ T, let ακ = –2Cκ + Fκ |aκκ | +
∑n

j=1 Fj|aκ j| +
∑n

j=1 Gj|bκ j| +
∑n

j=1 σjHj|dκ j|,
α = maxκ∈T{ακ}, βκ =

∑n
j=1,j 	=κ Fj|aκ j|, γκ =

∑n
j=1 Gj|bκ j|, ζκ =

∑n
j=1 σjHj|dκ j|, and π0 =

maxκ∈T{βκ + γκ + ζκ}.
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Theorem 1 Suppose that Assumptions 1-2 hold and infl∈N+{θl} = θinf > 0, by the adaptive
nonperiodical intermittent controllers (3)-(5), the globally exponential lag synchronization
between the drive-response systems (1) and (2) can be achieved if there exists a positive
constant ρ0 > π0 such that

λ – (1 – θinf)
(
ρ0 + α+)

> 0, (7)

where α+ = max{0,α}, λ = minκ∈T{λκ}, and λκ is the unique positive solution of the equation
λκ – ρ0 + βκ + γκ exp{λκτ } + ζκ exp{λκσ } = 0.

Proof Denote �κ (εκ ) = εκ – ρ0 + βκ + γκ exp{εκτ } + ζκ exp{εκσ }, κ ∈ T. Since ρ0 > π0, one
has �κ (0) < 0, �κ (+∞) > 0 and d�κ/dεκ > 0. By the continuity and the monotonicity of
�κ (εκ ), the equation εκ – ρ0 + βκ + γκ exp{εκτ } + ζκ exp{εκσ } = 0 has an unique positive
solution λκ > 0. Notice that λ = minκ∈T{λκ} > 0 and �κ (εκ ) is increasing with respect to εκ

for any κ ∈ T, then we get

λ – ρ0 + βκ + γκ exp{λτ } + ζκ exp{λσ } ≤ 0, for all κ ∈ T. (8)

Construct a piecewise function defined as follows:

ϒi(t) =

⎧
⎨

⎩

1
2 exp{–ρ0t} 1

hi
(ki(t) – k∗)2, T̄l–1 ≤ t ≤ T̄l–1 + θlTl,

1
2 exp{–ρ0t} 1

hi
(ki(T̄l–1 + θlTl) – k∗)2, T̄l–1 + θlTl < t < T̄l,

(9)

where i ∈ T, l ∈ N
+, and k∗ > 0 is a positive constant to be determined later. From (4) and

(9), it is easy to see that ϒi(t) is continuous for all t ≥ 0 and i ∈ T.
Denote Pi(t) = 1

2 z2
i (t), i ∈ T and consider the following candidate Lyapunov functions:

Vi(t) = Pi(t) + ϒi(t), i ∈ T. (10)

Obviously, Vi(t) is continuous for all t ≥ 0 and i ∈ T because Pi(t) is continuous for all
t ≥ 0 and i ∈ T.

When T̄l–1 ≤ t ≤ T̄l–1 + θlTl , l ∈N
+, by Assumptions 1 and 2, the derivative of Vi(t) with

respect to time t along the trajectories of system (6) can be calculated as follows:

V̇i(t) = zi(t)

[

–c̃i
(
zi(t)

)
+

n∑

j=1

aijf̃j
(
zj(t)

)
+

n∑

j=1

bijg̃j
(
zj(t – τj)

)

+
n∑

j=1

dij

∫ t

t–σj

h̃j
(
zj(s)

)
ds – ki(t)zi(t)

]

–
ρ0

2
exp{–ρ0t} 1

hi

(
ki(t) – k∗)2 +

(
ki(t) – k∗)z2

i (t)

≤ –Ciz2
i (t) +

∣
∣zi(t)

∣
∣
[ n∑

j=1

|aij|Fj
∣
∣zj(t)

∣
∣ +

n∑

j=1

|bij|Gj
∣
∣zj(t – τj)

∣
∣

+
n∑

j=1

|dij|Hj

∫ t

t–σj

∣
∣zj(s)

∣
∣ds

]

–
ρ0

2
exp{–ρ0t} 1

hi

(
ki(t) – k∗)2 – k∗z2

i (t)
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≤ 1
2

(

–2Ci +
n∑

j=1

Fj|aij| +
n∑

j=1

Gj|bij| +
n∑

j=1

σjHj|dij| – 2k∗
)

z2
i (t) – ρ0ϒi(t)

+
1
2

n∑

j=1

Fj|aij|z2
j (t) +

1
2

n∑

j=1

Gj|bij|z2
j (t – τj) +

1
2

n∑

j=1

Hj|dij|
∫ t

t–σj

z2
j (s) ds

=
(
αi – 2k∗)Pi(t) – ρ0ϒi(t) +

n∑

j=1,j 	=i

Fj|aij|Pj(t) +
n∑

j=1

Gj|bij|Pj(t – τj)

+
n∑

j=1

Hj|dij|
∫ σj

0
Pj(t – s) ds, i ∈ T. (11)

Choose k∗ ≥ (ακ + ρ0)/2 for all κ ∈ T, then it follows from (11) that when T̄l–1 ≤ t ≤
T̄l–1 + θlTl , l ∈N

+,

V̇i(t) ≤ –ρ0Vi(t) +
n∑

j=1,j 	=i

Fj|aij|Vj(t) +
n∑

j=1

Gj|bij|Vj(t – τj)

+
n∑

j=1

Hj|dij|
∫ σj

0
Vj(t – s) ds, i ∈ T. (12)

Similarly, when T̄l–1 + θlTl < t < T̄l , l ∈N
+, we can obtain

V̇i(t) = zi(t)

[

–c̃i
(
zi(t)

)
+

n∑

j=1

aijf̃j
(
zj(t)

)
+

n∑

j=1

bijg̃j
(
zj(t – τj)

)

+
n∑

j=1

dij

∫ t

t–σj

h̃j
(
zj(s)

)
ds

]

–
ρ0

2
exp{–ρ0t} 1

hi

(
ki(T̄l–1 + θlTl) – k∗)2

≤ (
αi – α+)

Pi(t) + α+Pi(t) +
n∑

j=1,j 	=i

Fj|aij|Pj(t) +
n∑

j=1

Gj|bij|Pj(t – τj)

+
n∑

j=1

Hj|dij|
∫ σj

0
Pj(t – s) ds

≤ α+Vi(t) +
n∑

j=1,j 	=i

Fj|aij|Vj(t) +
n∑

j=1

Gj|bij|Vj(t – τj)

+
n∑

j=1

Hj|dij|
∫ σj

0
Vj(t – s) ds, i ∈ T. (13)

Take M0 = sup–η≤υ≤0{maxi∈T Vi(υ)}, Qi(t) = exp{λt}Vi(t), where t ≥ –η and i ∈ T. Let
Wi(t) = Qi(t) – hM0, where h > 1 is a constant and i ∈ T. Then it is easy to see that

Wi(t) < 0, for all t ∈ [–η, T̄0] and i ∈ T. (14)

Next, we prove that

Wi(t) < 0, for all t ∈ [T̄0, θ1T1] and i ∈ T. (15)
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Otherwise, by (15), there exist � ∈ T and t∗ ∈ (T̄0, θ1T1] such that

W�

(
t∗) = 0, Ẇ�

(
t∗) ≥ 0, Wj

(
t∗) ≤ 0, ∀j ∈ T\{�}, (16)

and for all i ∈ T

Wi(t) < 0, –η ≤ t < t∗. (17)

According to (12), we have

Ẇ�

(
t∗) = λQ�

(
t∗) + exp

{
λt∗}V̇�

(
t∗)

≤ λQ�

(
t∗) – ρ0Q�

(
t∗) +

n∑

j=1,j 	=�

Fj|a�j| exp
{
λt∗}Vj

(
t∗)

+
n∑

j=1

Gj|b�j| exp
{
λt∗}Vj

(
t∗ – τj

)

+
n∑

j=1

Hj|d�j|
∫ σj

0
exp

{
λt∗}Vj

(
t∗ – s

)
ds. (18)

Based on (16) and (17), we can obtain

V�

(
t∗) = hM0 exp

{
–λt∗}, Vj

(
t∗) ≤ hM0 exp

{
–λt∗}, ∀j ∈ T\{�},

and for all j ∈ T

Vj(t) < hM0 exp{–λt}, –η ≤ t < t∗.

This means that for all j ∈ T

exp
{
λt∗}Vj

(
t∗ – τj

)
< exp{λτ }Q�

(
t∗)

and

exp
{
λt∗}

(
sup

t∗–σ≤υ≤t∗
Vj(υ)

)
≤ exp{λσ }Q�

(
t∗).

Then, using (8), we get

Ẇ�

(
t∗) <

(
λ – ρ0 + β� + exp{λτ }γ� + exp{λσ }ζ�

)
Q�

(
t∗) ≤ 0. (19)

This contradicts the second inequality in (16), which indicates that (15) holds. Combining
with (14), we can obtain

Vi(t) < hM0 exp{–λt}, for all t ∈ [–η, θ1T1] and i ∈ T. (20)

Let � = ρ0 + α+. Now, we prove that

�i(t) = Qi(t) – hM0 exp
{
� (t – θ1T1)

}
< 0, for all t ∈ (θ1T1, T̄1) and i ∈ T. (21)
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Otherwise, there exist � ∈ T and t∗∗ ∈ (θ1T1, T̃1) such that

��

(
t∗∗) = 0, �̇�

(
t∗∗) ≥ 0, �j

(
t∗∗) ≤ 0, ∀j ∈ T\{�}, (22)

and for all i ∈ T

�i(t) < 0, θ1T1 ≤ t < t∗∗. (23)

For j ∈ T, if θ1T1 ≤ t∗∗ – τj < t∗∗, it follows from (22) and (23) that

exp
{
λt∗∗}Vj

(
t∗∗ – τj

)
< exp{λτ }hM0 exp

{
�

(
t∗∗ – θ1T1

)}
= exp{λτ }Q�

(
t∗∗),

and if –η ≤ t∗∗ – τj < θ1T1, it follows from (20) and (22) that

exp
{
λt∗∗}Vj

(
t∗∗ – τj

)
< exp{λτ }hM0 ≤ exp{λτ }Q�

(
t∗∗).

Therefore, for any j ∈ T, one always has

exp
{
λt∗∗}Vj

(
t∗∗ – τj

)
< exp{λτ }Q�

(
t∗∗).

Similarly, with the same analysis, we get

exp
{
λt∗∗}

(
sup

t∗∗–σ≤υ≤t∗∗
Vj(υ)

)
≤ exp{λσ }Q�

(
t∗∗), ∀j ∈ T.

Then it follows from (8) and (13) that

�̇�

(
t∗∗) = λQ�

(
t∗∗) + exp

{
λt∗∗}V̇�

(
t∗∗) – �hM0 exp

{
�

(
t∗∗ – θ1T1

)}

≤ (
λ + α+ – �

)
Q�

(
t∗∗) +

n∑

j=1,j 	=�

Fj|a�j| exp
{
λt∗∗}Vj

(
t∗∗)

+
n∑

j=1

Gj|b�j| exp
{
λt∗∗}Vj

(
t∗∗ – τj

)
+

n∑

j=1

Hj|d�j|
∫ σj

0
exp

{
λt∗∗}Vj

(
t∗∗ – s

)
ds

<
(
λ – ρ0 + β� + exp{λτ }γ� + exp{λσ }ζ�

)
Q�

(
t∗∗) ≤ 0,

which contradicts the second inequality in (22), i.e., (21) holds. Therefore,

Qi(t) < hM0 exp
{
� (t – θ1T1)

}

≤ hM0 exp
{
� (1 – θ1)T1

}
, for all t ∈ (θ1T1, T̄1) and i ∈ T.

Combining with inequalities (14) and (15), we obtain

Qi(t) < hM0 exp
{
� (1 – θ1)T1

}
, for all t ∈ [–η, T̄1) and i ∈ T.

Similar to the proofs of (15) and (21), we can prove that

Qi(t) < hM0 exp
{
� (1 – θ1)T1

}
, for all t ∈ [T̄1, T̄1 + θ2T2] and i ∈ T,
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and

Qi(t) < hM0 exp
{
� (1 – θ1)T1

}
exp

{
� (t – T̄1 – θ2T2)

}

= hM0 exp
{
�

(
t – (θ1T1 + θ2T2)

)}

≤ hM0 exp
{
�

(
(1 – θ1)T1 + (1 – θ2)T2

)}
,

for all t ∈ (T̄1 + θ2T2, T̄2) and i ∈ T.
Denote θ0 = 0. Since � > 0, by mathematical induction, then we can derive the following

estimation of Qκ (t) for any positive integer l and κ ∈ T.
For all T̄l–1 ≤ t ≤ T̄l–1 + θlTl , l ∈N

+ and κ ∈ T

Qκ (t) < hM0 exp

{

�

( l–1∑

j=0

(1 – θj)Tj

)}

≤ hM0 exp

{

� (1 – θinf)

( l–1∑

j=0

Tj

)}

≤ hM0 exp
{
� (1 – θinf)t

}
. (24)

And for all T̄l–1 + θlTl < t < T̄l , l ∈N
+ and κ ∈ T

Qκ (t) < hM0 exp

{

�

(

t –

( l∑

j=0

θjTj

))}

≤ hM0 exp

{

� t – �θinf

( l∑

j=0

Tj

)}

< hM0 exp
{
� (1 – θinf)t

}
. (25)

Noting that Qκ (t) = exp{λt}Vκ (t), κ ∈ T and � = ρ0 + a+, it follows from (24) and (25)
that

Vκ (t) < hM0 exp{–λt} exp
{
� (1 – θinf)t

}

= hM0 exp
{

–
(
λ –

(
ρ0 + a+)

(1 – θinf)
)
t
}

, (26)

for all κ ∈ T and t ≥ 0.
Let h → 1, from the definition of Vi(t), we have

∣∣zi(t)
∣∣ ≤ √

2M0 exp

{
–

1
2
[
λ –

(
ρ0 + a+)

(1 – θinf)
]
t
}

(27)

for all i ∈ T and t ≥ 0, which implies that

∥∥y(t) – x(t – ω)
∥∥ ≤ √

2M0 exp

{
–

1
2
[
λ –

(
ρ0 + a+)

(1 – θinf)
]
t
}

, t ≥ 0. (28)

According to condition (7), we can conclude that, by the adaptive nonperiodical intermit-
tent controllers (3)-(5), the globally exponential lag synchronization between the drive-
response systems (1) and (2) can be achieved. The proof is thus completed. �



Zhou and Cai Advances in Difference Equations  (2018) 2018:40 Page 11 of 17

In the case that both the control periods and the control widths are fixed, i.e., tl+1 – tl ≡ T
and δl ≡ δ, for all l ∈ N

+, where T and δ are two positive constants, then the control type
becomes the adaptive periodically intermittent control, which has been investigated in
[39–41]. Denote θ = δ/T, then the following result can easily be obtained from Theorem 1.

Corollary 1 Suppose that Assumptions 1-2 hold, by the adaptive periodically intermittent
control, the globally exponential lag synchronization between the drive-response systems
(1) and (2) can be achieved if there exists a positive constant ρ0 > π0 such that

1 –
λ

ρ0 + α+ < θ < 1, (29)

where α+ and λ are the same as those in Theorem 1.

If there is no distributed delay in system (1), i.e., σj ≡ 0 for all j ∈ T, then system (1) turns
into the following neural networks with discrete delays:

ẋi(t) = –ci
(
xi(t)

)
+

n∑

j=1

aijfj
(
xj(t)

)
+

n∑

j=1

bijgj
(
xj(t – τj)

)
+ Ii, i ∈ T. (30)

The corresponding controlled response network is described by

ẏi(t) = –ci
(
yi(t)

)
+

n∑

j=1

aijfj
(
yj(t)

)
+

n∑

j=1

bijgj
(
yj(t – τj)

)
+ Ii + ui(t), i ∈ T, (31)

where ui(t) is the same as equation (3). In this case, ζκ ≡ 0 for all κ ∈ T, and so π0 =
maxκ∈T{βκ + γκ}. Consequently, we can derive the following results from Theorem 1 and
Corollary 1.

Corollary 2 Suppose that Assumptions 1-2 hold and infl∈N+{θl} = θinf > 0, by the adaptive
nonperiodical intermittent controllers (3)-(5), the globally exponential lag synchronization
between the drive-response systems (30) and (31) can be achieved if there exists a positive
constant ρ0 > π0 such that

λ – (1 – θinf)
(
ρ0 + α+)

> 0, (32)

where α+ = max{0,α}, λ = minκ∈T{λκ}, and λκ is the unique positive solution of the equation
λκ – ρ0 + βκ + γκ exp{λκτ } = 0.

Corollary 3 Suppose that Assumptions 1-2 hold, by the adaptive periodically intermittent
control, the globally exponential lag synchronization between the drive-response systems
(30) and (31) can be achieved if there exists a positive constant ρ0 > π0 such that

1 –
λ

ρ0 + α+ < θ < 1, (33)

where α+ and λ are the same as those in Corollary 2.
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Remark 2 Evidently, the adaptive nonperiodically intermittent control strategy presented
in this paper can also be utilized to realize complete synchronization of neural networks
with mixed delays, only if let propagation delay ω = 0.

Remark 3 When tl+1 – tl ≡ δl or θl ≡ 1, for all l ∈ N
+, the adaptive intermittent control

turns into the continuous-time adaptive control. In this case, the condition ρ0 > π0 ensure
the globally exponential lag synchronization between the drive-response systems (1) and
(2) can be achieved under the continuous-time adaptive control, because condition (7)
holds automatically.

Remark 4 In [13], the authors studied the exponential lag synchronization problem for
neural networks with mixed delays via intermittent control. However, the designed in-
termittent controller in [13] is periodic, which requires both the control period and the
control width should be fixed. This requirement is obviously unreasonable and unneces-
sary in reality. In this paper, by proposing an adaptive intermittent control scheme, the
exponential lag synchronization of neural networks with mixed delays was further inves-
tigated. Noticeably, here the adaptive intermittent controller is nonperiodic, it possesses
different control periods as well as different control widths. Hence, our control strategy is
more feasible than that in [13].

Remark 5 In [40, 41, 50], under adaptive intermittent control, the complete synchroniza-
tion and cluster synchronization of directed dynamical networks were studied by con-
structing a piecewise Lyapunov function. However, the piecewise Lyapunov function given
in [40, 41, 50] isn’t continuous at t = tl+1, l ∈ N

+, and therefore only some criteria ensur-
ing globally asymptotical synchronization were derived in [40, 41, 50]. In this paper, we
introduce some piecewise continuous Lyapunov functions (see equation (10)), and then
by means of which and piecewise analytic method, we derive some sufficient conditions
for globally exponential lag synchronization between two delayed neural networks (1) and
(2) under the adaptive intermittent control. Therefore, the results established here extend
those in [40, 41, 50].

Remark 6 It should be stressed that conditions (7) and (32) show that the lag synchroniza-
tion criteria are related with the quantity θinf rather than the control periods Tl (l ∈ N

+)
or the control widths δl (l ∈ N

+). Therefore, for achieving the lag synchronization, one
can arbitrarily select the control periods Tl , l ∈ N

+. Specially, for practical problems, the
control periods Tl , l ∈N

+ can be chosen in the light of practical requirements.

Remark 7 For illuminating how to design suitable adaptive nonperiodical intermittent
controllers to make the lag synchronization between the drive and response systems (1)
and (2) can be achieved, the following steps are given:

(1) Compute the values of τ , σ , ακ , βκ , γκ and ζκ , κ ∈ T according to their definitions,
and then figure out the values of π0, α, and α+.

(2) Select a ρ0 satisfying ρ0 > π0, and then calculate λi and λ via mathematical software
MATLAB.

(3) By means of condition (7), compute a bound of the quantity θinf satisfying
1 – λ/(ρ0 + α+) < θinf < 1, and then arbitrarily select the control rates θl , l ∈ N

+ such
that the inequality holds.
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(4) Choose randomly the control periods Tl , l ∈N
+ and propagation delay ω.

(5) Based on the above chosen ρ0, θl , Tl , l ∈N
+, and ω, design the adaptive intermittent

controllers given by (3)-(5).

4 Numerical examples
In this section, we give a numerical example to illustrate the effectiveness of the derived
theoretical results.

Consider the neural networks with mixed delays described by

ẋi(t) = –cixi(t) +
2∑

j=1

aijfj
(
xj(t)

)
+

2∑

j=1

bijgj
(
xj(t – 1)

)

+
2∑

j=1

dij

∫ t

t–0.8
hj

(
xj(s)

)
ds, i ∈ T = {1, 2}, (34)

where fj(x) = gj(x) = hj(x) = tanh(x), and c1 = c2 = 1, a11 = 1.3, a12 = –0.1, a21 = –1.0, a22 =
0.2, b11 = –1.5, b12 = –0.4, b21 = 0.1, b22 = –2, d11 = –0.4, d12 = 0.1, d21 = 0.0, d22 = –0.5.
The numerical simulation of system (34) is shown in Figure 1, which indicates that system
(34) has a chaotic attractor. The corresponding response system is of the form

ẏi(t) = –ciyi(t) +
2∑

j=1

aijfj
(
yj(t)

)
+

2∑

j=1

bijgj
(
yj(t – 1)

)

+
2∑

j=1

dij

∫ t

t–0.8
hj

(
yj(s)

)
ds + ui(t), i ∈ T, (35)

where the controller ui(t) is described by equations (3)–(5).
By simple calculation, we get Fi = Gi = Hi = 1 for i = 1, 2, and α1 = 3.0, α2 = 1.9, β1 = 0.1,

β2 = 1, γ1 = 1.9, γ2 = 2.1, ζ1 = 0.4, ζ2 = 0.4, π0 = 3.5, α+ = α = 3.1. Select ρ0 = 10 > π0, then

Figure 1 The chaotic attractor of system (34) with initial values x1(υ) = 0.3 and x2(υ) = –0.1 for
υ ∈ [–1, 0].
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we have λ1 = 1.3547, λ2 = 1.1752, and therefore λ = 1.1752. From condition (7), one can
obtain 0.9096 < θinf < 1. For brevity, we choose θl ≡ 0.91, Tl = tl+1 – tl = 0.25l, l ∈ N

+, then
condition (7) holds. Choosing propagation delay ω = 3, the time evolutions of synchronous
errors between systems (33) and (34) and adaptive intermittent feedback control gains
are shown in Figures 2 and 3, respectively, where the initial condition of the simulation
are x1(υ) = 0.3, x2(υ) = –0.1, y1(υ) = 0.1, y2(υ) = –0.3 for υ ∈ [–1, 0], and k1(0) = k2(0) =
0.2, h1 = h2 = 0.02. In addition, the lag synchronization between systems (33) and (34)
is plotted in Figures 4 and 5. The numerical example indicates the effectiveness of our
control method.

Figure 2 Time evolutions of synchronous errors e1(t) and e2(t) between systems (34) and (35).

Figure 3 Time evolutions of adaptive intermittent feedback control gains k1(t) and k2(t).
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Figure 4 Lag synchronization of x1(t) and y1(t) with propagation delay ω = 3.

Figure 5 Lag synchronization of x2(t) and y2(t) with propagation delay ω = 3.

5 Conclusions
In this paper, an adaptive nonperiodically intermittent control scheme is proposed to study
the globally exponential lag synchronization problem for a class of neural networks with
both discrete and distributed delays. Some criteria ensuring the globally exponential lag
synchronization are derived through introducing a piecewise continuous auxiliary func-
tion and utilizing piecewise analytic method. Different from previous works, the devel-
oped adaptive intermittent control can be nonperiodic, which extends the intermittent
control strategy’s application scopes. Numerical simulations are also given to verify the
feasibility of the obtained theoretical results. It should be noted that the adaptive update
law for intermittent feedback control gain designed in this paper explicitly depends on
time t, which will make the adaptive intermittent control technique not easy to imple-
ment in practical applications. Therefore, how to design more reasonable adaptive update
rules is an interesting topic to be investigated in the future.
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