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Abstract
This paper considers an LG–Holling type II diseased predator ecosystem with Lévy
noise and white noise. In this prey–predator system, assuming that the predator
population is infected by disease and divided into two classes: susceptible predator
and infected predator, we show that the system has a unique global positive solution.
We investigate the persistence in the mean and extinction for the population, obtain
threshold conditions of extinction, persistence in the mean by Itô’s formula and a
comparison theorem for the stochastic system. In addition, we discuss the uniform
boundedness of pth moment with p > 0 and reveal the stochastically ultimate
boundedness of the system. Finally, some numerical simulations are introduced to
illustrate our analytical findings.
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1 Introduction
In ecology, prey–predator systems are always the important part, and the most clas-
sic model is Lotka–Volterra model. Out of the ordinary, Leslie introduced the follow-
ing model on the premise that the carrying capacity of predator was proportional to the
amount of prey [1, 2]:

{ dN1
dt = (r1 – a1N1 – b2N2)N1,

dN2
dt = (r2 – b2

N2
N1

)N2,
(1)

here N1 and N2 represented the densities of prey and predator at time t, respectively. r1

and r2 were the intrinsic growth rates for prey and predator populations. b2 was conver-
sion rate. Leslie assumed that the predator population still grew logistically with carrying
capacity r2N1

b2
.

Leslie assumed that the growth of predator population still satisfied the logistic rule, but
the carrying capacity, which was distinguished from the constant in the common model,
was determined by the density of prey population. Recently, there have been many experts
and researchers studying or improving a Leslie type prey–predator model. Time delay,
impulse, food chain, disease, environment pollution, reaction diffusion and so on, have
been introduced into the model, see [3–8].
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In [9], Sarwardi introduced a contagious disease among the predators in a predator-prey
ecosystem, modeled via the following equations with nonnegative parameters:

⎧⎪⎪⎨
⎪⎪⎩

dx
dt = a1x – b1x2 – c1xy

x+k1
– pc1xz

x+k1
,

dy
dt = a2y – c2y(y+z)

x+k2
– λyz,

dz
dt = λyz + a3z – c3z(y+z)

x+k2
.

(2)

The system incorporates a Holling type II functional response and a modified version of
the Leslie–Gower one. In system (2), the following assumptions are made:

(A1) x(t) represents the density of prey population at time t, and it is assumed that the
disease spreads only among the predator, y(t) and z(t) denote the densities of
susceptible predator and infected predator at time t, the total predator population
is n(t) = y(t) + z(t). The disease transmission rate is λ.

(A2) In the absence of predators, the prey population grows logistically with intrinsic
growth rate a1 > 0 and carrying capacity a1b–1

1 . c1 and pc1 are the predation rates
for susceptible and infected predator. Because of disease infection, the predation
ability for the infected predator is a bit less than that for the susceptible predator;
therefore, 0 < p < 1.

(A3) Here a2, a3 are the per capita growth rates of each predator population. The
parameters k1, k2 respectively represent the half saturation constants of prey and
predator populations. In addition, the authors introduce intraspecific competition
among the predators’ sound and infected subpopulations with parameters c2 and
c3, for which c2 > c3.

The authors studied the stability of equilibrium point of system (2) and persistence.
Population growth in the natural world is inevitably affected by the environmental per-

turbations. In the past decades, white noise was introduced into the model to simulate the
stochastic perturbation of environment. However, sudden environmental perturbation,
such as earthquakes, hurricanes, the flood, etc., cannot be modeled by white noise, which
is often used to describe those stable and continuous stochastic interferences. Bao et al.
in [10, 11] firstly proposed that these phenomena could be described by Lévy noise. At
present, there are many research papers considering Lévy noise [6, 12–17]. In this paper,
we use white noise and Lévy noise to simulate the random change of environment. The
following system with jumps is considered:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t) = [a1x(t) – b1x2(t) – c1x(t)y(t)
x(t)+k1

– p̃c1x(t)z(t)
x(t)+k1

] dt
+ σ1x(t) dB1(t) +

∫
Y

γ1(u)x(t–)Ñ(dt, du),
dy(t) = [a2y(t) – c2y(t)(y(t)+z(t))

x(t)+k2
– βy(t)z(t)] dt

+ σ2y(t) dB2(t) +
∫
Y

γ2(u)y(t–)Ñ(dt, du),
dz(t) = [βy(t)z(t) + a3z(t) – c3z(t)(y(t)+z(t))

x(t)+k2
] dt

+ σ3z(t) dB3(t) +
∫
Y

γ3(u)z(t–)Ñ(dt, du),

(3)

with the initial value (x0, y0, z0) ∈ R3
+. For convenience, we use p̃ and β instead of p and λ

in system (3), respectively. B1(t), B2(t) and B3(t) are mutually independent Brownian mo-
tions defined on a complete probability space (�,F ,P) with a filtration {Ft}t∈R+ satisfying
the usual conditions. σ 2

i (i = 1, 2, 3) denotes the intensity of white noise. In system (3),
x(t–), y(t–) and z(t–) are the left limits of x(t), y(t) and z(t), respectively. N is a Poisson
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counting measure with characteristic measure λ on a measurable subset Y of (0, +∞) with
λ(Y) < ∞, Ñ(dt, du) = N(dt, du) – λ(du) dt, γi : Y × � → R is bounded and continuous
with respect to λ, and is B(Y) ×Ft-measurable, i = 1, 2, 3.

For simplicity, we introduce the following notations:

wi = ai –
σ 2

i
2

–
∫
Y

[
γi(u) – ln

(
1 + γi(u)

)]
λ(du), i = 1, 2, 3.

R3
+ =

{
(η1,η2,η3)T ∈ R3|ηi > 0, i = 1, 2, 3

}
.

Assumption 1 There exists a constant c satisfying
∫
Y

[
ln

(
1 + γi(u)

)]2
λ(du) < c, i = 1, 2, 3.

Throughout this paper, we assume that Assumption 1 is true.

2 The existence of global positive solution
Theorem 1 For any initial value (x0, y0, z0) ∈ R3

+, system (3) has a unique global solution
(x(t), y(t), z(t)) ∈ R3

+ for t ≥ 0, and the solution will remain in R3
+ almost surely.

Proof At first, let us consider the following system:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du(t) = [w1 – b1 exp(u(t)) – c1 exp(v1(t))
exp(u(t))+k1

– p̃c1 exp(v2(t))
exp(u(t))+k1

] dt
+ σ1 dB1(t) +

∫
Y

ln(1 + γ1(u))Ñ(dt, du),
dv1(t) = [w2 – c2(exp(v1(t))+exp(v2(t)))

exp(u(t))+k2
– β exp(v2(t))] dt

+ σ2 dB2(t) +
∫
Y

ln(1 + γ2(u))Ñ(dt, du),
dv2(t) = [w3 + β exp(v1(t)) – c3(exp(v1(t))+exp(v2(t)))

exp(u(t))+k2
] dt

+ σ3 dB3(t) +
∫
Y

ln(1 + γ3(u))Ñ(dt, du),

(4)

on t ≥ 0 with the initial data (ln x0, ln y0, ln z0). Clearly, the coefficients of system (4) satisfy
the local Lipschitz condition, then there is a unique local solution on [0, τe), where τe is the
explosion time. Therefore, by Itô’s formula, (exp(u(t)), exp(v1(t)), exp(v2(t))) is the unique
positive local solution of system (3) with the initial value (x0, y0, z0) ∈ R3

+. Whereafter, we
will show that τe = ∞, namely the solution of system (3) is globally existent.

Consider the stochastic differential equations:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d	1(t) = 	1(t)[a1 – b1	1(t)] dt + σ1	1(t) dB1(t) +
∫
Y

γ1(u)	1(t–)Ñ(dt, du),
d	2(t) = 	2(t)[a2 – c2	2(t)

	1(t)+k2
] dt + σ2	2(t) dB2(t) +

∫
Y

γ2(u)	2(t–)Ñ(dt, du),
d	3(t) = 	3(t)[β	2(t) + a3 – c3	3(t)

	1(t)+k2
] dt

+ σ3	3(t) dB3(t) +
∫
Y

γ3(u)	3(t–)Ñ(dt, du),

(5)

and
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
1(t) = 
1(t)[a1 – b1
1(t) – c1	2(t)
k1

– p̃c1	3(t)
k1

] dt
+ σ1
1(t) dB1(t) +

∫
Y

γ1(u)
1(t–)Ñ(dt, du),
d
2(t) = 
2(t)[a2 – c2
2(t)

k2
– c2	3(t)

k2
– β	3(t)] dt

+ σ2
2(t) dB2(t) +
∫
Y

γ2(u)
2(t–)Ñ(dt, du),
d
3(t) = 
3(t)[β
2(t) + a3 – c3	2(t)

k2
– c3
3(t)

k2
] dt

+ σ3
3(t) dB3(t) +
∫
Y

γ3(u)
3(t–)Ñ(dt, du).

(6)
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According to the comparison theorem for stochastic differential equations in [18], we can
get that, for t ∈ [0, τe),


1(t) ≤ x(t) ≤ 	1(t), 
2(t) ≤ y(t) ≤ 	2(t), 
3(t) ≤ z(t) ≤ 	3(t), a.s.

By virtue of Lemma 4.2 in [10], we can see that 	i(t) and 
i(t) (i = 1, 2, 3) will not explode
in any finite time, which means that 	i(t) and 
i(t) are existent on t ≥ 0. Thus, we obtain
τe = +∞, the proof of Theorem 1 is completed. �

According to Lemma 4.4 in [10] and equations (5), we know that

lim sup
t→∞

ln	i(t)
ln t

≤ 1, a.s.

for i = 1, 2, 3, when

sup
t≥0

∫ t

0

∫
Y

exp(s – t)
[
γi(u) – ln

(
1 + γi(u)

)]
λ(du) ds < ∞.

Noting the limit limt→∞ ln t
t = 0, lim supt→∞

ln	i(t)
t ≤ 0 is obtained for i = 1, 2, 3, a.s. It then

follows from the comparison theorem of [18] that

lim sup
t→∞

ln x(t)
t

≤ lim sup
t→∞

ln	1(t)
t

≤ 0, a.s.,

lim sup
t→∞

ln y(t)
t

≤ lim sup
t→∞

ln	2(t)
t

≤ 0, a.s.,

lim sup
t→∞

ln z(t)
t

≤ lim sup
t→∞

ln	3(t)
t

≤ 0, a.s.

Thus, we have a lemma as follows.

Lemma 1 Assume that, for any t ≥ 0 and i = 1, 2, 3,

sup
t≥0

∫ t

0

∫
Y

exp(s – t)
[
γi(u) – ln

(
1 + γi(u)

)]
λ(du) ds < ∞.

Then, for any initial value (x0, y0, z0) ∈ R3
+, the solution (x(t), y(t), z(t)) of system (3) satisfies

lim sup
t→∞

ln x(t)
t

≤ 0, lim sup
t→∞

ln y(t)
t

≤ 0, lim sup
t→∞

ln z(t)
t

≤ 0, a.s.

3 Persistence in the mean and extinction
Lemma 2 (see Liu et al. [14]) Suppose that Z(t) ∈ C(� × [0,∞), R+), and let∫
Y

[ln(1 + γi(u))]2λ(du) < c, i = 1, 2, hold.
(I) If there exist two positive constants T and δ0 such that

ln Z(t) ≤ δt – δ0

∫ t

0
Z(s) ds + αB(t) +

2∑
i=1

δi

∫ t

0

∫
Y

ln
(
1 + γi(u)

)
Ñ(ds, du), a.s.
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for all t ≥ T , where α, δ1 and δ2 are constants, then
{

lim supt→∞
1
t
∫ t

0 Z(s) ds ≤ δ/δ0, a.s., if δ ≥ 0;
limt→∞ Z(t) = 0, a.s., if δ < 0.

(II) If there exist three positive constants T , δ and δ0 such that

ln Z(t) ≥ δt – δ0

∫ t

0
Z(s) ds + αB(t) +

2∑
i=1

δi

∫ t

0

∫
Y

ln
(
1 + γi(u)

)
Ñ(ds, du), a.s.

for all t ≥ T , then lim inft→∞ 1
t
∫ t

0 Z(s) ds ≥ δ/δ0, a.s.

Definition 1 Assume m(t) is the density of a population at time t:
(1) If limt→∞ m(t) = 0, a.s., then species m(t) is said to be extinct.
(2) If limt→∞ 1

t
∫ t

0 m(s) ds > 0, a.s., then species m(t) is said to be stable in the mean.
(3) If lim inft→∞ 1

t
∫ t

0 m(s) ds > 0, a.s., then species m(t) is said to be strongly persistent
in the mean.

(4) If lim supt→∞
1
t
∫ t

0 m(s) ds > 0, a.s., then species m(t) is said to be weakly persistent in
the mean.

Obviously, if species m(t) is stable in the mean, it must be strongly or weakly persistent
in the mean.

Making use of Itô’s formula to system (3) gives
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d ln x(t) = [w1 – b1x(t) – c1y(t)
x(t)+k1

– p̃c1z(t)
x(t)+k1

] dt
+ σ1 dB1(t) +

∫
Y

ln(1 + γ1(u))Ñ(dt, du),
d ln y(t) = [w2 – c2(y(t)+z(t))

x(t)+k2
– βz(t)] dt + σ2 dB2(t) +

∫
Y

ln(1 + γ2(u))Ñ(dt, du),
d ln z(t) = [w3 + βy(t) – c3(y(t)+z(t))

x(t)+k2
] dt + σ3 dB3(t) +

∫
Y

ln(1 + γ3(u))Ñ(dt, du).

(7)

For both sides of system (7), integrating from 0 to t and multiplying by 1
t , (7) equals

⎧⎪⎨
⎪⎩

ln x(t)–ln x0
t = w1 – b1

1
t
∫ t

0 x(s) ds – 1
t
∫ t

0
c1y(s)

x(s)+k1
ds – 1

t
∫ t

0
p̃c1z(s)
x(s)+k1

ds + σ1B1(t)
t + M1(t)

t ,
ln y(t)–ln y0

t = w2 – 1
t
∫ t

0
c2(y(s)+z(s))

x(s)+k2
ds – β 1

t
∫ t

0 z(s) ds + σ2B2(t)
t + M2(t)

t ,
ln z(t)–ln z0

t = w3 + β 1
t
∫ t

0 y(s) ds – 1
t
∫ t

0
c3(y(s)+z(s))

x(s)+k2
ds + σ3B3(t)

t + M3(t)
t ,

(8)

where Mi(t) =
∫ t

0
∫
Y

ln(1 + γi(u))Ñ(ds, du), i = 1, 2, 3.
Mi(t) are local martingale, by Proposition 2.4 of [19] and Assumption 1, its quadratic

variations are

〈Mi, Mi〉(t) =
∫ t

0

∫
Y

[
ln

(
1 + γi(u)

)]2
λ(du) ds

= t
∫
Y

[
ln

(
1 + γi(u)

)]2
λ(du)

< ct, i = 1, 2, 3.

According to the law of strong large numbers, we have

lim
t→∞

Mi(t)
t

= 0, a.s. i = 1, 2, 3. (9)
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Obviously,

lim
t→∞

Bi(t)
t

= 0, a.s. i = 1, 2, 3. (10)

In the following, we discuss the persistence in the mean and extinction for prey and preda-
tor populations.

Theorem 2
(i) If wi < 0 (i = 1, 2, 3), the prey population x(t) and both the predator populations y(t)

and z(t) will be extinct with probability 1.
(ii) If w1 < 0, w2 < 0 and w3 > 0, the prey population x(t) and the susceptible predator

population y(t) will go to extinction, a.s., the infected predator population z(t) will
be stable in the mean, i.e., limt→∞ 1

t
∫ t

0 z(s) ds = w3k2
c3

.
(iii) If w1 < 0, w2 > 0 and w3 < 0, the prey population x(t) will go to extinction, the growth

of the predator population is divided into the following two cases:
(a) when w3 + βk2

c2
w2 < 0, then the susceptible predator y(t) will be stable in the

mean, limt→∞ 1
t
∫ t

0 y(s) ds = w2k2
c2

, and the infected predator z(t) will be extinct,
a.s.

(b) when w3 + βk2
c2

w2 > 0, w2 > (c2+k2β)(w3c2+βk2w2)
c2c3

and w3 + βQ > c3w2
c2

, where
Q = k2

c2
[w2 – (c2+k2β)(w3c2+βk2w2)

c2c3
], the whole predator population y(t) and z(t) will

be strongly persistent in the mean, a.s.
(iv) If w1 > 0, w2 < 0 and w3 < 0, then the prey population x(t) will be stable in the mean,

namely limt→∞ 1
t
∫ t

0 x(s) ds = w1
b1

, a.s. Both the susceptible predator y(t) and the
infected predator z(t) will die out, a.s.

(v) Assume that, for any t ≥ 0 and i = 1, 2, 3,

sup
t≥0

∫ t

0

∫
Y

exp(s – t)
[
γi(u) – ln

(
1 + γi(u)

)]
λ(du) ds < ∞,

then if w1 > (w2+w3)k2c1
(c2+c3+k2β)k1

, w2 > 0 and w3 > 0, then all the populations will be strongly
persistent in the mean, where lim inft→∞[ 1

t
∫ t

0 x(s) ds] ≥ w1
b1

– (w2+w3)k2c1
b1k1(c2+c3+k2β) and

lim inft→∞ 1
t
∫ t

0 [y(s) + z(s)] ds ≥ (w2+w3)k2
c2+c3+k2β

, a.s.

Proof Making use of (8), we get

⎧⎪⎪⎨
⎪⎪⎩

1
t ln x(t)

x0
≤ w1 – b1

1
t
∫ t

0 x(s) ds + σ1B1(t)
t + M1(t)

t ,
1
t ln y(t)

y0
≤ w2 – 1

t
∫ t

0
c2y(s)

x(s)+k2
ds + σ2B2(t)

t + M2(t)
t ,

1
t ln z(t)

z0
≤ w3 + β 1

t
∫ t

0 y(s) ds – 1
t
∫ t

0
c3z(s)

x(s)+k2
ds + σ3B3(t)

t + M3(t)
t .

(11)

(i) According to (11),

1
t

ln
x(t)
x0

≤ w1 – b1
1
t

∫ t

0
x(s) ds +

σ1B1(t)
t

+
M1(t)

t
,

noting (9) and (10), by virtue of Lemma 2, we can get limt→∞ x(t) = 0 when w1 < 0. Then,
for an arbitrary small constant ε1 which satisfies 0 < ε1 < – w3

β
, there exists a sufficiently
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large number T1 (T1 > 0) such that

–ε1 ≤ x(t) ≤ ε1 (12)

for t ≥ T1; therefore,

1
t

ln
y(t)
y0

≤ w2 –
1
t

∫ t

0

c2y(s)
ε1 + k2

ds +
σ2B2(t)

t
+

M2(t)
t

. (13)

Because of w2 < 0, making use of Lemma 2, limt→∞ y(t) = 0, a.s. In this case, there is a
sufficiently large constant T2 (T2 > T1) satisfying –ε1 ≤ y(t) ≤ ε1, when t ≥ T2, a.s. Thus,

1
t

ln
z(t)
z0

≤ w3 + β
1
t

∫ t

0
y(s) ds –

1
t

∫ t

0

c3z(s)
x(s) + k2

ds +
σ3B3(t)

t
+

M3(t)
t

≤ w3 + β
1
t

∫ t

0
ε1 ds –

1
t

∫ t

0

c3z(s)
ε1 + k2

ds +
σ3B3(t)

t
+

M3(t)
t

≤ (w3 + βε1) –
c3

ε1 + k2

1
t

∫ t

0
z(s) ds +

σ3B3(t)
t

+
M3(t)

t
.

Notice 0 < ε1 < – w3
β

, it follows from Lemma 2 that limt→∞ z(t) = 0, a.s.
(ii) Similar to case (i), when w1 < 0, w2 < 0, it easily shows that limt→∞ x(t) = 0,

limt→∞ y(t) = 0, and for an arbitrary small constant ε̄1 > 0,

1
t

ln
z(t)
z0

≤ (w3 + βε̄1) –
c3

ε̄1 + k2

1
t

∫ t

0
z(s) ds +

σ3B3(t)
t

+
M3(t)

t
.

Making use of Lemma 2, w3 > 0 and the arbitrariness of ε̄1, lim supt→∞
1
t
∫ t

0 z(s) ds ≤ w3k2
c3

,
a.s. is obviously verified. In contrast,

1
t

ln
z(t)
z0

≥ w3 –
c3

k2

1
t

∫ t

0
y(s) ds –

c3

k2

1
t

∫ t

0
z(s) ds +

σ3B3(t)
t

+
M3(t)

t
.

Noting that limt→∞ y(t) = 0, a.s. and Lemma 2, we have

lim inf
t→∞

1
t

∫ t

0
z(s) ds ≥ w3k2

c3
, a.s.,

then we obtain limt→∞ 1
t
∫ t

0 z(s) ds = w3k2
c3

, a.s.
(iii) It is easy to show that limt→∞ x(t) = 0, a.s. when w1 < 0. On the basis of (13) and

Lemma 2, for t > T1, lim supt→∞
1
t
∫ t

0 y(s) ds ≤ w2(ε1+k2)
c2

, a.s. under the condition of w2 > 0.
Considering the arbitrariness of ε1, lim supt→∞

1
t
∫ t

0 y(s) ds ≤ w2k2
c2

, a.s. Therefore, for an
arbitrary constant ε3 > 0 (0 < ε3 < 1

β
|w3 + βk2

c2
w2|), there exists a number T3 (T3 > T1) such

that

1
t

∫ t

0
y(s) ds ≤ w2k2

c2
+ ε3, a.s.
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for t > T3. Making use of (12), then for t > T3, we have

1
t

ln
z(t)
z0

≤ w3 + β
1
t

∫ t

0
y(s) ds –

1
t

∫ t

0

c3z(s)
ε1 + k2

ds +
σ3B3(t)

t
+

M3(t)
t

≤ w3 + β

(
w2k2

c2
+ ε3

)
–

c3

ε1 + k2

1
t

∫ t

0
z(s) ds +

σ3B3(t)
t

+
M3(t)

t
.

(a) If w3 + βk2
c2

w2 < 0, then

lim
t→∞ z(t) = 0, a.s. (14)

For the susceptible predator population,

1
t

ln
y(t)
y0

≥ w2 –
1
t

∫ t

0

c2y(s)
k2

ds –
1
t

∫ t

0

c2z(s)
k2

ds – β
1
t

∫ t

0
z(s) ds +

σ2B2(t)
t

+
M2(t)

t
.

Because of (9), (10), (14) and Lemma 2, we have lim inft→∞ 1
t
∫ t

0 y(s) ds ≥ w2k2
c2

, a.s. Then
limt→∞ 1

t
∫ t

0 y(s) ds = w2k2
c2

, a.s.
(b) If w3 + βk2

c2
w2 > 0, by virtue of Lemma 2 and the arbitrariness of ε1 and ε3, we have

lim sup
t→∞

1
t

∫ t

0
z(s) ds ≤ (w3c2 + βk2w2)k2

c2c3
, a.s. (15)

Then

1
t

ln
y(t)
y0

≥ w2 –
c2

k2

1
t

∫ t

0
y(s) ds –

(
c2

k2
+ β

)
1
t

∫ t

0
z(s) ds +

σ2B2(t)
t

+
M2(t)

t
.

Notice (15), for sufficiently large t, 1
t
∫ t

0 z(s) ds ≤ (w3c2+βk2w2)k2
c2c3

+ ε4, a.s., where ε4 is an ar-
bitrary positive number. Hence, by (9), (10), Lemma 2 and the arbitrariness of ε4, we have

lim inf
t→∞

1
t

∫ t

0
y(s) ds ≥ k2

c2

[
w2 –

(c2 + k2β)(w3c2 + βk2w2)
c2c3

]
,

when w2 > (c2+k2β)(w3c2+βk2w2)
c2c3

. Here we define Q = k2
c2

[w2 – (c2+k2β)(w3c2+βk2w2)
c2c3

].
In this case,

1
t

ln
z(t)
z0

≥ w3 + β
1
t

∫ t

0
y(s) ds –

c3

k2

1
t

∫ t

0
y(s) ds –

c3

k2

1
t

∫ t

0
z(s) ds +

σ3B3(t)
t

+
M3(t)

t
.

For sufficiently large t, we have

1
t

ln
z(t)
z0

≥
[

w3 + βQ –
c3

k2

w2k2

c2

]
–

c3

k2

1
t

∫ t

0
z(s) ds +

σ3B3(t)
t

+
M3(t)

t
.

If w3 + βQ > c3w2
c2

, then by Lemma 2, we get

lim inf
t→∞

1
t

∫ t

0
z(s) ds ≥ [w3 + βQ – c3w2

c2
]k2

c3
, a.s.
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(iv) According to (11), we have

1
t

ln
x(t)
x0

≤ w1 – b1
1
t

∫ t

0
x(s) ds +

σ1B1(t)
t

+
M1(t)

t
.

Making use of Lemma 2, (9) and (10), we have

lim sup
t→∞

1
t

∫ t

0
x(s) ds ≤ w1

b1
, a.s. (16)

and

1
t

ln
y(t)
y0

≤ w2 +
σ2B2(t)

t
+

M2(t)
t

.

Because of w2 < 0 and (9), (10), we get lim supt→∞
ln y(t)

t < 0, a.s., namely

lim
t→∞ y(t) = 0, a.s. (17)

Then

1
t

ln
z(t)
z0

≤ w3 + β
1
t

∫ t

0
y(s) ds +

σ3B3(t)
t

+
M3(t)

t
.

Considering (9), (10), (17) and w3 < 0, we have lim supt→∞
ln z(t)

t < 0; therefore,

lim
t→∞ z(t) = 0, a.s. (18)

At this time, for sufficiently large t,

1
t

ln
x(t)
x0

≥ w1 – b1
1
t

∫ t

0
x(s) ds –

c1

k1

1
t

∫ t

0
y(s) ds –

p̃c1

k1

1
t

∫ t

0
z(s) ds +

σ1B1(t)
t

+
M1(t)

t
.

By (17), (18) and Lemma 2,

lim inf
t→∞

1
t

∫ t

0
x(s) ds ≥ w1

b1
, a.s. (19)

Combining (19) with (16), we have limt→∞ 1
t
∫ t

0 x(s) ds = w1
b1

, a.s.
(v) It is easy to have lim supt→∞

1
t
∫ t

0 x(s) ds ≤ w1
b1

, a.s. when w1 > 0 and

1
t

ln
y(t)
y0

≥ w2 –
c2

k2

1
t

∫ t

0
y(s) ds –

(
c2

k2
+ β

)
1
t

∫ t

0
z(s) ds +

σ2B2(t)
t

+
M2(t)

t
,

1
t

ln
z(t)
z0

≥ w3 –
c3

k2

1
t

∫ t

0
y(s) ds –

c3

k2

1
t

∫ t

0
z(s) ds +

σ3B3(t)
t

+
M3(t)

t
.

Then

1
t

ln
y(t)
y0

+
1
t

ln
z(t)
z0

≥ (w2 + w3) –
c2 + c3

k2

1
t

∫ t

0
y(s) ds –

c2 + c3 + k2β

k2

1
t

∫ t

0
z(s) ds

+
3∑

i=2

[
σiBi(t)

t
+

Mi(t)
t

]
,
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namely

1
t

ln
(
y(t)z(t)

)
–

1
t

ln(y0z0) ≥ (w2 + w3) –
c2 + c3 + k2β

k2

1
t

∫ t

0

[
y(s) + z(s)

]
ds

+
3∑

i=2

[
σiBi(t)

t
+

Mi(t)
t

]
.

By virtue of the formula (a + b)2 ≥ 2ab for a, b ∈ R+, we can get 2 ln(a + b) ≥ ln 2 + ln(ab),
hence

2 ln(y(t) + z(t))
t

–
ln 2

t
–

ln(y0z0)
t

≥ (w2 + w3) –
(c2 + c3 + k2β)

k2

1
t

∫ t

0

[
y(s) + z(s)

]
ds

+
3∑

i=2

[
σiBi(t)

t
+

Mi(t)
t

]
,

then

ln(y(t) + z(t))
t

–
ln 2
2t

–
ln(y0z0)

2t
≥ (w2 + w3)

2
–

(c2 + c3 + k2β)
2k2

1
t

∫ t

0

[
y(s) + z(s)

]
ds

+
1
2

3∑
i=2

[
σiBi(t)

t
+

Mi(t)
t

]
.

By Lemma 2, we get

lim inf
t→∞

1
t

∫ t

0

[
y(s) + z(s)

]
ds ≥ (w2 + w3)k2

c2 + c3 + k2β
, a.s.

In this case, considering 0 < p̃ < 1, we have

1
t

ln
x(t)
x0

≥ w1 – b1
1
t

∫ t

0
x(s) ds –

c1

k1

1
t

∫ t

0

[
y(s) + z(s)

]
ds +

σ1B1(t)
t

+
M1(t)

t
.

Taking the inferior limit, by virtue of Lemma 1 and (9), (10), we get

0 ≥ lim sup
t→∞

1
t

ln
x(t)
x0

≥ lim inf
t→∞

1
t

ln
x(t)
x0

≥ w1 – b1 lim inf
t→∞

[
1
t

∫ t

0
x(s) ds

]
–

c1

k1
lim inf

t→∞

[
1
t

∫ t

0

[
y(s) + z(s)

]
ds

]

+ lim inf
t→∞

[
σ1B1(t)

t
+

M1(t)
t

]
.

Hence,

lim inf
t→∞

[
1
t

∫ t

0
x(s) ds

]
≥ w1

b1
–

(w2 + w3)k2c1

b1k1(c2 + c3 + k2β)
, a.s. �

4 Stochastically ultimate boundedness
From the biological point of view, the nonexplosion and positiveness property of solution
in a population dynamical system is not enough. In this section we will show that the pth
moment of solution (3) is bounded.
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Definition 2 The solution X(t) of system (3) is called stochastically ultimate bounded if,
for any ε ∈ (0, 1), there is a constant H := H(ε) such that, for any X(0) ∈ R3

+,

lim sup
t→∞

P
{∣∣X(t)

∣∣ ≤ H
} ≥ 1 – ε.

Theorem 3 Assume (x(t), y(t), z(t))T to be a solution to system (3) with the initial value
(x0, y0, z0) ∈ R3

+. If k2 > (1+a1)2

4b1
for all p > 0, there exist constants K̄i(p) (i = 1, 2, 3) such that

lim sup
t→∞

E
[
xp(t)

] ≤ K̄1(p), lim sup
t→∞

E
[
yp(t)

] ≤ K̄2(p), lim sup
t→∞

E
[
zp(t)

] ≤ K̄3(p).

Proof Making use of Itô’s formula and then taking expectations yield

d
(
etxp(t)

)
= etxp(t)

{
1 + p

[
a1 – b1x –

c1y
x + k1

–
p̃c1z

x + k1

]
+

p(p – 1)
2

σ 2
1

+
∫
Y

[(
1 + γ1(u)

)p – 1 – pγ1(u)
]
λ(du)

}
dt + pσ1etxp(t) dB1(t)

+
∫
Y

etxp(t)
[(

1 + γ1(u)
)p – 1

]
Ñ(dt, du),

E
(
etxp(t)

)
= xp(0) + pE

∫ t

0
esxp(s)

{
1
p

+ a1 +
(p – 1)

2
σ 2

1

+
1
p

∫
Y

[(
1 + γ1(u)

)p – 1 – pγ1(u)
]
λ(du)

– b1x(s) –
c1y(s)

x(s) + k1
–

p̃c1z(s)
x(s) + k1

}
ds

≤ xp(0) + pE
∫ t

0
esxp(s)

{
1
p

+ a1 +
(p – 1)

2
σ 2

1

+
1
p

∫
Y

[(
1 + γ1(u)

)p – 1 – pγ1(u)
]
λ(du) – b1x(s)

}
ds.

Note for a function f (v) = vp(a – bv), v ∈ [0, +∞), p > 0, a > 0, b > 0, f (v) has a maximum
value at ap

(p+1)b , namely

f (v) ≤ f
(

ap
(p + 1)b

)
=

ap+1pp

(p + 1)p+1bp . (20)

Therefore,

E
(
etxp(t)

) ≤ xp(0) + E
∫ t

0
esK̄1(p) ds ≤ xp(0) + K̄1(p)

(
et – 1

)
,

where

K̄1(p) =
[1 + a1p + p(p–1)

2 σ 2
1 +

∫
Y

[(1 + γ1(u))p – 1 – pγ1(u)]λ(du)]p+1

(p + 1)p+1bp
1

.

Let t → +∞, we have

lim sup
t→∞

E
[
xp(t)

] ≤ K̄1(p), a.s. (21)
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Similarly, we can compute

d
(
etyp(t)

)
= etyp(t)

{
1 + p

[
a2 –

c2(y + z)
x + k2

– βz
]

+
p(p – 1)

2
σ 2

2

+
∫
Y

[(
1 + γ2(u)

)p – pγ2(u) – 1
]
λ(du)

}
dt + pσ2etyp(t) dB2(t)

+
∫
Y

etyp(t)
[(

1 + γ2(u)
)p – 1

]
Ñ(dt, du).

Thus, taking expectations leads to

E
(
etyp(t)

)
= yp(0) + E

∫ t

0
esyp(s)

[
1 + pa2 +

p(p – 1)
2

σ 2
2

+
∫
Y

[(
1 + γ2(u)

)p – pγ2(u) – 1
]
λ(du)

–
c2p(y(s) + z(s))

x(s) + k2
– pβz(s)

]
ds

≤ yp(0) + E
∫ t

0
esyp(s)

[
1 + pa2 +

p(p – 1)
2

σ 2
2

+
∫
Y

[(
1 + γ2(u)

)p – pγ2(u) – 1
]
λ(du)

–
c2py(s)

k2
+

c2px(s)y(s)
k2(x(s) + k2)

]
ds.

By virtue of (21), for arbitrary small ε0 > 0 (ε0 < k2 – K̄1(1)), there exists a positive constant
T0 satisfying

E
(
xp(t)

) ≤ K̄1(p) + ε0

for t > T0. Therefore,

E
(
etyp(t)

) ≤ yp(0) +
∫ t

0
esE

{
yp(s)

[
1 + pa2 +

p(p – 1)
2

σ 2
2 +

∫
Y

[(
1 + γ2(u)

)p

– pγ2(u) – 1
]
λ(du) –

c2py(s)
k2

]}
ds +

c2p
k2

2

∫ t

0
esE

(
x(s)

)
E
(
yp+1(s)

)
ds

≤ yp(0) +
∫ t

0
esE

{
yp(s)

[
1 + pa2 +

p(p – 1)
2

σ 2
2 +

∫
Y

[(
1 + γ2(u)

)p

– pγ2(u) – 1
]
λ(du) –

c2py(s)
k2

]}
ds +

c2p
k2

2

(
K̄1(1) + ε0

)∫ t

0
esE

(
yp+1(s)

)
ds

≤ yp(0) +
∫ t

0
esE

{
yp(s)

[
1 + pa2 +

p(p – 1)
2

σ 2
2 +

∫
Y

[(
1 + γ2(u)

)p

– pγ2(u) – 1
]
λ(du) –

c2py(s)
k2

+
c2p
k2

2

(
K̄1(1) + ε0

)
y(s)

]}
ds.
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If k2 > K̄1(1), then k2 > K̄1(1) + ε0. According to (20), the following result is available:

E
(
etyp(t)

) ≤ yp(0) +
∫ t

0
esK2(p) ds = yp(0) + K2(p)

(
et – 1

)
.

Here

K2(p) =
[1 + pa2 + p(p–1)

2 σ 2
2 +

∫
Y

[(1 + γ2(u))p – pγ2(u) – 1]λ(du)]p+1

(p + 1)p+1

· k2p
2

cp
2(k2 – K̄1(1) – ε0)p

,

where K̄1(1) = (1+a1)2

4b1
. Similarly, lim supt→∞ E[yp(t)] ≤ K2(p), here because of the arbitrari-

ness of ε0, define

K̄2(p) =
[1 + pa2 + p(p–1)

2 σ 2
2 +

∫
Y

[(1 + γ2(u))p – pγ2(u) – 1]λ(du)]p+1

(p + 1)p+1 · k2p
2

cp
2(k2 – K̄1(1))p

,

thus,

lim sup
t→∞

E
[
yp(t)

] ≤ K̄2(p). (22)

And

d
(
etzp(t)

)
= etzp(t)

{
1 + p

[
βy + a3 –

c3(y + z)
x + k2

]
+

p(p – 1)
2

σ 2
3

+
∫
Y

[(
1 + γ3(u)

)p – pγ3(u) – 1
]
λ(du)

}
dt + pσ3etzp(t) dB3(t)

+
∫
Y

etzp(t)
[(

1 + γ3(u)
)p – 1

]
Ñ(dt, du),

E
(
etzp(t)

)
= zp(0) + E

∫ t

0
eszp(s)

[
1 + pa3 +

p(p – 1)
2

σ 2
3

+
∫
Y

[(
1 + γ3(u)

)p – pγ3(u) – 1
]
λ(du)

+ pβy(s) –
c3p(y(s) + z(s))

x(s) + k2

]
ds

≤ zp(0) + E
∫ t

0
eszp(s)

[
1 + pa3 +

p(p – 1)
2

σ 2
3

+
∫
Y

[(
1 + γ3(u)

)p – pγ3(u) – 1
]
λ(du)

+ pβy(s) –
c3pz(s)

x(s) + k2

]
ds

≤ zp(0) + E
∫ t

0
pβeszp(s)y(s) ds + E

∫ t

0
eszp(s)

[
1 + pa3 +

p(p – 1)
2

σ 2
3

+
∫
Y

[(
1 + γ3(u)

)p – pγ3(u) – 1
]
λ(du) –

c3pz(s)
k2

+
c3px(s)z(s)

k2(x(s) + k2)

]
ds.
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On the basis of Young’s inequality, we have

y(t)zp(t) ≤ yp+1(t)
p + 1

+
p

p + 1
(
zp(t)

) p+1
p

≤ yp+1(t)
p + 1

+
p

p + 1
zp+1(t).

Notice p
p+1 < 1, we have y(t)zp(t) ≤ yp+1(t)

p+1 + zp+1(t), then

E
(
etzp(t)

) ≤ zp(0) + pβE
∫ t

0
eszp+1(s) ds + pβE

∫ t

0
es 1

p + 1
yp+1(s) ds

+ E
∫ t

0
eszp(s)

[
1 + pa3 +

p(p – 1)
2

σ 2
3

+
∫
Y

[(
1 + γ3(u)

)p – pγ3(u) – 1
]
λ(du) –

c3pz(s)
k2

+
c3px(s)z(s)

k2
2

]
ds

≤ zp(0) +
pβ

p + 1
E

∫ t

0
esyp+1(s) ds + E

∫ t

0
eszp(s)

[
1 + pa3 +

p(p – 1)
2

σ 2
3

+
∫
Y

[(
1 + γ3(u)

)p – pγ3(u) – 1
]
λ(du) –

(
c3p
k2

– pβ

)
z(s)

]
ds

+
c3p
k2

2

∫ t

0
esE

(
x(s)

)
E
(
zp+1(s)

)
ds.

Considering (22), we can see that there exist positive constants 	K2(p) and 	T2 ( 	T2 > T0), for
t > 	T2, one can obtain that E[yp(t)] ≤ 	K2(p). Then, for t > 	T2,

E
(
etzp(t)

) ≤ zp(0) +
pβ

p + 1
	K2(p + 1)

[
et – 1

]
+

∫ t

0
esE

{
zp(s)

[
1 + pa3 +

p(p – 1)
2

σ 2
3

+
∫
Y

[(
1 + γ3(u)

)p – pγ3(u) – 1
]
λ(du)

–
(

c3p
k2

– pβ –
c3p
k2

2

(
K̄1(1) + ε0

))
z(s)

]}
ds

≤ zp(0) +
pβ

p + 1
	K2(p + 1)

[
et – 1

]
+

∫ t

0
esK3(p) ds

≤ zp(0) +
pβ

p + 1
	K2(p + 1)

[
et – 1

]
+ K3(p)

[
et – 1

]
,

where

K3(p) =
[1 + pa3 + p(p–1)

2 σ 2
3 +

∫
Y

[(1 + γ3(u))p – pγ3(u) – 1]λ(du)]p+1

(p + 1)p+1

· pp

[ c3p
k2

– pβ – c3p
k2

2
(K̄1(1) + ε0)]p

.

Take the superior limit results in

lim sup
t→∞

E
[
zp(t)

] ≤ pβ

p + 1
	K2(p + 1) + K3(p).
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Notice the arbitrariness of ε0, let

K̄3(p) =
pβ

p + 1
	K2(p + 1) +

[1 + pa3 + p(p–1)
2 σ 2

3 +
∫
Y

[(1 + γ3(u))p – pγ3(u) – 1]λ(du)]p+1

(p + 1)p+1

· pp

[ c3p
k2

– pβ – c3p
k2

2
K̄1(1)]p

,

clearly,

lim sup
t→∞

E
[
zp(t)

] ≤ K̄3(p),

thus the proof of Theorem 3 is completed. �

By virtue of the formula of Lemma 2.1 in [10], we have

n(1– p
2 )∧0|x|p ≤

n∑
i=1

xp
i ≤ n(1– p

2 )∨0|x|p

for ∀p > 0, x ∈ Rn
+, where Rn

+ := {x ∈ Rn, xi > 0, 1 ≤ i ≤ n}.
For solution X(t) = (x(t), y(t), z(t))T ∈ R3

+ and p > 0, we have

3(1– p
2 )∧0∣∣X(t)

∣∣p ≤ xp(t) + yp(t) + zp(t).

By Theorem 3,

lim sup
t→∞

E
[
X(t)

]p ≤
(

1
3

)(1– p
2 )∧0

lim sup
t→∞

E
[
xp(t) + yp(t) + zp(t)

] ≤
(

1
3

)(1– p
2 )∧0 3∑

i=1

K̄i(p).

As an application of Theorem 3, together with the Chebyshev inequality, we can also es-
tablish the following corollary.

Corollary 1 Under conditions of Theorem 3, the solution of system (3) is stochastically
ultimate bounded.

5 Numerical simulation
In this section, we give some examples and numerical simulations to illustrate our analyt-
ical findings. These numerical simulations are given by the Euler scheme of [20].

For system (3), we choose the initial value (x0, y0, z0) = (0.2, 0.1, 0.2), and

b1 = 0.3, c1 = 0.4, p̃ = 0.1, c2 = 0.6, k1 = 0.5,

k2 = 0.5, β = 0.4, c3 = 0.5, σi = 0.5 (i = 1, 2, 3),
(23)

Y = (0, +∞), λ(Y) = 1. In the following, we change the values of part parameters to observe
the asymptotic behavior of solution for system (3).
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Figure 1 Solutions of system (3) for a1 = 0.02, a2 = 0.03, a3 = 0.02, γ1(u) = γ3(u) = 0.2, γ2(u) = 0.4, the other
parameters are the same as in (23), with step size �t = 0.1 > 0

(1) In Figure 1, let a1 = 0.02, a2 = 0.03, a3 = 0.02, γ1(u) = γ3(u) = 0.2, γ2(u) = 0.4, the
other parameters are the same as above, then

w1 = a1 –
σ 2

1
2

–
∫
Y

[
γ1(u) – ln

(
1 + γ1(u)

)]
λ(du) = –0.1227 < 0,

w2 = a2 –
σ 2

2
2

–
∫
Y

[
γ2(u) – ln

(
1 + γ2(u)

)]
λ(du) = –0.1585 < 0,

w3 = a3 –
σ 2

3
2

–
∫
Y

[
γ3(u) – ln

(
1 + γ3(u)

)]
λ(du) = –0.1227 < 0.

Thus, in accordance with case (i) in Theorem 2, all the species will go to extinction,
Figure 1 confirms it.

(2) In Figure 2, let a1 = 0.02, a2 = 0.03, a3 = 0.5, γ1(u) = γ2(u) = 0.2, γ3(u) = 0.4, the
other parameters remain the same as in (23), then

w1 = –0.1227 < 0, w2 = –0.1127 < 0, w3 = 0.3115 > 0.

By the case (ii) of Theorem 2, the prey population and the susceptible predator
population will be extinct, the infected predator population will be stable in the
mean. Figure 2 shows it.

(3) In Figure 3, we assume a1 = 0.06, a2 = 0.6, a3 = 0.2, σ3 = 0.8, β = k2 = 0.2, γ1(u) = 0.4,
γ2(u) = γ3(u) = 0.2, the other parameters are the same as in (23), at this time

w1 = –0.1285 < 0, w2 = 0.4573 > 0,

w3 = –0.1377 < 0, w3 +
βk2

c2
w2 = –0.1072 < 0.
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Figure 2 Solutions of system (3) for a1 = 0.02, a2 = 0.03, a3 = 0.5, γ1(u) = γ2(u) = 0.2, γ3(u) = 0.4, the other
parameters remain the same as in (23), with step size �t = 0.1 > 0

Figure 3 Solutions of system (3) for a1 = 0.06, a2 = 0.6, a3 = 0.2, σ3 = 0.8, β = k2 = 0.2, γ1(u) = 0.4,
γ2(u) = γ3(u) = 0.2, the other parameters are the same as in (23), with step size �t = 0.1 > 0

By the condition of (iii)(a), the prey population x(t) and the infected population z(t)
will go to extinction, the susceptible predator population y(t) will be stable in the
mean.

(4) In Figure 4, we choose a1 = 0.3, a2 = 0.03, a3 = 0.02, γ1(u) = 0.2, γ2(u) = γ3(u) = 0.4,
the other parameters are the same as in (23), then

w1 = 0.1573 > 0, w2 = –0.1585 < 0, w3 = –0.1685 < 0.
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Figure 4 Solutions of system (3) for a1 = 0.3, a2 = 0.03, a3 = 0.02, γ1(u) = 0.2, γ2(u) = γ3(u) = 0.4, the other
parameters are the same as in (23), with step size �t = 0.1 > 0

Figure 5 Solutions of system (3) for a1 = 0.75, a2 = 0.7, a3 = 0.3, c2 = 0.3, c3 = 0.2, k2 = 0.6, β = 0.4, σ3 = 0.7,
γ1(u) = 0.4, γ2(u) = γ3(u) = 0.2, the other parameters are the same as in (23), with step size �t = 0.1 > 0

On the basis of (iv) in Theorem 2, the prey population will be stable in the mean, the
whole predator population will die out, which is consistent with Figure 4.

(5) In Figure 5, let a1 = 0.75, a2 = 0.7, a3 = 0.3, c2 = 0.3, c3 = 0.2, k2 = 0.6, β = 0.4,
σ3 = 0.7, γ1(u) = 0.4, γ2(u) = γ3(u) = 0.2, the other parameters are the same as in
(23), then

w1 = 0.5615 > 0, w2 = 0.5573 > 0, w3 = 0.0373 > 0,
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Figure 6 Solutions of deterministic system (2), all the parameters are the same as in Figure 1

Figure 7 Solutions of deterministic system (2), all the parameters are the same as in Figure 4

and (w2+w3)k2c1
(c2+c3+k2β)k1

= 0.3857, w1 > (w2+w3)k2c1
(c2+c3+k2β)k1

. By virtue of (v) in Theorem 2, all the
populations will be strongly persistent in the mean.

In the following, we discuss the solution of deterministic system (2), assume that all the
parameters are the same as in Figures 1, 4, 5. Figure 6 shows that the susceptible predator
population will be extinct, but the prey and infected predator populations will be stable,
which is different from Figure 1.

Figure 7 illustrates that the prey population and the infected predator population will
be stable, and the susceptible predator population will go to extinction. Compare Figure 7
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Figure 8 Solutions of deterministic system (2), all the parameters are the same as in Figure 5

with Figure 4, the behavior of solution for system (2) is distinct from that for stochastic
system (3). Figure 8 confirms it again, we give no more explanations.

These results show that, for a stochastic system, not only the growth rate but also the
Lévy noise and Gauss white noise play an important role in the persistence of population.
Sometimes, the stochastic perturbation of environment can make species extinct.

6 Conclusions
In this paper, we discuss an LG–Holling type II diseased predator ecosystem with Lévy
noise and Gauss white noise. We show that the system admits a unique global positive
solution; we also investigate persistence in the mean and extinction of all the populations,
uniformly finite pth moment with p > 0 and stochastic ultimate boundedness. The thresh-
old conditions of extinction or persistence in the mean for prey and predator populations
illustrate that wi is the key value, which means that ai is advantageous to the population,
white noise and Lévy noise will go against the persistence of population. From the numer-
ical simulation, we find that Lévy noise and Gauss white noise have an important effect
on persistence for a stochastic system; occasionally, it may be a determinant factor. Thus,
we must consider random changes of environment in the mathematical model.
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