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fourth-dimensional slave system. The approach, which can be applied to a wide class
of chaotic/hyperchaotic fractional-order systems in the master-slave configuration, is
based on two new theorems involving the fractional Lyapunov method and stability
theory of linear fractional systems. Two examples are provided to highlight the
capability of the conceived method. In particular, referring to commensurate systems,
the coexistence of IS, AS, and IFSHPS is successfully achieved between the chaotic
three-dimensional Réssler system of order 2.7 and the hyperchaotic four-dimensional
Chen system of order 3.84. Finally, referring to incommensurate systems, the
coexistence of IS, AS, and IFSHPS is successfully achieved between the chaotic
three-dimensional LU system of order 2.955 and the hyperchaotic four-dimensional
Lorenz system of order 3.86.

MSC: 34H10; 26A33; 34A08

Keywords: coexistence of synchronization types; fractional-order systems; chaos
synchronization; commensurate and incommensurate systems; nonidentical systems

1 Introduction

By starting from the milestone by Pecora and Carroll [1], over the last years, great efforts
have been devoted to the study of chaos synchronization in dynamical systems described
by integer-order differential equations and difference equations [2]. Given two systems
in the master-slave configuration, the objective in chaos synchronization is to make the

response system variables synchronized in time with the corresponding drive system vari-
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ables. At the beginning, Pecora and Carroll introduced the concept of complete (identi-
cal) synchronization (IS), but, year after year, different types of synchronization have been
proposed in the literature, for continuous- and discrete-time systems [3—10]. For exam-
ple, in projective synchronization (PS) the response system variables are scaled replicas of
the drive system variables [11]. When the scaling factor is ‘~1; antiphase synchronization
(AS) is obtained. On the other hand, when the scaling factor is different for each drive
system variable, full state hybrid projective synchronization (FSHPS) is achieved [12]. Re-
cently, in [13, 14] a synchronization scheme has been presented, where each drive system
state synchronizes with a linear combination of response system states. Since drive system
states and response system states have been inverted in [13, 14] with respect to the FSHPS,
the scheme has been called inverse full state hybrid projective synchronization (IFSHPS).
Additionally, recent papers have investigated the coexistence of several synchronization
types when synchronizing two chaotic systems both in integer-order differential systems
and discrete-time systems [15-17]. In particular, the approach developed in [15] has illus-
trated a rigorous study to prove the coexistence of some synchronization types between
discrete-time chaotic (hyperchaotic) systems.

Besides integer-order systems, attention has been recently focused on systems described
by fractional-order differential equations [18, 19]. Researches in the literature have shown
that fractional-order systems, as generalizations of well-known integer-order systems, are
characterized by chaotic dynamics [20, 21]. These systems include the fractional Lorenz
system, the fractional Chua system, the fractional Rossler system, the fractional Chen
system, and the fractional Lii system [22-26]. Specifically, researches have shown that
chaos is achievable when the system order is less than 3, whereas hyperchaos can be ob-
tained when the system order is less than 4. Referring to synchronization, studies have
shown that chaotic fractional-order systems can also be synchronized [27]. However, dif-
ferently from integer-order systems, few synchronization types have been introduced for
fractional-order systems. Moreover, most of the approaches are related to the synchro-
nization of identical fractional-order systems. Very few methods for synchronizing non-
identical fractional-order chaotic systems have been illustrated [28—30]. Additionally, the
topic related to the coexistence of different synchronization types between fractional-
order systems is almost unexplored [31, 32].

Based on these considerations, this paper presents a new approach to rigorously study
the coexistence of some synchronization types between fractional-order systems char-
acterized by different dimensions and different orders. In particular, the paper shows that
identical synchronization (IS), antiphase synchronization (AS), and inverse full state hybrid
projective synchronization (IFSHPS) coexist in the synchronization of a three-dimensional
master system with a four-dimensional slave system. The approach presents the remark-
able feature of being both rigorous and applicable to a wide class of commensurate and
incommensurate fractional-order systems of different dimensions and different orders. It
is worth noting that the proposed approach is more general than those illustrated in [31,
32] because, among other things, it guarantees the coexistence of three different synchro-
nization types (instead of only two types, as in [31, 32]). This increased complexity pro-
vides a deeper insight into the synchronization phenomena between systems described
by fractional differential equations.

The paper is organized as follows. In Section 2, the basic notions on fractional deriva-
tives and on the stability of fractional systems are given. In Section 3, the meaning of co-
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existence of IS, AS, and IFSHPS in fractional-order systems is illustrated. In Section 4,
by exploiting fractional Lyapunov stability theory the coexistence of IS, AS, and IFSHPS
between two commensurate fractional-order systems of different dimensions is proved.
Additionally, by using the stability theory of fractional linear systems, in Section 5, the
coexistence of IS, AS, and IFSHPS between two incommensurate fractional-order sys-
tems of different dimensions is illustrated. Referring to numerical examples, at first the
coexistence of IS, AS, and IFSHPS between the chaotic fractional-order commensurate
Rossler system and the hyperchaotic fractional-order commensurate Chen system is suc-
cessfully achieved. Note that the Rossler system is a three-dimensional system of order
2.7, whereas the Chen system is a four-dimensional system of order 3.84. An additional
numerical example illustrates the coexistence of IS, AS and IFSHPS between the chaotic
fractional-order the incommensurate Lii system and the hyperchaotic fractional-order in-
commensurate Lorenz system. Note that the Li system is a three-dimensional system of
order 2.955, whereas the Lorenz system is a four-dimensional system of order 3.86. All the
numerical examples prove the capability of the proposed approach in successfully achiev-
ing the coexistence of IS, AS, and IFSHPS between chaotic and hyperchaotic systems of
different dimensions for both commensurate and incommensurate fractional-order sys-
tems. Finally, in Section 6, the advantages and the novelty of the conceived approach with
respect to those existing in the literature are discussed in detail.

2 Basic concepts
In the following, some basic concepts on fractional derivatives and on the stability prop-
erties of fractional linear/nonlinear systems are briefly illustrated.

Definition 1 ([33]) The Caputo fractional derivative is defined as follows:
Dix(t) =" Px"(t) withO<p<1, 1)

where m = [p] (i.e., m is the first integer that is not less than p), x™ is the mth-order deriva-
tive in the usual sense, and /7 (g > 0) is the gth-order Riemann-Liouville integral operator
defined by

1

q -
Jy(t) )

/ (= 0y d, @)
0

where I" denotes the gamma function [34-36].
Now we state a well-known theorem on the stability of fractional linear systems.

Theorem 1 ([37]) Let

Dxi(t) =) kgmi(t), i=1,2,...,n, 3)

j=1

be a fractional linear system where p; (i = 1,2,..., n) are rational numbers between 0 and 1,
whereas D!" is the Caputo fractional derivative of order p;. Assume that p; = %, (i, B:) =1,
a;, Bi € N. Let M be the least common multiple of the denominators B; of p;. If p; are different
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rational numbers between 0 and 1, then system (3) is asymptotically stable, provided that
all the roots A of the equation

det(diag(A71, A2, AMPn) —K) =0 (4)
satisfy the condition | arg(1)| > 55;, where K = (Kij)uxn-
Now we report a theorem on fractional nonlinear systems.

Theorem 2 ([38, 39]) Counsider the fractional nonlinear system
DIX(®) = F(X(@), (5)

where X(t) € R", 0 < p < 1, DY is the Caputo fractional derivative of order p, and F : R" —
R™. If there exists a positive definite Lyapunov function V(X (t)) such that D} V(X (t)) < O for
all t > 0, then the trivial solution of system (5) is asymptotically stable.

Starting from previous theorem, we can give the following lemma.

Lemma 1 ([40]) We have:
L DL (XWX () <X D (X)), ©

3 Problem formulation
Referring to synchronization, let

3
D) = Y agxy(t) + fi(X(0), i=1,2,3, 7)

j=1

be the master system, where X(£) = (x1(2), x2(£),x3(¢))7 is the state vector, (a;) € R**3 are
constant parameters, f; : R> — R are nonlinear functions, and D?" is the Caputo fractional
derivative of order p; (i = 1,2,3) with 0 < p; < 1. Moreover, let

D?iy,»(t) =gi(Y(t)) +u;, i=12,...,4, (8)

be the slave system, where Y (£) = (y1(£),y2(¢), ..., ya(£))T is the state vector, g; : R* — R are
nonlinear functions, D}’ is the Caputo fractional derivative of order g; (0 < g; < 1), and u;
are controllers to be designed (i = 1,2,...,4).

Based on the master-slave synchronizing system described by (7)-(8), we can give the
following definition of coexistence of different synchronization types.

Definition 2 Identical synchronization (IS), antiphase synchronization (AS), and inverse
full state hybrid projective synchronization (IFSHPS) coexist in the synchronization of the
master system (7) and the slave system (8) if there exist controllers ; (1 <i < 4) and real
numbers (31, /33, ¢33, ¥34) such that the synchronization errors

e1(t) = x1(t) — y1(2),
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ex(t) = x2(t) - (-92(2)), and )
4
es(t) =x3() = Y tz(t)
j=1
satisfy the condition lim,, ;oo €;(£) =0, i =1,2,3.
4 Coexistence of IS, AS, and IFSHPS for commensurate systems
In this section, we focus ourselves on the coexistence of IS, AS, and IFSHPS for com-
mensurate chaotic (hyperchaotic) systems. First, we prove a new theorem. Afterward, we
illustrate in detail an application involving the chaotic fractional-order Rossler system (as
a master system) and the hyperchaotic fractional-order Chen system (as a slave system).
We assume that q; = g2 = g3 = g4 = q. The Caputo fractional derivative of order g of the
error system (9) can be derived as
Diey(¢) = Dix1(t) - g1 (Y(2)) — u1,
Diey(t) = Dixy(t) + g2 (Y (1)) + u, (10)
4 4
Dies(t) = Dixs(t) - > aig(Y () = D ozu.
j=1 j=1
On the other hand, the error system (10) can be rewritten in compact form as
Dle(t) = Ae(t) + R—a x U, (11)

where

1 0 0 0
e(t) = (el(t)’ez(t); es(t))T, A= (dlj)3><3, a=] 0 -1 0 01,
o317 (32 (33 (34
Dix(t) - g1 (Y (t))
R =-Ae(t) + Dixy () + (Y (2)) , and U = (uy, uy, uz, ug)’.
Difxs(8) = 3 azg (Y (2)

Now we can prove a new theorem.

Theorem 3 Identical synchronization (IS), antiphase synchronization (AS), and inverse

full state hybrid projective synchronization (IFSHPS) coexist in the synchronization of the

master system (7) and the slave system (8) if the control law is selected as follows:
(u1,u2,u3)" =J7' x (R + Ce(t)), (12)

us =0, (13)
where J™ is the inverse matrix of

1 0 0
J= 0 -1 0],

@31 O3 (33



Ouannas et al. Advances in Difference Equations (2018) 2018:35 Page 6 of 16

and C € R¥3 is a suitable control matrix such that (A — C) is a negative definite ma-

trix.

Proof By exploiting (13) the error system (11) becomes
Die(t) = Ae(t) + R — J x (1, uz,us)”. (14)

By applying the control law proposed in (12) to (14), the resulting error dynamics are
described by

Dle(t) = (A - Ce(?). (15)

If the candidate Lyapunov function is chosen as V(e(z)) = %eT(t)e(t), then the time Caputo

fractional derivative of order g along the trajectory of system (14) is described as

DIV (e(t) = 5 DI(ET (0elt). (16)

By applying Lemma 1 to equation (16) it follows that
D?V(e(t)) < el (t)Dle(t). (17)
By (15) it results in
DIV (e(t)) <e’ (t)(A - C)e(t) < 0. (18)
From Theorem 2 it can be readily deduced that the zero solution of system (15) is globally
asymptotically stable. Consequently, IS, AS, and IFSHPS coexist in the synchronization of
the master system (7) and the slave system (8). O
Now, we give an example to illustrate how the previous theoretical framework can be ef-

fectively applied. In particular, the chaotic fractional-order commensurate Rossler system

is considered as the master system [41]

Dfxl = —(x2 — x3),
Dixy = x1 + atix, (19)

Dfx3 =x3(x1 —y) + B.
As shown in [39], a chaotic attractor is found in (19) when (o, 8,y) = (0.4,0.2,10) and

p = 0.9 (see Figure 1). By taking these parameters, the linear part of the master system

(19), according to equation (7), is given by

A=|1 04 0 |. (20)
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Figure 1 Different plots of the chaotic attractor of the commensurate fractional Rossler system (19).
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Figure 2 Different plots of the hyperchaotic attractor of the commensurate fractional Chen system
(21).

The hyperchaotic fractional-order commensurate Chen system is considered as the slave

system [42]

D?yl = ﬂ()’z —y1) + Y+ Uy,
Dlyy =dyy + cys — y1y3 + ua, 1)
Dlys = —bys + y1yn + u3,

D{fys = kys + y2y3 + tha,

where U = (uy, uy, u3, us)7 is the vector controller. According to [40], system (21) exhibits
hyperchaotic behavior when g = 0.96, (a,b,c,d, k) = (35,3,12,7,0.5), and (11, up, u3, us) =
(0,0,0,0). Different plots of the hyperchaotic attractor are reported in Figure 2.
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By selecting the scaling parameters

1 0 0 O
a=(aj)zxa=|0 -1 0 0 (22)
2 3 4 5

the error system between the master system (19) and the slave system (21) becomes

€1 =%1—J)1,
ey =%y — (=y2), (23)

es =x3— (2y1 + 3y2 + 4y3 + 5y4).

Successively, we derive the following matrices:

1 0 0
J=10 -1 of, (24)
2 3 4
1 0 0
J'=]10o -1 o (25)
103 1
2 4 4

According to Theorem 3, there exists a control matrix C € R3*3 such that IS, AS, and
IFSHPS coexist in the synchronization of the master system (19) and the slave system

(21). For example, by selecting the control matrix

1 -1 -1
C=|1 44 0 (26)
0o 0 o0

it can be readily verified that (A — C) is a negative definite matrix. By exploiting matrix (25)

it follows from Theorem 3 that the control inputs can be written in the form (12)-(13) as

u1 = ey + D"y — 35(y2 — y1) — Y4
Uy = —4'62 — D0'96x2 — 7y1 +y1)3 — 12_)12,

1 woef 1.3 1
us=——ey; —3ey +2.5e3 + D°° —=x1 — —x3 + —x3 | —35y; — 18y, + 3y3 (27)
2 2 4 4
2.5 3 5
_— + — p— —_— ,
4 Va 2)’1)’3 Ny2 43’2)/3

Lt4,=0.

Since all the conditions of Theorem 3 are satisfied, it follows that IS, AS, and IFSHPS co-

exist in the synchronization of the master system (19) and the slave system (21). The error
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Figure 3 Time behaviors of the synchronization ol
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dynamics are described as follows:

D*%e; = —ey,
D0'9682 = —462, (28)

D0‘9663 = - 1063.

Besides the theoretical results illustrated, to show by numerical simulations that the co-
existence is effectively achieved, the fractional Euler integration method has been used to
solve the systems (19) and (21) with the control inputs described in (27). The initial val-
ues of the master system and the slave system are [x;(0),x,(0),x3(0)] = [0.5,1.5,0.1] and
[1(0),52(0),¥3(0),y4(0)] = [2,2,-1, 1], respectively. Based on (23), the initial states of the
error system are [e;(0),e2(0),e3(0)] = [-1.5,3.5,-10.8]. The time behaviors of the errors
e; (i = 1,2,3) are shown in Figure 3, clearly indicating that synchronization is effectively
achieved between systems (19) and (21). Specifically, by considering the errors in (23),
it can be concluded identical synchronization (IS), anti-phase synchronization (AS) and
inverse full state hybrid projective synchronization (IFSHPS) coexist when synchroniz-
ing the chaotic fractional-order commensurate Rossler system (19) and the hyperchaotic
fractional-order commensurate Chen system (21).

5 Coexistence of IS, AS, and IFSHPS for incommensurate systems
In this section, we analyze the coexistence of IS, AS, and IFSHPS for incommensurate
chaotic (hyperchaotic) systems. A new theorem, tailored for synchronizing incommen-
surate systems, is first proved. Successively, an example involving the chaotic fractional-
order Lii system (as a master system) and the hyperchaotic fractional-order Lorenz system
(as a slave system) is described in detail.

We first assume that g1 # g2 # g3. Then, the Caputo fractional derivative for order g;,
1 <i < 3, of the error system (10) can be derived as

Df'ey(t) = Df'x1(t) - g1 (Y (2)) — w1,
)

DPey(t) = DPxy(t) + (Y (0)) + u, (29)
4
D?-’)eg(t) = D?3x3(t) — D;B <Z Olgjyj(t)> - Olgggg(Y(t)) — ((33U3.
=1

j#3
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To synchronize the master system (7) and the slave system (8), we assume that 4 = 0 and
a3z # 0. Then, the error system (29) can be rewritten in compact form as

Dle(t) = Ae(t) + T — diag(1, -1, as3) x U, (30)
where

Dle(t) = (D! e (t), DPer(t), DPes(t))

A= (aij)3><3:

U = (uy, w9, u3)7, (31)

Df'x1(t) — g1 (Y(2))
T = —Ae(t) + D?x,(t) + g2 (Y (t))
DPxs(t) - DP (Z%l agyi(t)) — ozags(Y(2)
i3

Now we can give a new theorem for synchronizing incommensurate systems.

Theorem 4 Given the error system (29) between the master system (7) and the slave system
(8), identical synchronization (IS), antiphase synchronization (AS), and inverse full state
hybrid projective synchronization (IFSHPS) coexist if the following control law is taken:

= diag(l,—l, i) x (T + Le(t)), (32)

33

provided that the feedback gain matrix L € R3*3 s selected so that all roots ). of the equation
det(diag (M1, AM42,3M43) + [ — A) = 0 (33)

satisfy the condition |arg(L)| > 53;, where M is the least common multiple of the denomi-
nators of q;, i =1,2,3.

Proof By applying the control law (32) to the error system of the form (30), the resulting
error dynamics are described by

DY = (A - L)e(®). (34)

If the feedback gain matrix L is chosen so that all roots A of equation (33) satisfy the condi-

i
system (34) is globally asymptotically stable. Consequently, IS, AS, and IFSHPS coexist

tion |arg(1)| > then by Theorem 1 we can conclude that the zero solution of the error

between systems (7) and (8). |

Now we give an example to illustrate how the previous theoretical framework for in-
commensurate systems can be effectively applied. In particular, as a master system, we
consider the chaotic fractional-order incommensurate Lii system [43]

D' xy = axy —x1),
Di?xy = —x1%3 + Y %2, (35)

DIZ3JC3 =X1X3 — ﬂxg.
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Figure 4 Different plots of the chaotic attractor of the incommensurate fractional Lii system (35).

As shown in [41], a chaotic attractor (see Figure 4) is found in the incommensurate system
(35) when (¢, 8,y) = (36,3,20) and (p1,p2, p3) = (0.985,0.99,0.98). The linear part of the
master system (35) is given by

-36 36 O
A= 0 20 0]. (36)
0 0 -3

The incommensurate hyperchaotic fractional-order Lorenz system is selected as the slave
system [42]

D'y =a(ys —y1) + ya + u1,

Dy, =cy1 — yo — y1y3 + iz, @)
Dfy; = =bys + y192 + 3,

Dy, = rys + yoy3 + ua.

Note that the uncontrolled system (37) exhibits hyperchaotic behavior when

(91,92, 93, 94) = (0.94,0.96,0.97,0.99) and

o (38)
(a,b,c,r) = 10,§,28,—1 .

Different plots of the hyperchaotic attractor are reported in Figure 5. By selecting the scal-
ing parameters

(31,0030, 033, @034) = (2, 1,4, -1) (39)
the error system between the master system (35) and the slave system (37) becomes

€1 =%1—J)1,
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Figure 5 Different plots of the hyperchaotic attractors of the incommensurate fractional Lorenz
system (37).

€y =X — (—)’2), (40)

e3 =x3— (291 + y2 +4y3 — ya).

By Theorem 4 there exists a gain matrix L € R3*3 such that IS, AS, and IFSHPS coexist
between systems (35) and (37). For example, if the control matrix L is selected as

0 36 0
L=]0 21 0], (41)
0 0 O

then we can readily verify that the roots of the equation
det(diag(209*M, A09M 2 097M) 4 [ — 4) =0 (42)

are given by

+1isin

A= 36ﬁ <cos

T T
0.94M 0.94M )’

g . b4
Ay =COS +1isin , (43)
0.96 M 0.96 M

AngW cos il +1isin il s
0.97M 0.97M

where M is the least common multiple of the denominators of the numbers 0.94, 0.96,
and 0.97. Since this results in |arg(A;)| > 53; (i = 1,2,3), all the conditions of Theorem 4
are satisfied. Thus, the controllers u1, u>, us, and u4 can be written as

u1 = 36e; + D"*x1 — 10(y2 — 1) — ya,
Uy = —ey — D¥%xy — 28y1 + ¥ + Y13, (44)
us = ze3 + 1D%% (x5 — 291 — y2 + y4) + $¥3 - Y192,

uy =0,
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Figure 6 Time behaviors of the errors eq, e, and
e3 between systems (35) and (37).

e3

Errors
=3

. . , \ )
0 2 4 6 8 10
t(Time in seconds )

indicating that synchronization is successfully achieved between systems (35) and (37).

The error system can be described as follows:

D0'94€1 = —3661,
D%, — e, (45)

D0'9763 = —363.

The fractional Euler integration method has been used to numerically solve systems (35)
and (37) with control inputs given by (44). The initial values for the master and slave sys-
tems are [x7(0),x,(0),x3(0)] = [0.2,0.5,0.3] and [y1(0),¥2(0), y3(0), y4(0)] = [2,-2,1,-1], re-
spectively. Based on (40), the initial states of the error system (45) are [e;(0), e2(0), e3(0)] =
[-1.8,2.5,-6.7]. The time behaviors of the errors e; (i = 1,2,3) are shown in Figure 6,
clearly indicating that synchronization is effectively achieved between systems (35) and
(37). Specifically, by considering the errors in (40) it can be concluded that identical syn-
chronization (IS), antiphase synchronization (AS), and inverse full state hybrid projec-
tive synchronization (IFSHPS) coexist when synchronizing the chaotic fractional-order
incommensurate Lii system (35) and the hyperchaotic fractional-order incommensurate
Lorenz system (37).

6 Discussion

The aim of this section is to highlight the novelty introduced by the present approach.
First of all, it is worth analyzing the results achieved so far in the literature on the same
topic, that is, the coexistence of some synchronization types in different dimensional
fractional-order chaotic systems. This topic is almost unexplored in the literature [31, 32].
For example, in [31] the authors have presented a hybrid synchronization method for
fractional-order systems, which is a combination of only two synchronization types, that
is, generalized synchronization and inverse generalized synchronization. Our approach
is more general than that in [31], since it guarantees the coexistence of three different
synchronization types, that is, identical synchronization (IS), antiphase synchronization
(AS), and inverse full state hybrid projective synchronization (IFSHPS). Another method
for fractional-order systems has been developed in [32], where a combination of full state
hybrid projective synchronization (FSHPS) and inverse full state hybrid projective syn-
chronization (IFSHPS) has been presented. However, the method in [32] can only be ap-
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plied to incommensurate systems, besides the fact that it allows the coexistence of only
two synchronization types. Our approach is more general than that in [32], since it can
be applied to both commensurate and incommensurate systems (see Theorems 3 and 4,
respectively), besides the fact that it guarantees the coexistence of three different synchro-
nization types (instead of only two, as in [32]).

Based on previous considerations, it should be clear that the method proposed herein
provides a contribution to the topic related to the coexistence of some fractional syn-
chronization types, since it guarantees the coexistence of three different synchronization
types for both commensurate and incommensurate fractional-order systems of different
dimensions and different orders. This increased complexity related to both the number
of synchronization types and the capability to synchronize chaotic dynamics with hyper-
chaotic ones and provides a deeper insight into the synchronization phenomena between

systems described by fractional differential equations.

7 Conclusions

In this paper, we have presented a new approach to rigorously study the coexistence of
some synchronization types between fractional-order chaotic systems characterized by
different dimensions and different orders. The paper has shown that identical synchro-
nization (IS), antiphase synchronization (AS), and inverse full state hybrid projective syn-
chronization (IFSHPS) coexist when synchronizing a three-dimensional master system
with a fourth-dimensional slave system. It has been shown that the approach presents the
remarkable feature of being both rigorous and applicable to a wide class of commensu-
rate and incommensurate systems of different dimensions and orders. All the numerical
examples reported through the paper have clearly highlighted the capability of the pro-
posed approach in successfully achieving the co-existence of IS, AS, and IFSHPS between
chaotic and hyperchaotic systems of different dimensions for both commensurate and in-
commensurate fractional-order systems. These examples of coexistence have included the
chaotic commensurate three-dimensional Rossler system of order 2.7, the hyperchaotic
commensurate four-dimensional Chen system of order 3.84, the chaotic incommensurate
three-dimensional Lii system of order 2.955, and the hyperchaotic incommensurate four-
dimensional Lorenz system of order 3.86. Finally, we would stress that the topic related
to the coexistence of synchronization types in fractional-order systems is almost unex-
plored in the literature. We feel that the additional features introduced by the conceived
approach, related to both the number of coexisting synchronization types and the capa-
bility to synchronize chaotic dynamics with hyperchaotic ones, provides a deeper insight
into the synchronization phenomena between systems described by fractional differential

equations.
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