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Abstract
We design a deterministic model of pine wilt affliction to analyze the transmission
dynamics. We obtain the reproduction number in unequivocal form, and global
dynamics of the ailment is totally controlled by this number. With a specific end goal
to survey the adequacy of malady control measures, we give the affectability
investigation of basic reproduction number R0 and the endemic levels of diseased
classes regarding epidemiological parameters. From the aftereffects of the sensitivity
analysis, we adjust the model to evaluate the effect of three control measures:
exploitation of the tainted pines, preventive control to limit vector host contacts, and
bug spray control to the vectors. Optimal analysis and numerical simulations of the
model show that limited and appropriate utilization of control measures may
extensively diminish the number of infected pines in a viable way.

Keywords: dynamical system; pine wilt disease; stability analysis; sensitivity analysis;
optimal control

1 Introduction
Vector-borne illnesses are the maladies that outcome from disease transmitted by the nib-
ble of infected arthropod species, for example, mosquitoes, fleas, ticks, and bugs. These
biological agents that transmit contagious pathogen are called vectors. Malaria is the most
regular case of vector-borne diseases. Many occurrences of vector-borne ailments are
known for plants, for instance, coconut palm disease in palms and pine wilt illness in pine
trees [1].

Pine wilt disease is a deadly ailment since it slays the infected tree within a few months.
Bursaphelenchus xylophilus is the nematode that causes this disease. Monochamus alter-
natus, pine sawyer beetle, serves as a vector for this parasite, and it spreads the nematode
to pine trees [2]. It was first observed in 1905 in Japan. In United States, the pine wood
nematode was first reported in 1934. Asian countries other than Japan began to report
presence of pinewood nematode in the 1980s.

The first noticeable pine wilt disease symptom is reduction in the flow of oleoresin from
bark wounds. Another indication of pine wilt disease is change of needle color from light
grayish green to yellowish green, yellowish brown, and finally completely brown as tree
succumbs to the disease [3].
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Three transmission pathways of pine wilt disease are perceived. One occurs when adult
beetles infested with nematode fly to healthy pine trees and begin maturation feeding and
transmit nematode into the tree, and this transmission is pointed as a primary transmis-
sion. The secondary transmission occurs during egg lying activities of mature female on
dead or dying, freshly cut pine tree. Horizontal transmission of nematode occurs during
mating as mature male search for female beetle in bark wounds like oviposition wounds
[4].

In this paper, we formulate a mathematical model based on ordinary differential equa-
tions. This model describes the infectious disease of pine trees through pine sawyer bee-
tles. The motivation behind this paper is two-overlay. The first is to discuss the qualitative
behavior of the proposed model. The second point is to accomplish awareness about the
most attractive method for limiting the transmission of the disease using the sensitivity
analysis. On the basis of sensitivity analysis, the model is modified by including three time-
dependent controls: erosion of infected trees, tree-injection, and atmospheric pesticide
spray.

2 Model framework
We formulate a four-dimensional mathematical model composed of the susceptible
host pine trees Sh at time t that are at risk of being infected by the nematode. These
trees radiate oleoresin that performs as a natural barrier to beetle oviposition, in-
fected host pine tree Ih at time t that have stopped exduating oleoresin, susceptible
vector beetles Sv at time t that do not have pinewood nematode, and the infected
vector beetles Iv at time t that carry pinewood nematode. The common transmis-
sion of nematodes among pine trees and bark beetles occur during maturation feed-
ing of infected vectors. The pine sawyers have pinewood nematode when it emerges
from infected pine trees. However, the beetles may likewise get tainted directly through
copulating. Let Nh denote total population of host pine trees, and let Nv denote the
total vector population consisting of adult beetles at any time t, respectively. Hence
mathematically the populations are given by the equations Nh = Sh + Ih and Nv =
Sv + Iv.

Let �h be the constant recruitment rate of pine trees at time t, and let �v be the
constant appearance rate of adults beetles at time t. We assume that the δ1 represent
the transmission rate per contact during maturation feeding and β1 accounts the av-
erage number of contacts per day with vector adult beetles during maturation feed-
ing. The transmission rate of the nematode through infected vectors is denoted by δ2,
and β2 denotes the average number of contacts per day when adult beetles oviposit.
The nematode carrying rate of adult beetles emerging from deceased trees is β3. The
incidence terms for the host population are β1δ1ShIv and β2δ2ηShIv during matura-
tion feeding and oviposition, respectively. The incidence terms for vector population
are β3IhSv and βSvIv, where β is the rate at which beetles pass on nematode dur-
ing mating. The susceptible pine trees are exploiting at the rate μh, the infected pine
trees are isolating and felling at the rate σ , and μv is the death rate of vector popula-
tion.
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Under these assumptions, the mathematical model can be described as the following
system of ordinary differential equations:

dSh

dt
= �h – β1δ1ShIv – β2δ2ηShIv – μhSh,

dIh

dt
= β1δ1ShIv + β2δ2ηShIv – σ Ih,

dSv

dt
= �v – β3SvIh – βSvIv – μvSv,

dIv

dt
= β3SvIh + βSvIv – μvIv.

(1)

Note that each described variable will remain nonnegative for nonnegative initial condi-
tions because the model represents tree and beetle populations. The total vector popula-
tion satisfies the following differential equation:

dNv

dt
= �v – μvNv. (2)

This leads to Nv(t) → �v
μv

as t → ∞. Thus, system (1) is reduced to the following three-
dimensional system:

dSh

dt
= �h – β1δ1ShIv – β2δ2ηShIv – μhSh,

dIh

dt
= β1δ1ShIv + β2δ2ηShIv – σ Ih,

dIv

dt
= (β3Ih + βIv)

(
�v

μv
– Iv

)
– μvIv.

(3)

The positively invariant region for system (3) is

� =
{

(Sh, Ih, Iv) ∈ R3
+

∣∣∣�h

σ
≤ Nh ≤ �h

μh
, 0 ≤ Iv ≤ �v

μv

}
,

where R3
+ represents the nonnegative part of R3 including its lower-dimensional surfaces.

3 Existence of equilibria
The disease dynamics is characterized by the basic reproduction, which is stated as ‘the av-
erage number of secondary infections produced by an infected individual in a completely
susceptible population.’ The spread of the disease in a community is analyzed through the
basic reproduction number. Its value for model (3) is given by

R0 =
β�v

μ2
v

+
β3�h�v(β1δ1 + β2δ2η)

σμhμ2
v

. (4)
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The disease-free equilibrium of system (3) is E0 = ( �h
μh

, 0, 0). Let E∗ = (S∗
h, I∗

h , I∗
v ) be the en-

demic equilibrium of model (3). The values of S∗
h and I∗

h are given by

S∗
h =

�h – σ I∗
h

μh
,

I∗
h =

(β1δ1 + β2δ2η)�hI∗
v

σ (μh + (β1δ1 + β2δ2η)I∗
v )

,
(5)

and I∗
v is calculated by the quadratic equation

AI∗2
v + BI∗

v + C = 0, (6)

where

A = βσ (β1δ1 + β2δ2η),

B = β3�h(β1δ1 + β2δ2η) + βσμh + (β1δ1 + β2δ2η)μvσ – β(β1δ1 + β2δ2η)
σ�v

μv
,

C = μvμhσ (1 – R0).

(7)

From (7) the following observations have been made:
• C < 0 if and only if R0 > 1.
• A is always positive.
• B > 0 for R0 < 1.

By the preceding it can be concluded that I∗
v has no positive value for R0 < 1 and unique

positive value whenever R0 > 1. We conclude the observations as follows.

Theorem 3.1 An infection-free equilibrium E0 of system (3) always exists, and a unique
endemic equilibrium E∗ = (S∗

h, I∗
h , I∗

v ) represented in (5) and (6) exists whenever R0 > 1.

4 Stability of equilibria
4.1 Global stability of disease-free equilibrium
Theorem 4.1 If R0 ≤ 1, then the disease-free equilibrium E0 of model (3) is globally asymp-
totically stable in �.

Proof Consider the following Lyapunov function:

V (t) = α1Ih + α2Iv, where α1 =
β3�v

μv
,α2 = σ . (8)

The derivative of V along the solution of (3) is

V ′ = α1I ′
h + α2I ′

v

= α1
[
(β1δ1 + β2δ2η)ShIv – σ Ih

]
+ α2

[
(β3Ih + βIv)

(
�v

μv
– Iv

)
– μvIv

]

≤ α1

[
(β1δ1 + β2δ2η)

�hIv

μh
– σ Ih

]

+ α2

[
(β3Ih + βIv)

(
�v

μv
– Iv

)
– μvIv

]
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=
[
α1(β1δ1 + β2δ2η)

�h

μh
– α2(β3Ih + βIv) – α2μv

]
Iv

– α1σ Ih + α2(β3Ih + βIv)
�v

μv

=
[
α1(β1δ1 + β2δ2η)

�h

μh
– α2β3Ih – α2βIv – α2μv + α2β

�v

μv

]
Iv

+ α2β3Ih
�v

μv
– α1σ Ih

= α2μv

[
α1

α2
(β1δ1 + β2δ2η)

�h

μhμv
+

β�v

μv2
– 1

]
Iv

– α2β3IhIv – α2βI2
v + α2β3Ih

�v

μv
– α1σ Ih

= σμvIv(R0 – 1) – σβ3IhIv – σβI2
v .

It can be seen that, for R0 ≤ 1, we have V ′ < 0. Hence by Lyapunove’s first theorem E0 is
globally asymptotically stable in �. �

4.2 Global stability of endemic equilibrium
When the threshold parameter R0 > 1, the uniform persistence of (3) can be proved by
applying the technique given in [5], and the global stability of unique endemic equilibrium
E∗ can be proved by using the technique of geometrical approach developed by Li and
Muldowney [6]. The geometric approach applied to host-vector models can be studied in
[7, 8].

Theorem 4.2 ([6]) Suppose that H1, H2, and H3 hold. The unique endemic equilibrium E∗

is globally stable in � if q̄2 < 0.

Clearly, � = {(Sh, Ih, Iv) ∈ R3
+|0 ≤ Nh ≤ �h

μh
, 0 ≤ Iv ≤ �v

μv
} is a simply connected region, so

H1 holds. The boundedness of ξ and Lemma 5.1 given in [5] imply that system (3) has
a compact absorbing set K ⊂ �. Thus H2 holds. H3 holds in the view of Theorem 3.1.
The appropriate vector norm |x| in R3 has been chosen together with the matrix-valued
function P(x) = diag(1, Ih

Iv
, Ih

Iv
) of order 3 × 3.

The function P is C1 and nonsingular in the interior of �. The Jacobian matrix J = ∂f
∂x ,

where f denotes the vector field, of system (3) is

J =

⎡
⎢⎣

–μh – (β1δ1 + β2δ2η)Iv 0 –(β1δ1 + β2δ2η)Sh

(β1δ1 + β2δ2η)Iv –σ (β1δ1 + β2δ2η)Sh

0 β3( �v
μv

– Iv) β�v
μv

– β3Ih – 2βIv – μv

⎤
⎥⎦ . (9)

The second compound matrix of Jacobian is given by

J [2] =

⎡
⎢⎣

b11 (β1δ1 + β2δ2η)Sh (β1δ1 + β2δ2η)Sh

( �v
μv

– Iv)β3 b22 0
0 (β1δ1 + β2δ2η)Iv b33

⎤
⎥⎦ ,

where,

b11 = –μh – σ – (β1δ1 + β2δ2η)Iv,
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b22 = –μh – (β1δ1 + β2δ2η)Iv – β3Ih +
β�v

μv
– 2βIv – μv,

b33 = –β3Ih +
β�v

μv
– 2βIv – μv – σ .

The block form of the matrix A = Pf P–1 + PJ [2]P–1 is A =
( A11 A12

A21 A22

)
with

A11 = –σ – μh – (β1δ1 + β2δ2η)Iv,

A12 =
(

IvSh(β1δ1+β2δ2η)
Ih

IvSh(β1δ1+β2δ2η)
Ih

)
,

A21 =

(
Ihβ3( �v

μv –Iv
Iv

0

)
,

A22 =

⎛
⎝ M22 + I′h

Ih
– I′v

Iv
0

(β1δ1 + β2δ2η)Iv M33 + I′h
Ih

– I′v
Iv

⎞
⎠ ,

M22 = –μh – (β1δ1 + β2δ2η)Iv – β3Ih +
β�v

μv
– 2βIv – μv,

M33 = –β3Ih +
β�v

μv
– 2βIv – μv – σ .

Let the norm in R3 be defined as |(v1, v2, v3)| = max(|v1|, |v2| + |v3|), where (v1, v2, v3)
represents the vector in R3. The Lozinskĭı measure regarding this norm is defined to be
μ(A) ≤ sup(g1, g2), where

g1 = |A12| + μ1(A11), g2 = |A21| + μ1(A22).

System (3) can be written as

1
Ih

dIh

dt
= (β1δ1 + β2δ2η)

Sh

Ih
Iv – σ ,

1
Iv

dIv

dt
=

(
β3Ih + βIv

Iv

)(
�v

μv
– Iv

)
– μv.

(10)

The Lozinskĭı measure of A11 regarding any vector norm in R1 will be A11 because it is
a scalar. Hence

A11 = –σ – (β1δ1 + β2δ2η)Iv – μh, |A12| =
IvSh(β1δ1 + β2δ2η)

Ih
,

and g1 will become

g1 = –σ – μh – (β1δ1 + β2δ2η)Iv +
IvSh(β1δ1 + β2δ2η)

Ih

=
I ′

h
Ih

– (μh + β1δ1 + β2δ2η)Iv.

Also, |A21| = β3
Ih
Iv

( �v
μv

– Iv), |A12| is the operator norm of A12 from R2 to R, and |A21| is
the operator norm of A21 from R to R2, and further R2 is endowed with the l1 norm. The
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Lozinskĭı measure of μ1(A22) of a matrix A22 regarding l1 norm in R2 is

μ(A22) = sup

{
M22 +

I ′
h

Ih
+ (β1δ1 + β2δ2η)Iv –

I ′
v

Iv
, M33 +

I ′
h

Ih
–

I ′
v

Iv

}

= sup

{
–μh – (β1δ1 + β2δ2η)Iv – β3Ih +

β�v

μv
– 2βIv – μv +

I ′
h

Ih

–
(

β3Ih + βIv

Iv

)(
�v

μv
– Iv

)
+ μv + (β1δ1 + β2δ2η)Iv, –β3Ih +

β�v

μv

– 2βIv – μv – σ +
I ′

h
Ih

–
(

β3Ih + βIv

Iv

)(
�v

μv
– Iv

)
+ μv

}

=
I ′

h
Ih

–
(

μh + βIv + β3
Ih�v

Ivμv

)
.

Thus,

g2 =
I ′

h
Ih

–
(

μh + βIv + β3
Ih�v

Ivμv

)
+ β3

Ih

Iv

(
�v

μv
– Iv

)

=
I ′

h
Ih

– (μh + βIv + β3Ih).

So

μ(A) = sup{g1, g2}

= sup

{
I ′

h
Ih

– (μh + β1δ1 + β2δ2η)Iv,
I ′

h
Ih

– (μh + βIv + β3Ih)
}

=
I ′

h
Ih

– λ,

where λ = min{(μh + β1δ1 + β2δ2η)Iv, (μh + βIv + β3Ih}. Because (3) is uniformly persis-
tent whenever R0 > 1, for T > 0, there exists t > T such that Ih(t) ≥ c and Iv(t) ≥ c. Also,
1
t log Ih(t) < λ

2 for all (Sh0, Ih0, Iv0) ∈ K . Thus

1
t

∫ t

0
μ(A) dt <

log Ih(t)
t

– λ < –
λ

2

for all (Sh0, Ih0, Iv0) ∈ K , which further implies that q̄2 < 0. Since all the conditions of Theo-
rem 4.2 are satisfied, the unique endemic equilibrium E∗ is globally asymptotically stable
in �.

5 Sensitivity analysis
We are interested in identifying important aspects for disease transmission and preva-
lence. In this manner, we can try to curtail significant economic losses caused by this dis-
ease. The reproductive number causes initial disease transmission, whereas disease preva-
lence depends upon the endemic equilibrium point. The class of infectious pines and vec-
tors are the most important classes because pine forest destruction depends on these two
classes. The sensitivity indices of the reproduction number and the endemic equilibrium
will be calculated. This calculation is carried out with reference to parameters given in
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Table 1 Parameter values used for sensitivity analysis

Parameter Description Numerical Value Reference

�h The recruitment rate of the host pine population 0.009041 [9]
�v A constant emergence rate of the vector pine sawyer beetle 0.002691 [9]
μv The natural death rate of vector population 0.011764 [10]
μh The natural death rate of host population 0.0000301 [11]
β The rate at which the beetles get directly during mating 0.00305 Assumed
β3 The rate in which the adult beetles have pinewood nematode

when it escapes from dead trees
0.00305 [12]

β1 The rate in which infected beetles transmit nematode by
contact

0.00166 [13]

δ1 The number of contacts during maturation feeding period 0.2 [14]
β2 The rate in which infected beetles transmit nematode by

oviposition
0.0004 [13]

δ2 The number of contacts during the oviposition period 0.41 [9]
η The probability in which the susceptible host pine is not

infectious by nematode and ceases oleoresin exudation
naturally

0.0000301 [9]

σ The felling rate of infectious pine trees 0.004 Assumed

Table 2 Sensitivity indices of R0, I∗h, and I∗v , based on the parameter values given in Table 1

Parameter Sensitivity Index Sensitivity Index Sensitivity Index

R0 I∗h I∗v
β 0.0385 0.0947 0.127
�v 1.0 2.143 2.882
μv –2.0 –3.992 –5.370
β3 0.961 1.755 2.361
�h 0.961 2.755 2.361
β1 0.961 2.048 1.755
δ1 0.961 2.048 1.755
β2 0.0000143 0.0000304 0.0000261
δ2 0.0000143 0.0000304 0.0000261
η 0.0000143 0.0000304 0.0000261
μh –0.961 –2.048 –1.755
σ –0.961 –2.755 –2.361

Table 1 for the model. The sensitivity indices analysis identifies the parameters that are
more pivotal for disease transmission and prevalence.

Definition The normalized forward sensitivity index of a variable h that depends on the
differentiability with respect to a parameter l is defined as γ h

l = ∂h
∂l × l

h . The sensitivity
indices of R0, I∗

h , and I∗
v are given in Table 2.

By the analysis of sensitivity indices the most sensitive parameter is μv. The reproduc-
tion number R0 is inversely connected to μv. Thus, it can be said that an increase (or
decrease) in μv by 10%, R0 decreases (or increases) by 20%. Similarly if we increase (or
decrease) σ by 10%, then R0 will also decrease (or increase) by 10%.

The endemic level of infected pine trees is inversely related to the mortality rate of bark
beetles and exploitation rate of infected pine trees. We see that I∗

h is decreased (increased)
by almost four times with respect to the parameter μv, and it is decreased (increased)
almost 27% by increasing (decreasing) the exploitation rate by 10%.

The endemic level of infected vectors is again inversely related to the mortality rate of
bark beetles and exploitation rate of infected pine trees. We observe that I∗

v is decreased
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(increased) by almost five times with respect to the parameter μv, and it is decreased (in-
creased) almost 23% by increasing (decreasing) the exploitation rate by 10%.

The sensitivity indices of R0, I∗
h , and I∗

v proposed that three controls, nematicide injected
into the trunk of uninfected trees, cutting down infected trees burning and burying, and
spray of insecticides, can be applied for vector control.

6 Optimal control analysis
Now model (1) is modified to evaluate the effect of few control measures, namely nemati-
cide injected into the trunk of uninfected trees, exploiting and burying infected pine trees,
and spray of insecticides. In the pine population, the factor 1 – u1 is involved to reduce the
associated force of infection, and the exploitation rate of infected pine trees is increased
at a rate u2. The reproduction rate of the beetle population is reduced through the factor
1 – u3.

dSh

dt
= �h – (1 – u1)(β1δ1 + β2δ2η)ShIv – μhSh,

dIh

dt
= (1 – u1)(β1δ1 + β2δ2η)ShIv – σ Ih – r1u2Ih,

dSv

dt
= �v(1 – u3) – β3SvIh – βSvIv – (μv + r0u3)Sv,

dIv

dt
= β3SvIh + βSvIv – (μv + r0u3)Iv.

(11)

The control function u1 represents the use of nematicide injected into the trunk of unin-
fected trees. The control function u2 represents the increase in exploitation rate of infected
pine trees so that bark beetle could not oviposit on them. The level of adulticide used for
vector control such as aerial spraying of pesticide is represented by the control function u3.
Thus the reproduction rate of the vector population is diminished by a factor of 1 – u3.
Further, we assume that the exploitation rate of infected pine trees and the mortality rate
of the vector population increase at rates proportional to r1 and r0, respectively.

For the disease control, it is necessary to examine the optimal level of efforts. For this
purpose, we design the objective functional J . This objective functional helps us in min-
imizing the number of infected pines and also the expense of applying the controls u1,
u2, u3:

J = J(u1, u2, u3s) =
∫ T

0

(
A1Ih + A2Nv +

1
2

B1u2
1 +

1
2

B2u2
2 +

1
2

B3u2
3

)
dt, (12)

where A1 and A2 are positive weights. We shall find an optimal solution u∗
1, u∗

2, u∗
3 satisfying

J
(
u∗

1, u∗
2, u∗

3
)

= min
{

J(u1, u2, u3) : u1, u2, , u3 ∈ U
}

, (13)

where U = {(u1, u2, u3)} is the control set, and 0 ≤ ui ≤ 1 (i = 1, 2, 3) are measurable. Pon-
tryagin’s maximum principle [15] is used to satisfy the necessary conditions of the optimal
solution. For the application of this principle, we define the Hamiltonian H as

H(X, U ,λ) = A1Ih + A2Nv +
B1

2
u2

1 +
B2

2
u2

2 +
B3

2
u2

3

+ λ1
[
�h – (1 – u1)(β1δ1 + β2δ2η)ShIv – μhSh

]
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+ λ2
[
(1 – u1)(β1δ1 + β2δ2η)ShIv – (σ + r1u2)Ih

]
+ λ3

[
�v(1 – u3) – β3SvIh – βSvIv – (μv – r0u3)Sv

]
+ λ4

[
β3SvIh + βSvIv – (μv + r0u3)Iv

]
.

Here λi, i = 1, 2, 3, 4, are the adjoint variables. To prove the existence of the optimal con-
trol using the result given by Fleming and Rishel [16], we state and prove the following
theorem.

Theorem 6.1 There exists an optimal control (u∗
1, u∗

2, u∗
3) that minimizes J over U subject to

the control system (11). Further, for system (11), there exist adjoint variables λi, i = 1, 2, 3, 4,
satisfying

dλ1

dt
= (λ1 – λ2)(1 – u1)(β1δ1Iv + β2δ2ηIv) + λ1μh,

dλ2

dt
= –A1 + λ2(σ + r1u2) + (λ3 – λ4)(1 – u1)β3Sv,

dλ3

dt
= –A2 + (λ3 – λ4)(β3Ih + βIv) + λ3(μv + r0u3),

dλ4

dt
= –A2 + (λ1 – λ2)(β1δ1Sh + β2δ2ηSh) + (λ3 – λ4)βSv – λ4(μv + r0u3),

(14)

together with slanting conditions λi(T) = 0 (i = 1, 2, 3, 4). The optimal controls are given by

u∗
1 = max

{
min

{
1,

(λ2 – λ1)(β1δ1 + β2δ2η)ShIv

B1

}
, 0

}
,

u∗
2 = max

{
min

{
1,

λ2r1Ih

B2

}
, 0

}
,

u∗
3 = max

{
min

{
1,

λ3(�v – r0Sv) + λ4r0Iv

B3

}
, 0

}
.

(15)

Proof The function A1Ih + A2Nv + B1
2 u2

1 + B2
2 u2

2 + B3
2 u2

3 is a convex function of u1, u2, u3.
Since the state solutions are bounded, the state system satisfies the Lipschitz property
corresponding to the state variables. The existence of optimal control follows from [16].
The equations representing the rate of change of the adjoint variables are formed by the
differentiation of the Hamiltonian function with respect to state variables evaluated at
the optimal control. The optimal solution given by (15) can be obtained by solving the
equations

∂H
∂u1

=
∂H
∂u2

=
∂H
∂u3

= 0 (16)

on the internal of the control set using the property of the control space U . �

7 Numerical simulations
In this section, we numerically solve the model. We observe that our numerical results
are in good agreement with our theoretical results. Figure 1 shows that the population
approaches the disease-free equilibrium when the reproductive number is less than 1,
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Figure 1 The Population approaches disease-free equilibrium when R0 < 1.

Figure 2 The Population approaches endemic equilibrium when R0 > 1.

whereas Figure 2 shows that the population approaches endemic equilibrium as the re-
production number exceeds unity.

Now, we investigate numerical results for the efficacy of the optimal control planning
for the disease spread in a community. We have chosen the set of weight factors A1 = 1,
A2 = 5, B1 = 3, B2 = 7, B3 = 9 and initial state variables Sh(0) = 100, Ih(0) = 50, Sv(0) = 150,
Iv(0) = 20 and r0 = 0.55, r1 = 0.1. The other parameter values are given in Table 1. We
investigate numerically the effect of the following optimal control strategies.
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Figure 3 Infected Hosts with and without control.

Figure 4 Infected Vectors with and without control.

7.1 Application of preventive measures (u1 �= 0) and exploiting and disposing off
infected pines (u2 �= 0)

The objective functional J is optimized by applying the control u1 on the susceptible
pine trees through nematicide injections and exploitation and disposing off infected pine
trees u2. Figure 3 shows that there is a significant difference in the number of infected pine
trees by applying control and without control, but the number of infected vectors is not
significantly reduced. The results shown in Figure 4 suggest that it is not a very effective
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Figure 5 Control Profile.

Figure 6 Infected Hosts with and without control.

strategy to control the number of infected vectors. The control profile explored in Figure 5
states that the control u1 remains at the upper bound till 35 days, whereas the control u2

rises to the upper bound after 60 days.

7.2 Application of preventive measures (u1 �= 0) and spray of insecticides (u3 �= 0)
In this policy, we use the preventive control u1 and spray of insecticides u3 to optimize the
objective functional J . In Figures 6 and 7, we observe a significant difference in the number
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Figure 7 Infected Vectors with and without control.

Figure 8 Control Profile.

of infected pines and infected vectors, respectively. By the analysis of control profile shown
in Figure 8 we see that the control u1 rises to its upper bound in 20 days, and after these
days it gradually drops down to zero, whereas the control u3 can be activated after 20 days.

7.3 Use of exploitation of infected pines (u2 �= 0) and spray of insecticides (u3 �= 0)
Here the objective function J is optimized by applying the controls u2 and u3. Figures 9
and 10 show that decrease in the number of infected pine trees and infected vectors occurs
by applying these controls. The control profile of these controls is shown in Figure 11.
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Figure 9 Infected Hosts with and without control.

Figure 10 Infected Vectors with and without control.

7.4 Use of preventive measures (u1 �= 0), exploitation of infected pines (u2 �= 0)
and spray of insecticides (u3 �= 0)

With this strategy, all the controls are used to optimize the objective function J . From
Figures 12 and 13 we can see that this control strategy results in a significant decrease in
the number of infected pines and infected vectors. The control profile for this control is
shown in Figure 14.
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Figure 11 Control Profile.

Figure 12 Infected Hosts with and without control.

7.5 Effects of weight constants
A sensitivity analysis is carried out by studying the adequacy of our simulations in relation
to the weight constants and comparing the results with different weight constants on the
controls u1, u2, and u3. From Figures 15, 16, and 17 we see that as the value of weight
constants increases, control functions decrease.
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Figure 13 Infected Vectors with and without control.

Figure 14 Control Profile.
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Figure 15 Plot of different weight constants on the control u1.

Figure 16 Plot of different weight constants on the control u2.

Figure 17 Plot of different weight constants on the control u3.
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