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Abstract

This paper is considered with a class of nonlinear fractional differential coupled
system with fractional differential boundary value conditions and impulses. By means
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1 Introduction

The fractional differential system as a mathematical model has been used to describe many
phenomena and processes in a lot of fields such as financial mathematics, control theory,
physics, chemistry, bioscience, optical and thermal systems, rheology materials and me-
chanical systems, signal processing and system identification, control and robotics, and so
on. Some experimental results show that the fractional order differential model is more
accurate than the integer order differential model. Therefore, fractional differential sys-
tems have received extensive attention and research in recent few decades. In particular,
boundary value problems for fractional order differential systems have been studied and
developed more extensively. There has been much research on boundary value problems
of fractional order differential systems (see [1-20]).

It is well known that the effects of a pulse are inevitable in many phenomena and pro-
cesses. For example, in the population dynamics systems, there are abrupt changes of pop-
ulation size due to the effects such as harvesting, diseases, and so on. So some authors have
used an impulsive differential system to describe these kinds of phenomena since the last
century. Therefore, some scholars have begun to study the boundary value problems for
impulsive fractional differential equations and obtained good results (see [10-14]). In ad-
dition, it is impossible to describe complex systems and processes with a single equation
because of the influence of many factors. Therefore, the boundary value problem of frac-
tional order coupled systems has also attracted much attention and research (see [15—20]).
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However, the research on boundary value problems of fractional order coupled systems
is relatively scarce. Inspired by the above-mentioned issues, the main aim of this paper is
to study the existence and uniqueness of solutions to four-point boundary value problem

for a class of nonlinear fractional differential coupling system with impulses as follows:

Df u(t) +f(t, D ult), DY v(t) =0, tHtr,k=1,2,...,n,

DL v(t) + g(t,* D& u(t), "D v()) =0, t#ti,k=1,2,...,n,

Aty = ir(u(ty)), AU |y = Ti(u(t), k=1,2,...,n, (1.1)
AV = I (v(tr)), AV |y =Tk (V(t0)), k=1,2,...,n,

Dy, u(n) = u(1), u(0) =0, ‘D). v(§) =v(1), v(0) =0,

where 1 <p,g<2,0<a,8,y,56,n&E<1, CD’SH CDg+, °Dg., ”Dgﬂ Dy, and ”Dg+ are the Ca-
puto fractional derivatives. f,g € C(J x R%, R), L1, Lk, J1k, Jax € C(R, R) and #; satisfy 0 = £ <
tr < <ty <tp1 = 1, Autlpmg = ul) —ulty), Av | 1=y = /' (60) =t/ (), Avli=y = v(E) —v(E7),
AV |iog, =V (8) =V (&), u(E), v(£5) and u(£y), v(¢;) represent the right and the left limits
of u(t), v(t) at t = .

The rest of this paper is organized as follows. In Section 2, we recall some definitions
and lemmas of the Caputo and Riemann-Liouville fractional calculus. In Section 3, we
shall prove the existence and uniqueness of solutions for system (1.1). In Section 4, some
examples are also provided to illustrate the effectiveness of our main results. Finally, the
conclusion is given to simply recall our studies and results obtained in Section 5.

2 Preliminaries

Definition 2.1 ([21, 22]) The Riemann-Liouville fractional integral of order « of a con-
tinuous function f € L!(a, 00) is defined as

1 t
150 = o [ E-9 0 ds
4 I'(a) Ja f
provided that the right side is pointwise defined on (g, 00).

Definition 2.2 ([21, 22]) If f € C"((a, 00),R) N L}(a,c0) and « > 0, then the Caputo frac-
tional derivative of order « is defined as

‘D f(t) = ﬁ [ t(t—s)”""’lf(”)(s) ds, n-l<a<mn=[a]+1,

where [«] denotes the integer part of the real number o > 0, provided that the right side is
pointwise defined on (a, ©0).

Lemma 2.1 ([21]) Assume that u € C(a, b) N L(a, b) with a Caputo fractional derivative of
order o > 0 that belongs to C"(a, b) then

DS ut)=ult)+ci+ct—a)+--- +cu(t — a)" 1,

forsomec; €R,i=0,1,2,...,n—1,n=[a] + 1.
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Lemma 2.2 ([21, 23]) Ifa,B >0, t € [a,b] and u(t) € L[a, D), then

DI u(t) =u(t),  I%IP.u(t) = 17 u(e).

attat

Lemma 2.3 ([24]) IfE is a real Banach space and F : E — E is a contraction mapping, then
F has a unique fixed point in E.

Lemma 2.4 (Schauder fixed point theorem [24]) If U is a closed bounded convex subset
of a Banach space X and F : U — U is complete continuous, then F has at least one fixed
point in U.

For the sake of convenience, we introduce the Banach spaces as follows.
Let] =1[0,1],J =] \ {t1, 2, ..., t,}. Define the set by

PC()) = {w(t) : w(t), w/(t),CDg+w(L‘),CD§+ w(t) € C(J), w(t{) and w(t;) exists

satisfying () = w(t), 1 < k <n}.

It is easy to verify that PC(J) is a Banach space equipped with the norm

lwllo = max{sup|w(t) , , sup|”Dg , sup|CD§+ w(t) }, Yw(t) € PC()).
te] te] te]

Define the Banach Space X = PC(J) x PC(J) with the norm ||(z, v)|| = max{]||«|o, [V|lo}-

Definition 2.3 A pair of functions (u(t), v(£)) € X = PC(J) x PC(J) is called a solution of
(1.1) if (u(2), v(2)) satisfy all the equations and boundary value conditions of system (1.1).

Lemma 2.5 Assume that h € C(J x R?,R). A function u € PC(]) is a solution of the bound-
ary value problem

‘Dhu(t)+h(t)=0, 1<p<2,
Aut]pey = L (u(ty)), AM’|[:tk =Juu(ty), k=1,2,...,n (2.1)
Dy, u(n) = u(l1), u(0)=0, 0<y<1,0<n<l,

if and only if u € PC(J) is a solution of the integral equation

il Jae—sp R ds v 't te(0,n),
i (6= 5P 8) ds — oy L [ (6= 9 ) ds
— ik T -6 [ (- 9P 2h(s) s+ XX Lu(t)
+ X (- DhiE) + ¢t te (ttinl, 1<k <m,

(2.2)

where j € {0,1,...,n} such that 1 € (¢, t.1] and

_ _ 1 o _ap-2
C - y)/(” ¥ V)Z/ (94

1

-1
Z]ll z F(P) ( —S)p ]’I(S) ds

F(2
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1 n t i 1 n 4 .
+ F—(p) ;:‘/til(ti — )P h(s)ds + To_1) ;(1 _ti)/m(ti — s 2h(s)ds

n

- ZI“ u(t Z — )i (u(t)).

i=1

Proof Assume that / satisfies (2.1). Applying Lemma 2.1, for some constants ¢, ¢; € R, we
have

u(t) = —If;h(t) +co+cit = —L /t(t —s)PYh(s)ds + co + c1t, te[0,t]. (2.3)
I'(p) Jo
Then we obtain
1 ¢
u'(t) = —m /0 (t=s)P2h(s)ds+c1, tel0t] (2.4)
If t € (t1,12), then we have

u(t) = —If}h(t) +do+di(t—t) =~ (p) (t—s)" Ya(s)ds + do + dvi(t - £1) (2.5)

and

u'(t) = —ﬁ t:(t — sV 2h(s)ds + dy, (2.6)

where dy, d; are arbitrary constants. According to (2.3)-(2.6), we find that
1 a
u(t;) =—— / (81— sYP7rh(s)ds + co + c1t1, u(tf) =dy, (2.7)
') Jo
and

u'(8) = —ﬁ /0 1(t1 —8)P2h(s)ds + c1, W' () =dh. (2.8)

In view of Auls—y = I11(u(t1)) and Aw'|s—y = J11(u(t1)), (2.7) and (2.8) give
1
= — I
dy T )/ (t1 — sy h(s)ds + co + c1t1 + 11(u(t1))
and

h=—re 1)/ (6 =5V 2h(s)ds + 1 + Jua (ult))-

Substituting dy and d; into (2.5), for ¢ € (t1, 2], we obtain

u(t) = _Fi(p) i (¢ = sy h(s)ds — Fi(p) ‘/(; 1(t1 — s h(s)ds + co + a1ty +In(u(t1))
t-f

TTp-oD On(tl —$Y72h(s)ds + c1(t — t1) + (¢ — t1)J11 (u(tr))
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1 1 1 1 -1
= F(p (t — sy’ h(s)ds — F(p) /0 (t1 =) h(s)ds
- Fz;_tll) ; 1(7-‘1 = )" *h(s)ds + Iy (u(tr))
+(t- tl)]ll(u(tl)) +¢o +cit. (2.9)

Repeating the process in this way, the solution u(¢) for ¢ € (¢, k1] (k= 1,2,...,n) can be
formulated as

u(t) = % (¢ = )P Yh(s) ds - F—(p)z_/ (¢ — )P Lh(s) ds

1 k t k
- = (t - t,') (tl' - S)p_zh(S) ds + 1 i(u(ti))
Fp-1) ; /i—l ; '
k

+ Z(t = t)hi(u(t)) + co + crt. (2.10)

i=1

In the light of (2.3) and #(0) = 0, we have ¢ = 0. In addition, it follows from (2.10) that

u(l) = r(lp) (1—sy~ lh(s)ds——Z/ (t; — s h(s) ds

1 n t " n
T 4 / s ds 4 3 )

+ Z(l — t)J1i(u(8)) + c1. (2.11)

i=1

In view of 1 € (0,1), tp = 0 and t,,; = 1, there exists j € {0, 1,...,n} such that 5 € (¢, £;,1].
So we have

1

u(n):—r—(p) A (r]—s)p Li(s) ds_l"—(p)Z/. (¢ — s h(s) ds

L J L j
) -t) | (G- h(s)ds+ )y L(u(t))
Fp-1) Z / Z
j

+ 2(77 -t (u(t)) + c1. (2.12)

i=1
Applying Lemma 2.2, we obtain

“Dg.u(n) = / (n— )P h(s)ds - o
0 F(p ¥) Fp-1r2-y)

N
=) D i) (213)
i=1

j t
X Z/ (& — )P~ 2h(s) ds +
i=1 Yti-1
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According to CDg,, u(n) = u(1) and (2.12)-(2.13), we derive

_ 1 —y—1 _ 2
P t} (n S Vh(s)ds — —r(p TG y)Z/ (t; — sy~ 2h(s) ds

1—V

1
* Tz Zhl (u(t) " To) / (1-5)"""h(s) ds

e > | (=57 o s+ s 00 / i(n -5y 2h(s) ds

n

=3 () = > (=t (ult).
i=1

i=1

Substituting the values of ¢y and ¢; into (2.3) and (2.10), one can easily reach (2.2).

Vice versa, we assume that u(¢) is a solution of the integral equation (2.2). By a direct
computation, it follows that the solution defined by (2.2) satisfies (2.1). The proof is com-
plete. 0

Similarly, we conclude the following lemma.

Lemma 2.6 Assume thaty € C(J x R%,R). A function v € PC(]) is a solution of the bound-
ary value problem

CDg+ v(e)+y(t)=0, 1<g<2,
AV't:tk = Izk(V(tk))r AV/'t:tk :]2/((V(tk))’ k = 11 2’ e 1, (214)
Dév(E) =v(1), 10)=0, 0<8<1,0<&<]1,

if and only if v e PC(J) is a solution of the integral equation

w7 Jo & =97 y(s)ds + d*t, e 0,n],
5 Jo (= 9Ty ds — 5 Yy [ (6= sy y(s)ds
LSt =) [ (= 9)T2y()ds + 3 Lu(v(t:)

+ YK - ) ((t) + d*t, t€ (e trn), 1 <k <,

We) = (2.15)

where [ € {0,1,...,n} such that & € (t;,t;,1] and

1 & 1-6
d'=———— | (-5 y(s)ds—

-5 g2
I'(q-9) Y Ig-1Ir'2- 5)2/ (& — )T y(s) ds

1-8

l"(2 8) “

1 n t; A o 1 n ‘ 4 | .
I'(q) ;/t“(t, — )T y(s) ds + Te-D ;(1 - tl)/zil (& — )1 2y(s) ds
=3 (vl = D1 - ) (v().
i=1

i=1

1
Z]zl (v(t) + (lq)/ (1-9)7"y(s)ds
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3 Main results
In this section, we shall employ the fixed point theorems of the operator to prove the

existence of solutions to system (1.1). According to Lemmas 2.5-2.6, we define the operator
F:X =PC(J) x PC(J) > X by

F(u,v)(t) = (Fl(u, v)(t), Fo(u, v)(t)) T, VY(u,v) € X,t €[0,1], (3.1)
where

- o S = P, D ls), Dl v(s)) ds + €1, £ [0,11],
ks [ = P (5, D (s), Dl v(s)) ds
- ﬁ S [ (6= 57 (s Dl uls), ‘Dl v(s)) ds
— iy i (= 8) [ (b= 8177 (s, D, (s), °Df, v(s)) ds
+ 30 L) + Zi:l(t = t)i(u(t)) + C*¢,

te(toteal, 1 <k<n,

Fi(u,v)(t) =

5 Jo (t = 977g(s,“Dg. uls), ‘DG, v(s)) ds + D*t, L€ [0,41],
5 Jo (=) q‘lg(s, D%, u(s),*Df, v(s)) ds
- %q) Yoy [y (6= s)P1g(s, D u(s), D vi(s)) ds
— e L= 8) [ (6= 5)172g(s, D, (s),°DY, (s)) dis
+ Zizl Li(v(ty) + Zi=1( — )i (v(t;)) + D*t,

le (tk) tk+l]! 1 =< k <n,

Fa(u,v)(£) =

C*=—_ [‘(pl_ 3 /j(n _ S)p—y‘lf(s, CDgﬁu(s),CD@ v(s)) ds

CT(p- 1)I‘(2 )Z / (& — 5V *f (s, “ D u(s), “Df, v(s)) ds

1

1-y J
+ iy ) + s [ =9y (s Do) Do) ds
i=1 tn

T Z/ (& — )P~ Yf (5,°DS. u(s), Dl v(s)) ds
1 n t; . . "
+ mZ(l - t) /t (t: = sV (s, D uls), “Diys v(s) ) dis
i=1 i-1
_ Z[lz M(t) Z( - ti)]li(lxl([i)),
i=1

and

1
F(q - 8) t

- L i/ﬁ (t; —s)q_zg(s DY u(s) cph v(s)) ds
' ’ 0+ b +
Mlg-DTr2-8) =/, °

&
(£ —5)T%! g(s, ‘D, u(s), CDg+ v(s)) ds



Zhao and Suo Advances in Difference Equations (2018) 2018:21 Page 8 of 17

‘51 - 1
2121 (t ( )/ (1—s)qflg(s,CD&M(S),CD&V(S))ds
%q)z/i(ti_S)q_lg(s’CDg+u(S)’CD€+V(S))dS
=1 Yli-1

g G- Z(l t)/ (¢ — )12 (s,cng(S) D0+v(s))

- ZIZi(V(ti)) - Z(l — t:))ai (v(t:)).
i-1

i=1

Thus, solving the boundary value problem (1.1) is equivalent to finding the fixed point of
the operator F defined by (3.1). Next we shall give our main results.

Theorem 3.1 Ifthe following conditions (A1)-(As) hold, then the boundary value problem
(1.1) has a unique solution pair (u*(t), v*(¢)).

(A1) Forallte[0,1] and U;,V; € R (i = 1,2), there exist some positive constants L;, L; (i=
1,2) such that

[f(t, U V) = f(8,Us, Vo) | < LalUhy = Us| + Lo V1 = V2,
lg(t, U, Vi) — g(t,Us, Va)| < Lilth ~Usl + Lo/ V1 = Val;

(Ay) ForallU,V € R, there exist some positive constants L, L i=1,2k=1,2,...,n) such
that

L) = L) < Ladld =V, PaWl) = JaV)| < Laeld = V)

(43)

2 1 i 2
|:F(p) ’ T'p-v) * F(P—l)F(Z—y) * ]"(p_l)i|(£1 + L)

+2Z(Lh +14) t oo ZLM <1,

[ 2 1 g

M) ' Tq-9) Tq-Dr2-9 Tig- 1)]“1 + L)

1-8

n n

. £ .
+2) Lo+ lo) + == Lyi<1.
iZI( 20 21) 1_,(2_8) — 2i <

Proof Now, we will use the Banach contraction principle to prove that F: X — X defined
by (3.1) has a fixed point. We first show that F is a contraction. In fact, when t € J = [0, 1],
from (3.1) and conditions (A1)-(A»), for all (u1,v1), (43, v2) € X, we have

|F1 (11, v1)(£) = F1(uz, v2) (2)|

1 t

— | =9 [f(s, D ur(s), CDg+ vi(s)) = f (s, Dy ua(s), CDg+ va(s))] ds
L'(p) Jo
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3 t
F'p-y) 4

-f (s, D uy(s), CD§+ V2(S))] ds

n
(= sy [f (5, “ D& ur (s), Dl 11 (5))

oo 1oy

—
n)/

(5D a9, D va®) s+ 6l > [hufaa(20) = (ac)]
i=1

1
+ F—(p) (1= sy [f (5, D& ui(s), “Dfvi(s)) = f (5, D% ua(s), Dy, va(s)) | s

+ o (p) Z Yoy £ (5,“Dis 141 (5), “Dp- v (5))
i=1 Yli-1

—f(s,°Dg ua(s), D€+ va(s))] ds

(1
’ 21: F((p 1)) tH(t =52 [f (5, D ur (s), ‘DG 1 (s))

£ (5,°Dg. uz(s),° D va(s))] ds - tZ[lli(ul(ti)) = Li(us(t))]

i=1

- tZ(l = t)[1i(ma(2:)) —]u(uz(ti))]’

= FL(19) /ot(t =5 (s DG (s) CD€+ vi(s)) —f (s, °Dis ua(s), CDg+ vy(s))| ds

Lt
—f(s, Dy ux(s), CDg+ V(s )’ ds

n
(Y77 f (s, Ds ur (s), “ Dy v1 (5))

1-
g [ T )

1-y J
(5 D a9, Do) ds + 13— o (10) = (o)
i=1

1
¥ FL(p) (1= 8)"|f (5,“D a(5), “Dfy. v (5)) = f (5, D 42(5), “Df vas)) | s

F(p) Z (t, —gypt [f s, “Dgeui(s), D0+ Vl(S)) f(s, D uy(s), CD@ Vo (s)) | ds

=1 Yti-1

; (1 - ti i = ca c
+ ; F((p — 1)) -/t‘,'l(ti -5y 2lf(s’ Dy uy(s), D§+V1(5))

—f(5,°Dgs a(s), “Dly.va(s)) | ds + £ Y| i (w1 (&) — Lui (ua(8) |

i=1
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+ tZ(l — ) [i(w1 (&) = i (u2(8) |

i=1
1 1
< / [£1]Dg. ur(s) = DS (s)| + La|* Dl vi(s) = <Dfva(s)|] ds
T'@p) Jo

1
+7
Fp-v)

WZL 1 [£1]°D§. 1 (s) = “Dfs s (s)|

1
/ [ﬁl |CDg+M1(S) - “Dg+ ug(s)| + L, |CD§+ vi(s) - CDg+ V5 (s) |] ds

+£2|”D vi(s) - ”D§+Vz(s)| 6is+r‘(2 ZLh\Ml(tz —us(t;)]

1 1
‘T [£1|°DS. 1 (s) — DS a(s)| + La|° DY vi(s) = Dl va(s)|] ds
tn

1 <[4
‘T o) > / [£1|°Dg. 1 (s) — DS, a(s)| + La|*Dfvi(s) = Dl va(s)|] ds
i=1 Vti-1

71 § c o o
+;F(p—1)f [£1]°D: ur(s) = “Ds un(s)| + Lo Db vi(s) — DL, va(s s)|] ds

ti1

+ ZLli|ul(ti) —us(t;)| + Zzli|ul(ti) —us(t7)|

i=1 i=1

<= F(p) [L1llur — uallo + Lallvi = vallo] + ﬁ[ﬁlllbﬁ —uzlo + Lallvi = vallo]
#[51”“1 uzllo + Lallvi = vallo] + % ZLll””l —usllo
ll,(p) [Lillur = uallo + Lalvi = vallo] + F(p) ——[Lillur — uallo + Lallv = vallo]
F(pt 0 (L1l — uallo + Lallvi = vallo] + ZLli”ul - uzllo

n
+ ZL11||M1 —izllo
i-1

IA

(L1 + L] ||(u1 — Uy V1— V2)|| + (L1 + L] || (u1 —u, v —v2) ||

_1
Fp-v)

(L1 + L] || (u1 —ug, vy — V2)||

T(p)

n'r

+r@_nr@_)

ZLu |G = w2, v1 = o) | +

(L1 + Lo] || (u1 —uy, vy —v) ||

V)4 1“(19)

(L1 + La]|| (1 — iz, v1 =) || + ZLU” (U1 =z, v1 =) ||

i=1

1
"Tep-1

n
+ 3 Ll i1 = g, v1 =) |
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2L+ L) Li+ Lo 'YLy + L) Li+L; & U
_[ I'(p) +F(P—V)+F(p—1)F(2—y)+F(p—1)+;L”+ZL“

14 n .
e (el

(S] [0, tl], (32)

and
|F1(M1,V1)(L‘) — Fi (2, v)(8)|

(t s)P~ [f(s, Dy ua (s), ”Dg+ 121 (s)) —f(s, °Dy. us(s), CDg+ Vo (s))] ds

F(p) 173

TR Z/ (&t — sy [f (s, DG ua(s), D0+v1(s))

— f(5,°Dg. u2(s),°Df va(s)) ] ds

t;

k
S A [ 6B D)
i=1 fi-1

k
— £ (s, DG 1s(s), ‘Dl va(s)) ] s + Z[lu(ul(ti)) — Li(wa(t))]
i-1
k
+ Z(t - ti)[/u(ul(ti)) _]1i(l/l2(ti))]
i-1
t n
“Te-») /f/ (= )P~ [f (5, ° DG 11 (5), “Df v1(5))

—f(s, Dy, us(s), CDg+ Vz(S))] ds

tnl 14

TT-1)r2-y) Z/t, 1(t =) 2[f (s, “Dgs (), D L v1(s))

l—y j
S Dl (o) Dl val9) s + F(2 Zl Ju(1 (8)) = J1i(2(8) ]
1
%P) ¢ (- S)p_l[f(s' “Digs ul(s)’cDg*Vl(s)) —f(s, D+ Mz(S);EDng(S))] ds
* ri(p) Z i (& —S)’H[f(s, ‘D, ul(s),CD&vl(s))
=1 V-1

-f (s, D uy(s), CDg+ V2(S))] ds

; f1 - L i - ca c
* ; F((p - 1)) t,-_l(ti =) 2[f (s, DG (s), D§+v1(s))

—f(s,°Ds us(s), °Dy). vy(s)) ]| ds — tZ[Ili(ul(ti)) — i (ua(8)) ]

i=1

_tZ —t) ]h u (¢, ]lt(MZ(t))]’
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< F(lp) (¢ = )77 |f (s, D% r (5), Dy va(s)) = f (5, Dt n(s), Dl v (s)) | ds

k

F (lp) Z (tl — st [f(s, Dy, us(s), D0+ Vi (s)) f(s, Dy, us(s), CDg+ 123 (s)) | ds

i=1 Yti-1

K t t;
* 121: I'(p- l) 5 l(t’ - )" ZV(S’ ‘D ui(s), D0+vl(s))

k

—f(5,“D ur(s), Dy va(s)) | ds + Y | 1i(waa (8)) — i (wa(8) |

i1
k
+ Z It = |1 (1 (8)) = Jui(u2(8)))|
i1
t n
¥ I'p-y) 4

(5, D ua(s), “Df, va(s)) | ds

(= P77V f (5, D& ua(s), *Dly. v (s))

tntr
F(p 1n)r(2 ) 21: " l(tl—s)p Z[f s, “Dgvui(s), D0+V1(s))

—f(s, Dy us(s), CD€+ V2(S)) | ds +

o )ZVn (1(89) s (12|

1
¥ r%p) (1= )7 |f (s, D ur(s), ‘Do va(s)) = f (5, “Dfy a(s), “Dfva(s)) | s

t o[
+ O] Z/ (t: - sy |f (s,°D§ ul(s),cD@ vi(s)) = f (s, D} uz(s),”Dng(s)) | ds

ti-1

n

+ Z li((;_ tl)) 4 l(tl =) |f (s, "D ua (s), D°+ M)

_f(s,CDg+u2 D0+V2 |ds+t2’[1, u (¢, 111 Mz(t ))’

+ tZ(l — )i (&) = i (w2 (22)) |

i=1
1
T(p) J;, [

| /\

L1|°Dgu1a1 () — Do un(5)| + Lo| ‘D, vi(s) — Dl va(s)|] s

- (p) Z / (L1 D 11 (6) — Dl 4a(5)| + L] Dhyvi(5) — Dl ()] ds

1
E:F(p 5 [£1|D0+u1(s) D3 ur(s)| + La|°Dhyovi(s) — Dl v(s)|] ds
tiq

+ ZL11|M1(E') —up(8;)] + Zzli|ul(ti) — ()|

i=1 i=1



Zhao and Suo Advances in Difference Equations (2018) 2018:21 Page 13 of 17

1
+7
Fp-v)

WZL 1 [£1]°D§. u1(s) — “Df ua(s)|

[ [£1| Dy uy(s) — Dy, uz(s)| + £2|CD§+V1(S) —CD§+vz(s)|] ds

+£¢Dvw)vﬁw@|m+ Xpwm@ — uy(ty)|

1 1
+—— | [£1|°DS.ur(s) — D aa(s)| + Lo|°Dfvi(s) = Dl vo(s)|] ds
L) Js,

Z / [£1|°Dg. 1 (s) — DS, a(s)| + La|*Dfvi(s) = Dl va(s)|] ds
F(p) tia

+ Z F(p 1 /t £1| D0+M1 S) CD0+M2 |+£2| D0+V1 ) D0+V2( )|]dS
i-1

+ ZLli|ul(ti) —uy(t)| + Zzli|ul(ti) —us(t7)|

i=1 i=1
< - [/31||M1 wallo + Lalvi = vallo] + = [L1llur — uallo + Lallvi — vallo]
I'(p) F(P)
tx
F(p 1)[51”141 M2||0+£2||V1—V2||0]+ZL11||M1—M2||0
1
+ZL1J||M1 uzllo + )[£1||M1 allo + Lallvi = vallo]
i=1 (p
n'7y
— I +L L
F(p Dra- )[ s —uzllo + Lallvi = vallo] + F(2 Z 1illu1r — uallo
1 [/3 l llo + Lall lo] + =—=[£1ll llo + Lall llo]
1lidr — Uzllo + L2][V1 — V2llo 141 — Uzllo + L2][V1 — V2llo
F(P) r‘(‘1‘9)
t,
F(p 1)[/-:1””1 M2||o+£2||V1—V2||0]+ZLU||M1—M2||0

n
+ ZL11||M1 —izllo
i-1

= F—(p)[ﬁl + Lo] ” (U1 —uz,v1 —v3) “ + ﬁ[ﬁl + L5] || (41 — tho, V1 — Vo) “

+ Z[Lu + iu] || (u1 — uz,v1 — Vz)H + (L1 + L] H(M1 — Uz V1 — V2)||

i=1

1
F'p-vy)
1-y

n
"Te-)r2-y)

n

Z 1i ||(M1 Uz, V1 — Vz)H L=y F(p) (L1 + L] || (u1 =z, v1 = 12) ||

i=1

[£1+ L] || (u1 -z, v1 —12) ”

7’] Y
+
re-y)

F(p 1) ———[L1+ L] || — Uz V1 — Vz)H
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n n
+ ZLUH (u1 —up, vy —v) ” + Zili”(ul — Uz V1 — Vz)”

i=1 i=1

2L+ Ly) Lo+ Ly p'V(Li+Ly)  2ALi+ L) ¢ "L
—|: ) +F(p—)/)+F(p—1)F(2—y)+ Too1) +2ZL1;'+2ZL11'

te(ttiml, 1 <k<n. (3.3)

+

IR ey
Ly; ||| (w1 — ug, 1
r2-y) Zl |l
In the same way, we obtain

| Fa (11, v1)(£) = Fa(u2,v2) (0)]
2Ly +Ly) L+ Ly EV(Ly + L) Ly + Ly
< + + +
I'(q) Mg-¢8) T(@-1Dr2-5 Trg-1)

" g1-s
+ ;(LZL’ +Ly) + ——— 1_,(2 5) ZL2;j| (1 = 2, v te[0,t], (3.4)
| Fy (11, v1)(£) = Fa (2, v2) (0)]
2(li+Ly) Li+ly 7L+ L) L+l
= + + +
I'(q) I'g-6) T@-1)re-5 T(g-1)
51—8 n R
+ZZ Lo + L) + T2 9 4 Zin
X ”(u1 — Uy V1 — Vz)H, te(totenl, 1 <k<n (3.5)

Thus, it follows from (3.2)-(3.5) and (A3) that F : X — X defined by (3.1) is a contraction
mapping. According to Lemma 2.3, for F there exists a unique fixed point (u*(£), v*(¢)) € X.
Therefore, the boundary value problem (1.1) has a unique solution pair (u*(¢), v*(£)) € X.
The proof of Theorem 3.1 is complete. g

Theorem 3.2 Suppose that the condition (A1)-(A3) hold. Assume further that the following
(A4) holds. Then the boundary value problem (1.1) has at least a solution pair (u*(t), v*(t)).

(As) Forallt€[0,1],£(t,0,0) =g(£,0,0) = 0, Ix(0) = Jx(0) =0 (i = 1,2; k= 1,2,...,n).

Proof For the sake of convenience, we denote p = [Fi(p) +

1
To—y) T T- 1)r2 y r(p ) 1Ly +
A 1-y A 1
EZ) + 22?:1(L1i + Lli) + rizz—_y) Z;’:l Lli: o= [%q) F(ql_(g) + F(q—él)F(Z—(S) F(q 1) ](‘Cl + ‘62)
230 (Lo + L)+ % o Loi, Ro = max{% +1, é +1}. Define the operator F: X — X by

(3.1) and a closed ball of Banach space X as follows:

+

Q:{(u,v)eX: ||(u,v)|| §R0}. (3.6)

Similar to (3.2)-(3.5), we easily show that F(2) C Q2 by applying (44). F(2) C Q indicates
that F(2) is uniformly bounded in X. The continuity of the operator F follows from the
continuity of f, g, I;x and Jix. Now we need to prove that F : Q—Qis equicontinuous. In
fact, let (i, v) € Q and 11, 75 € [0, 1] with 71 < 1.
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When 0 < 11 < 79 < #1, similar to (3.2), we have
|F1 (4, v)(12) = F1(u, v)(11) |

= ‘Fi(p) /0 1 [(12 —sPt — (1 - S)"_I]f(s, D+ u(s),”ng(s)) ds

' Fi(p) :(’2 — s (s, D u(s), ‘Dl v(s)) ds — C*(z2 — 71)
: FL(p) otl [(22 =971 = (11 = 51 ]|f (5, D5 uls), ‘D v(s)) | s
* %p) /:(fz — )P f (s, D% uls), ‘Dl v(s)) | ds + | C*|(z2 — 71)
< 2] [ - - o ds
B e )+ e
- if;(;)z | )|[(2 =71 = (£ - 77)]
ﬁ@fwumwm_nyqawh_m
= E;:sz )] (s Ll ) EZ @) (r2 = 70) + |C*|(r2 - 1)
= E;prz 2=+ = [‘(p) £ 4, ) (72 - 70) + | €7 (72 = )

2Ly + L) La+ Ly ﬂl_y(£1+£2) £1+£2 -
5{ @) Tp-y) TE-Dre-y) TE-1) ZLWZLIL

Il
< PRy(72 — ). (3.7)
In like manner, we get
|F2(1,v)(12) = Fa(u,v)(11)| < 0Ro(72 — 1) (3.8)
When £ < 71 < 73 < tx41, 1 <k < n, analogous to (3.3), we obtain
|Fr(,v)(12) = Fy(,v)(11)| < pRo(T2 — 11) (3.9)
and
|F2 (4, v)(12) = F2(u,v)(t1)| < 0Ro(12 — 71). (3.10)

Thus, it follows from (3.7)-(3.10) that, for any € > 0, there exists a positive constant

o= % mm{ } independent of 7, 7, and (&, v) such that ||F(u,v)(t2) — F(u,v)(11)|| < €,
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whenever |t; — 71| < 0. Thereby, F : X — X is equicontinuous. By the Ascoli-Arzela the-
orem we know that F : X — X is completely continuous. In view of Lemma 2.4, F has at
least one fixed point (u*(t), v*(t)) € Q, which is a solution pair of system (1.1). The proof
is complete. d

4 Examples
Consider a class of nonlinear fractional differential coupling system with impulses as fol-
lows:

DP. u(t) + f(t,°DE u(t), “DEv()) =0, ¢4t

DY v(t) + g(t, DG ul®), ‘DY, v(t) = 0, t# 1y,

Autlpey = (b)), Aulleey = Jic(u(ti)), (4.1)
AV|p—gy = Ip(v(tx)), AV |ty = Jor(vV(tx))s

Dy, u(n) = u(l), u(0) =0, DS v(E) =v(1), v(0) = 0.

Casel:Take]:[0,1],p:%,q:ﬁ,y:%,8:%,a:%,ﬁ:i,tlz%,n:é,gzg,
f(tyx7y) = et + w%fﬁy))g(t;x;y) = ;S?f:;c:;: Ill(x) = IZI(x) = %: jll(x) =]21(x) = ﬁ

By a simple calculation, we have £; = £; = ﬁl = ﬁz =L Li1=Ly= %, iu = im = 1—10,

5
[Fip) ' F(pl— ' To- Z)lry(z- 2N F(pz— 1>}(‘Cl ")
+2(Lyy + L) + F("Zli_yy)in ~0.8840 < 1,
1-5 R A
[F(zq) ' F(ql—é) ’ F(q—i)r(z-a) " F(qz_ 1)}(£1 + L)
+2(Loy + Loy) + %im ~0.9391 < 1.

Thus, all the assumptions of Theorem 3.1 are satisfied. Hence, system (4.1) has a unique
solution pair on [0, 1].

Case 2: The values of p, g, ¥, 8, o, B, t1, n and & are the same as case 1. Take f(¢,%,y) =
et (10x+20y), g(2,%,9) = (9 +cos 2t)x + (19 + | sin /5¢|)y, [1 (%) = Ly (x) = 5%, J11(x) = Jo1 (x) =
sinx. By a direct computation, we obtain £; = ﬁl =10, L, = 22 =20,L11 =Ly =511 =
Loy = 1, f(£0,0) = g(£,0,0) = I11(0) = I51(0) = J11(0) = J51(0) = 0. Thus, all the assumptions
of Theorem 3.2 hold. Therefore, system (4.1) has at least a unique solution pair on [0, 1].

5 Conclusions

In this paper, we study the nonlocal boundary value problem for a class of nonlinear
fractional order differential coupled system with impulses. By means of the Banach con-
traction principle and the Schauder fixed point theorem, some sufficient criteria are
established to guarantee the existence of solutions. Compared with the single fractional
differential equation, the study of a fractional order coupled system is more complicated
and challenging since it is difficult to define the appropriate nonlinear operator. Our re-
sults are new and interesting. Our methods can be used to study the existence of solutions
for the high order or multiple-point boundary value problems of a nonlinear fractional
differential coupled system.
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