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Abstract
In this study, a new discrete SI epidemic model is proposed and established from SI
fractional-order epidemic model. The existence conditions, the stability of the
equilibrium points and the occurrence of bifurcation are analyzed. By using the center
manifold theorem and bifurcation theory, it is shown that the model undergoes flip
and Neimark–Sacker bifurcation. The effects of step size and fractional-order
parameters on the dynamics of the model are studied. The bifurcation analysis is also
conducted and our numerical results are in agreement with theoretical results.
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1 Introduction
Mathematical modeling plays an important role in understanding the dynamics of many
infectious diseases. Thus, the use of modeling is crucial in order to analyze the spread,
control strategies and the mechanisms of transmission of diseases. Over the years, nu-
merous epidemiological models have been formulated mathematically (see, e.g., [1–6]).
Although most of these models have been restricted to integer-order differential equa-
tions (IDEs), in the last three decades, it has turned out that many problems in different
fields such as sciences, engineering, finance, economics and in particular epidemiology
can be described successfully by the fractional-order differential equations (FDEs) (see,
e.g., [7–12]). A property of these fractional-order models is their nonlocal property which
does not exist in IDEs. Nonlocal property means that the next state of a model depends
not only upon its current state but also upon all of its historical states [13]. The trans-
formation of an integer-order model into a fractional-order model needs to be precise as
to the order of differentiation α: a small change in α may cause a big change in the final
results [14]. FDEs can be used to model certain phenomena which cannot be adequately
modeled by IDEs [15]. FDEs are commonly used on biological systems since they are re-
lated in a natural way to systems with memory. Similar to a nonlinear differential system,
a nonlinear fractional differential system may also have complex dynamics, such as chaos
and bifurcation. Studying chaos in fractional-order dynamical systems is an attractive and
interesting topic [16].

Discrete models constructed by the discretization of continuous models have been used
to describe some epidemic models. Many significant and meaningful types of such re-
search can be found in [17–27] and the references therein. The reason for the use of dis-
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crete models is that statistical data on epidemics are collected in discrete times and hence
comparing data with output of a discrete model may be easier [28]. In general, the dynami-
cal behavior of discrete fractional-order epidemic models may exhibit phenomena such as
the period-doubling and chaotic behavior. Iwami et al. [29] have proposed a mathematical
model in a continuous-time version to interpret a model of the spread of avian–human
influenza epidemic. In [29], the dynamics of the spread into bird population and between
bird and human populations have been thoroughly studied. The main objective of the
current study is to extend the research done in [29] by employing fractional models with
discrete-time systems. In this paper, a discrete-time SI is established by SI fractional-order
epidemic model. This model contains two parameters in addition to those already exist-
ing in the original SI model proposed in [29]; time step parameter and fractional-order
parameter. The occurrence of bifurcations as these parameters are varied is shown in Sec-
tion 7. The stability of fixed points, the emergence of flip bifurcation and Neimark–Sacker
bifurcation are also studied. Using the discretized-time SI model with fractional order is
a new topic, thus this paper provides a new contribution to the literature.

This paper is organized as follows. In Section 2, the fractional-time SI epidemic model
from its continuous-time counterpart is constructed. In Section 3, the discretized-time
SI model with fractional-order parameter is established. Section 4 discusses the existence
and stability of fixed points of the discretized-time SI model with fractional order. In Sec-
tions 5 and 6, flip and Neimark–Sacker bifurcations are demonstrated, respectively. In
Section 7, some numerical examples are shown. A brief discussion of our results is given
in Section 8.

2 The FDE epidemic model
Let us consider the following IDE epidemic model:

dS(t)
dt

= � – μS – βSI,

dI(t)
dt

= βSI – (μ + r)I.
(2.1)

This model is constructed by Iwami et al. [29] to explain the spreads of avian influenza
through the bird world and describes the interactions between them. The population in
this model is divided into susceptible birds with size S and infected birds with size I . The
new birds birth rate is expressed by the parameter �. Susceptible birds die at the rate μ

and infected birds die at the rate μ + r, where r is the additional death rate mediated by
avian influenza. The parameter β is the bilinear incidence rate.

There are several definitions of fractional derivatives [30, 31]. One of the most common
definitions is the Caputo definition [32]. This definition is often used in real applications
and shown in Definition 1.

Definition 1 The fractional integral of order β ∈ R
+ of the function f (t), t > 0, is defined

by

Iβ f (t) =
∫ t

0

(t – s)β–1

�(β)
f (s) ds,
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and the fractional derivative of order α ∈ (n – 1, n) of f (t), t > 0, is defined by

Dαf (t) = In–αDnf (t), α > 0,

where f (n) represents the nth order derivative of f (t), n = [α] is the value of α rounded
up to the nearest integer, Iβ is the βth order Riemann-Liouville integer operator and �(·)
is Euler’s Gamma function. The operator Dα is called the ‘αth order Caputo differential
operator’.

Now, the fractional-order form of the SI epidemic model (2.1) can be formulated as
follows:

Dα
t S(t) = � – μS – βSI,

Dα
t I(t) = βSI – (μ + r)I,

(2.2)

where Dα
t represents the Caputo fractional derivative, t > 0, and α is the fractional order

satisfying α ∈ (0, 1].

3 Discretization process
There are many discretization methods that have been used to construct the discrete-
time model using continuous-time methods such as explicit and implicit Euler’s method,
Runge–Kutta method, predictor-corrector method and nonstandard finite difference
methods [33–37]. Some of them are approximation for the derivative and some for the
integral. In [38, 39] a discretization process was introduced to discretize FDEs. This dis-
cretization method is an approximation for the right hand side of the differential equa-
tion has the formula Dαx(t) = f (x(t)), t > 0, α ∈ (0, 1). This method is now applied to the
fractional-order SI model (2.2). Assume that S(0) = S0 and I(0) = I0 are the initial condi-
tions of system (2.2). So, the discretization of the system (2.2) is given by the following
formulas:

DαS(t) = � – μS
([

t
x

]
x
)

– βS
([

t
x

]
x
)

I
([

t
x

]
x
)

,

DαI(t) = βS
([

t
x

]
x
)

I
([

t
x

]
x
)

– (μ + r)I
([

t
x

]
x
)

.
(3.1)

First, let t ∈ [0, h), t/h ∈ [0, 1). Then

Dα
t S(t) = � – μS0 – βS0I0,

Dα
t I(t) = βS0I0 – (μ + r)I0,

(3.2)

and the solution of (3.2) reduces to

S1(t) = S0 + Jα[� – μS0 – βS0I0] = S0 +
tα

�(1 + α)
[� – μS0 – βS0I0],

I1(t) = I0 + Jα
[
βS0I0 – (μ + r)I0

]
= I0 +

tα

�(1 + α)
[
βS0I0 – (μ + r)I0

]
.

(3.3)
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Second, let t ∈ [h, 2h), which makes 1 ≤ t/h < 2. Thus, we obtain

Dα
t S(t) = � – μS1 – βS1I1,

Dα
t I(t) = βS1I1 – (μ + r)I1,

(3.4)

which have the following solutions:

S2(t) = S1(x) +
(t – h)α

�(1 + α)
[
� – μS1(x) – βS1(x)I1(x)

]
,

I2(t) = I1(x) +
(t – h)α

�(1 + α)
[
βS1(x)I1(x) – (μ + r)I1(x)

]
.

(3.5)

Repeating the discretization process n times yields

Sn+1(t) = Sn(nx) +
(t – nh)α

�(1 + α)
[
� – μSn(nx) – βSn(nx)In(nx)

]
,

In+1(t) = In(nx) +
(t – nh)α

�(1 + α)
[
βSn(nx)In(nx) – (μ + r)In(nx)

]
,

(3.6)

where t ∈ [nh, (n + 1)h). For t → (n + 1)h, system (3.6) is reduced to

Sn+1 = Sn +
hα

�(1 + α)
[� – μSn – βSnIn],

In+1 = In +
hα

�(1 + α)
[
βSnIn – (μ + r)In

]
.

(3.7)

Remark 3.1 It should be noticed that if α → 1 in (3.7), the Euler discretization of SI model
is obtained.

4 Stability of fixed points
In this section, an approach as in [40] is employed. The stability of the system (3.7) is
studied around its fixed points. It is clear that the model (3.7) has always a disease free
equilibrium point E0 = ( �

μ
, 0) and an endemic equilibrium point E1 = ( μ+r

β
, �

μ+r – μ

β
). Fur-

thermore, the system (3.7) has basic reproduction number �0 = β�

μ(μ+r) > 1, then E1 can be
reformulated as E1 = ( μ+r

β
, μ(�0–1)

β
). It can be seen that the free equilibrium point E0 always

exists while the positive endemic E1 exists only when �0 > 1. So as to analyze the dynam-
ical properties of (3.7), we compute the Jacobian matrix J of (3.7), and we evaluate at the
fixed point E = (S∗, I∗)

J
(
S∗, I∗) =

(
1 – hα

�(1+α) (μ + βI∗) – hα

�(1+α)βS∗
hα

�(1+α)βI∗ 1 + hα

�(1+α) (βS∗ – μ – r)

)
. (4.1)

In order to study the stability of the fixed points of the system (3.7), the two following
lemmas are employed.

Lemma 4.1 ([41, 42]) Let λ1 and λ2 be the two roots of matrix J(M), we have the following
definitions:
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(i) If |λ1| < 1 and |λ2| < 1, then the equilibrium point of M(x∗, y∗) is locally
asymptotically stable (sink).

(ii) If |λ1| > 1 and |λ2| > 1, then the equilibrium point of M(x∗, y∗) is unstable (source).
(iii) If |λ1| < 1 and |λ2| > 1 (or |λ1| > 1 and |λ2| < 1), then the equilibrium point of

M(x∗, y∗) is unstable (saddle).
(iv) If |λ1| = 1 or |λ2| = 1, then the equilibrium point of M(x∗, y∗) is called

non-hyperbolic.

Lemma 4.2 ([43, 44]) Let F(λ) = λ2 – Trλ + Det. Suppose that F(1) > 0, λ1, λ2 are the two
roots of F(λ) = 0. Then

(i) |λ1| < 1 and |λ2| < 1 if and only if F(–1) > 0 and Det < 1;
(ii) |λ1| < 1 and |λ2| > 1 or (|λ1| > 1 and |λ2| < 1) if and only if F(–1) < 0;

(iii) |λ1| > 1 and |λ2| > 1 if and only if F(–1) > 0 and Det > 1;
(iv) λ1 = –1 and λ2 �= 1 if and only if F(–1) = 0 and Tr �= 0, 2;
(v) λ1 and λ2 are complex and |λ1| = |λ2| if and only if Tr2 – 4Det < 0 and Det = 1.

Based on Lemmas 4.1 and 4.2, the following results can be achieved.

Theorem 4.3 If �0 < 1, then the free-equilibrium point E0 has at least four different topo-
logical types for all its values of parameters

(i) E0 is a sink if 0 < h < min{ α

√
2�(1+α)

μ
, α

√
2�(1+α)

(μ+r)(1–�0) }.

(ii) E0 is a source if h > max{ α

√
2�(1+α)

μ
, α

√
2�(1+α)

(μ+r)(1–�0) }.

(iii) E0 is a saddle if α

√
2�(1+α)

(μ+r)(1–�0) < h < α

√
2�(1+α)

μ
or α

√
2�(1+α)

μ
< h < α

√
2�(1+α)

(μ+r)(1–�0) .

(iv) E0 is non-hyperbolic if h = α

√
2�(1+α)

μ
or h = α

√
2�(1+α)

(μ+r)(1–�0) .

Proof The Jacobian matrix of E0 is

J(E0) =

(
1 – hαμ

�(1+α)
–hαβ�

μ�(1+α)

0 1 – hα (μ+r)(1–�0)
�(1+α)

)
.

The eigenvalues of J(E0) are λ1 = 1 – hαμ

�(1+α) and λ2 = 1 – hα (μ+r)(1–�0)
�(1+α) where 0 < α ≤ 1 and

h, hα

�(1+α) > 0. Hence applying the stability conditions using Lemma 4.1 the results (i)–(iv)
can be achieved. �

Theorem 4.4 If �0 > 1, we have
(i) E1 is asymptotically stable (sink) if one of the following conditions holds:

(i.1) � ≥ 0 and 0 < h < h1.
(i.2) � < 0 and 0 < h < h2.

(ii) E1 is unstable (source) if one of the following conditions holds:
(ii.1) � ≥ 0 and h > h3.
(ii.2) � < 0 and h > h2.

(iii) E1 is unstable (saddle) if � ≥ 0 and h1 < h < h3.
(iv) E1 is non-hyperbolic if one of the following conditions holds:

(iv.1) � ≥ 0 and h = h1 or h3,
(iv.2) � < 0 and h = h2,
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where

h1 = α

√
(μ�0 –

√
�)�(1 + α)

μ(μ + r)(�0 – 1)
,

h2 = α

√
�0�(1 + α)

(μ + r)(�0 – 1)
,

h3 = α

√
(μ�0 +

√
�)�(1 + α)

μ(μ + r)(�0 – 1)
,

and

� =
[
μ(�0 – 2)

]2 – 4μr(�0 – 1).

Proof The Jacobian matrix of E1 can be written as

J(E1) =

(
1 – hαμ�0

�(1+α)
–hα (μ+r)
�(1+α)

hαμ(�0–1)
�(1+α) 1

)
.

The characteristic equation of J(E1) has the form

λ2 – Tr
(
J(E1)

)
λ + Det

(
J(E1)

)
= 0,

where

Tr
(
J(E1)

)
= 2 –

hαμ�0

�(1 + α)

and

Det
(
J(E1)

)
=

h2αμ(μ + r)(�0 – 1)
�2(1 + α)

–
hαμ�0

�(1 + α)
+ 1.

Then the characteristic equation J(E1) has two eigenvalues, which are

λ1,2 = 1 –
hαμ�0

2�(1 + α)
± hα

√
�

2�(1 + α)
.

By applying Lemmas 4.1, 4.2 and the Jury conditions [45], the stability conditions (i)–(iv)
can be achieved. �

From the above analysis if the statement (iv.1) of Theorem 4.4 holds, then one of the
eigenvalues of J(E1) is –1 and the other is neither 1 nor –1. The statement (iv.1) can be
reformulated as follows:

(α, h,β ,�,μ, r) ∈ �1 ∪ �2,

where

�1 =
{

(α, h,β ,�,μ, r) : h = h1,� ≥ 0,�0 > 1
}

,
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and

�2 =
{

(α, h,β ,�,μ, r) : h = h3,� ≥ 0,�0 > 1
}

.

If the parameter h varies in the neighborhood of h1 and (α, h,β ,�,μ, r) ∈ �1 or h3 and
(α, h,β ,�,μ, r) ∈ �2, the system (3.7) may undergo a flip bifurcation of equilibrium E1.

When the statement (iv.2) of Theorem 4.4 holds, then the two eigenvalues of J(E1) are a
pair of conjugate complex numbers and the modules of each of them equals 1. The state-
ment (iv.2) can be reformulated as follows:

(α, h,β ,�,μ, r) ∈ �3,

where

�3 =
{

(α, h,β ,�,μ, r) : h = h2,� < 0,�0 > 1
}

.

If the parameter h varies in the neighborhood of h2 and (α, h,β ,�,μ, r) ∈ �3, the system
(3.7) may undergo a Neimark–Sacker bifurcation of equilibrium E1.

5 Flip bifurcation analysis
Flip bifurcation of the equilibrium point E1 when parameters (α, h,β ,�,μ,γ ) vary in the
small neighborhood of �1 or �2 is discussed in this section. Let A1 = hα

�(1+α) and A∗ be a
perturbation of bifurcation parameter, then a perturbed form of model (3.7) can be for-
mulated as follows:

Sn+1 = Sn + (A1 + A∗)[� – μSn – βSnIn],

In+1 = In + (A1 + A∗)
[
βSnIn – (μ + r)In

]
.

(5.1)

We translate E1(S∗, I∗) to the origin by using transformations Xn = Sn –S∗ and Yn = In –I∗.
Then (5.1) can reformulated as follows:

(
Xn+1

Yn+1

)
=

(
a11Xn + a12Yn + a13XnYn + (b11Xn + b12Yn + b13XnYn)A∗
a21Xn + a22Yn + a23XnYn + (b21Xn + b22Yn + b23XnYn)A∗

)
, (5.2)

where

a11 = 1 – μ�0A1, a12 = –(μ + r)A1, a13 = –βA1,

b11 = –μ�0, b12 = –(μ + r), b13 = –β ,

a21 = μ(�0 – 1)A1, a22 = 1, a23 = βA1,

b21 = μ(�0 – 1), b22 = 0, b23 = β ,

and A = A1.
Let T1 =

( a11 a12
a21 a22

)
, then the generalized eigenvectors of T1 corresponding to the eigen-

values λ1 and λ2 where λ1 = –1 and |λ2| �= 1 are
( K1

K2

)
= K2

( –a12
1+a11

1

)
and

( K3
K4

)
= K4

( –a12
a11–λ2

1

)
,
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respectively. Here, we choose K2 = –(1 + a11) and K4 = –(a11 – λ2). Then we have an in-
vertible matrix T2 =

( K1 K3
K2 K4

)
=

( a12 a12
–1–a11 λ2–a11

)
. Consider the following transformation:

(
Xn

Yn

)
= T2

(
un

υn

)
.

Taking T–1
2 on both sides of (5.2), we obtain

(
un+1

υn+1

)
=

(
–1 0
0 λ2

)(
un

υn

)
+

(
f1(Xn, Yn, A∗)
f2(Xn, Yn, A∗)

)
, (5.3)

where

f1(Xn, Yn, A∗) =
(λ2 – a11)

a12(λ2 + 1)
(
a13XnYn + (b11Xn + b12Yn + b13XnYn)A∗

)

–
1

(λ2 + 1)
(
a23XnYn + (b21Xn + b22Yn + b23XnYn)A∗

)
,

f2(Xn, Yn, A∗) =
(a11 + 1)

a12(λ2 + 1)
(
a13XnYn + (b11Xn + b12Yn + b13XnYn)A∗

)

+
1

(λ2 + 1)
(
a23XnYn + (b21Xn + b22Yn + b23XnYn)A∗

)
,

Xn = a12(un + υn), Yn = –(1 + a11)un + (λ2 – a11)υn,

and

XnYn = –a12(1 + a11)u2
n + a12(λ2 – 2a11 – 1)unυn + a12(λ2 – a11)υ2

n .

Now, the center manifold W c(0, 0, 0) of (5.3) at the fixed point (0, 0) in a small neigh-
borhood of A∗ = 0 can be formulated. Hence, based on the center manifold theorem, we
know there exists a center manifold

W c(0, 0, 0) =
{

(un,υn, A∗) ∈R
3 : υn = ϕ(un, A∗),ϕ(0, 0) = 0, Dϕ(0, 0) = 0

}
,

for un, A∗ sufficiently small. We assume a center manifold of the form

ϕ(un, A∗) = a1u2
n + a2A∗un + 0

((|un| + |A∗|
)3),

which must satisfy

N
(
ϕ(un, A∗)

)
= ϕ

(
–un + f1

(
un,ϕ(un, A∗)

)
, A∗

)
– λ2ϕ(un, A∗) – f2

(
un,ϕ(un, A∗), A∗

)

= 0. (5.4)

By equating coefficients of like powers in (5.4) to zero, we obtain

a1 =
(1 + a11)[a13(1 + a11) + a12a23]

λ2
2 – 1

,

a2 =
(1 + a11)[b12(1 + a11) – a12b11]

a12(λ2 + 1)2 +
b22(1 + a11) – a12b21

(λ2 + 1)2 .
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Therefore, the map f , which is model (3.7) restricted to the center manifold W c(0, 0, 0)
takes the form

f (un) = –un + ϕ1unA∗ + ϕ2unA2
∗ + ϕ3u2

n + ϕ4u2
nA∗ + ϕ5u3

n + 0
((|un| + |A∗|

)4), (5.5)

where

ϕ1 =
1

a12(λ2 + 1)
{

a12
[
b11(λ2 – a11) – a12b21

]
– (1 + a11)

[
b12(λ2 – a11) – a12b22

]}
,

ϕ2 =
a2

a12(λ2 + 1)
{

a12
[
b11(λ2 – a11) – a12b21

]
+ (λ2 – a11)

[
b12(λ2 – a11) – a12b22

]}
,

ϕ3 =
–1

λ2 + 1
{

(1 + a11)
[
a13(λ2 – a11) – a12a23

]}
,

ϕ4 =
1

a12(λ2 + 1)
{

a2a12(λ2 + 1)
[
a13(λ2 – a11) – a12a23

]

+ a1a12
[
b11(λ2 – a11) – a12b21

]

+ a1(λ2 – a11)
[
b12(λ2 – a11) – a12b22

]

– a12(1 + a11)
[
b13(λ2 – a11) – a12b23

]}
,

ϕ5 =
a1(λ2 – 2a11 – 1)

λ2 + 1
[
a13(λ2 – a11) – a12a23

]
.

(5.6)

According to the flip bifurcation, the discriminatory quantities χ1 and χ1 are given by

χ1 =
(

∂2f
∂un ∂A∗

+
1
2

∂f
∂A∗

∂2f
∂u2

n

)∣∣∣∣
(0,0)

,

χ2 =
(

1
6

∂3f
∂u3

n
+

(
1
2

∂2f
∂u2

n

)2)∣∣∣∣
(0,0)

.

(5.7)

Thus, χ1 = ϕ1 and χ2 = ϕ5 + ϕ2
3 . Therefore according to flip bifurcation conditions in

[46], the following theorem can be stated.

Theorem 5.1 If χ2 �= 0, and the parameter A∗ alters in the limiting region of the point
(0, 0), then the system (5.1) passes through a flip bifurcation at the point E1(S∗, I∗). Further,
the period-2 points that bifurcate from the fixed point E1(S∗, I∗) are stable if χ2 > 0 and
unstable if χ2 < 0.

6 Neimark–Sacker bifurcation
A Neimark–Sacker bifurcation of the equilibrium point E1 occurs when parameters
(α, h,β ,�,μ,γ ) vary in the small neighborhood of �3. A perturbation form of model (3.7)
can be written as follows:

Sn+1 = Sn +
(
A2 + A∗)[� – μSn – βSnIn],

In+1 = In +
(
A2 + A∗)[βSnIn – (μ + r)In

]
,

(6.1)
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where |A∗| � 1 is a limited perturbation parameter. Let Xn = Sn – S∗, Yn = In – I∗, then the
fixed point E1(S∗, I∗) to (0, 0) can be retranslated and (6.1) can be reformulated as follows:

(
Xn+1

Yn+1

)
=

(
c11Xn + c12Yn + c13XnYn

c21Xn + c22Yn + c23XnYn

)
, (6.2)

where

c11 = 1 – μ�0
(
A2 + A∗), c12 = –(μ + r)

(
A2 + A∗), c13 = –β

(
A2 + A∗),

c21 = μ(�0 – 1)
(
A2 + A∗), c22 = 1, c23 = β

(
A2 + A∗),

and A = A2.
The characteristic equation associated with the linearization system of model (6.2) at

(0, 0) is

ω2 + p
(
A∗)ω + q

(
A∗) = 0, (6.3)

where

p
(
A∗) = –2 – G

(
A2 + A∗),

q
(
A∗) = 1 + G

(
A2 + A∗) + H

(
A2 + A∗)2,

G = c22 – c11, and H = c21c12 – c11c22.

Since the parameters (α, h,β ,�,μ, r) ∈ �3 and A∗ varies in a small neighborhood of
A∗ = 0, and the roots of (6.3) are pair of complex conjugate numbers ω1 and ω2 denoted
by

ω1,2 = 1 +
G(A2 + A∗)

2
± i(A2 + A∗)

2
√

4H – G2,

we have

|ω1,2| =
√

q
(
A∗),

d|ω1,2|
dA∗

∣∣∣∣
A∗=0

= –
G
2

> 0.

In addition, it is required that, when A∗ = 0, ωn,ωn �= 1 (n = 1, 2, 3, 4), which is equivalent
to p(0) �= –2, 0, 1, 2. Since p2(0) – 4q(0) < 0 and q(0) = 1, we have p2(0) < 4; then p(0) �= ±2.
It is only required that p(0) �= 0, 1, which leads to

G2 �= 2H , 3H . (6.4)

Therefore, the eigenvalues ω1,2 of fixed point (0, 0) of (6.2) does not lie on the intersection
of the unit circle with the coordinate axes when A∗ = 0.

Next, the normal form of model (6.2) when A∗ = 0 is studied. Let θ = Re(ω1,2), η =
Im(ω1,2) and

T =

(
c12 0

θ – c11 –η

)
=

(
c11 0

–1
2 K –1

2 K
√

4K – K2

)
. (6.5)
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Consider the translation below
(

Xn

Yn

)
= T

(
un

υn

)
. (6.6)

Taking T–1 on both sides of (6.2), we obtain

(
un+1

υn+1

)
=

(
θ –η

η θ

)(
un

υn

)
+

(
f (un + υn)
g(un + υn)

)
, (6.7)

where

f (un + υn) = c13
[
(θ – c11)u2

n – ηunυn
]
,

g(un + υn) =
[
c13(c11 – θ ) + c12c23

][ (c11 – θ )
η

u2
n + unυn

]
,

Xn = c12un, Yn = (θ – c11)un – ηυn.

Now, we obtain

∂2f
∂u2

n
= 2c13(θ – c11),

∂2f
∂un ∂υn

= –ηc13,

∂2f
∂υ2

n
= 0,

∂3f
∂u3

n
=

∂3f
∂u2

n ∂υn
=

∂3f
∂un ∂υ2

n
=

∂3f
∂υ3

n
= 0,

∂2g
∂u2

n
=

2(c11 – θ )
η

[
c13(c11 – θ ) + c12c23

]
,

∂2g
∂un ∂υn

= c13(c11 – θ ) + c12c23,

∂2g
∂υ2

n
= 0,

∂3g
∂u3

n
=

∂3g
∂u2

n ∂υn
=

∂3g
∂un ∂υ2

n
=

∂3g
∂υ3

n
= 0.

(6.8)

According to the Neimark–Sacker bifurcation, the discriminatory quantity � is given by

� = – Re

[
(1 – 2ω)ω2

1 – ω
ξ11ξ20

]
–

1
2
|ξ11|2 – |ξ02|2 + Re(ωξ21) �= 0, (6.9)

where

ω = θ + iη,

ξ11 =
1
4

[
∂2f
∂u2

n
+

∂2f
∂υ2

n
+ i

(
∂2g
∂u2

n
–

∂2g
∂υ2

n

)]∣∣∣∣
(un ,υn)=(0,0)

,
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ξ20 =
1
8

[
∂2f
∂u2

n
–

∂2f
∂υ2

n
+ 2

∂2g
∂un ∂υn

+ i
(

∂2g
∂u2

n
–

∂2g
∂υ2

n
– 2

∂2f
∂un ∂υn

)]∣∣∣∣
(un ,υn)=(0,0)

,

(6.10)

ξ02 =
1
8

[
∂2f
∂u2

n
–

∂2f
∂υ2

n
– 2

∂2g
∂un ∂υn

+ i
(

∂2g
∂u2

n
–

∂2g
∂υ2

n
+ 2

∂2f
∂un ∂υn

)]∣∣∣∣
(un ,υn)=(0,0)

,

ξ21 =
1

16

[
∂3f
∂u3

n
+

∂3f
∂un ∂υ2

n
+

∂3g
∂u2

n ∂υn
+

∂3g
∂υ3

n

+ i
(

∂3g
∂u3

n
+

∂3g
∂un ∂υ2

n
–

∂3f
∂u2

n ∂υn
–

∂3f
∂υ3

n

)]∣∣∣∣
(un ,υn)=(0,0)

.

From the above analysis and the theorem in [47], Theorem 6.1 can be stated.

Theorem 6.1 If conditions (6.4) and (6.10) hold, then the system (3.7) undergoes Neimark–
Sacker bifurcation at the positive fixed point E1(S∗, I∗) when the parameter A∗ varies in the
small neighborhood of A2. Furthermore if (� < 0, � > 0) then (an attracting, a repelling)
invariant closed curve bifurcates from the fixed point E1(S∗, I∗) for (A2 > A∗, A2 < A∗), re-
spectively.

(a) (b)

(c)

Figure 1 Flip bifurcation diagram of model (3.7) for h ∈ [2, 3] with local amplification to (a)
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(a) Period-2 orbits at h = 2.5 (b) Period-4 orbits at h = 2.75

(c) Period-8 orbits at h = 2.8 (d) Period-16 orbits at h = 2.82

(e) Period-12 orbits at h = 2.9 (f ) Chaotic attractor at h = 2.95

Figure 2 Phase portraits diagram of model (3.7) for various h corresponding to Figure 1

7 Numerical examples
This section shows the bifurcation diagrams, phase portraits and maximum Lyapunov
exponents for the model (3.7) to confirm the above theoretical analysis and to illustrate the
complex dynamics of our model using numerical continuation. Bifurcation occurs when
the stability of an equilibrium point changes [48]. In general, the dynamics of a discrete
SI model with integer-order has been examined by Hu et al. [42]. As discussed earlier in
Section 1, this paper focuses on varying the time step size parameter h and the fractional-
order parameter α in the model (3.7), which can be seen as extension of the corresponding
results given in [29, 42]. Based on the previous analysis, the parameters of the model (3.7)
can be examined in the following two cases.
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Figure 3 Maximal Lyapunov exponents corresponding to Figure 1

(a) (b)

(c)

Figure 4 N-S bifurcation diagram of model (3.7) for α ∈ [0.8, 0.99] with local amplification to (a)

Case 1. Varying h in range 2 ≤ h ≤ 2.85 and fixing � = 3.5, μ = 0.145, r = 0.12, β = 0.09,
α = 0.99 with initial conditions (S0, I0) = (3.1, 7.8).

Case 2. Varying α in range 0.8 ≤ α ≤ 0.99 and fixing � = 1.5, μ = 0.2, r = 0.3, β = 0.1,
h = 8.1, (S0, I0) = (5.1, 0.9).

In Case 1, the basic reproduction number �0 = 8.198 > 1, thus the model (3.7) has one
positive endemic equilibrium point E1(2.944, 11.596). Since � = 0.307 > 0 and h1 = 2.305,
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(a) Stable equilibria at α = 0.82 (b) Attracting invariant circle at α = 0.8262

(c) Attracting invariant circle at α = 0.8266 (d) Attracting invariant circle at α = 0.8278

(e) Attracting invariant circle at α = 0.832 (f ) Quasi-periodic orbits at α = 0.913

Figure 5 Phase portraits diagram of model (3.7) for various α corresponding to Figure 4

according to Theorem 4.4, E1 is asymptotically stable (sink) when h < 2.305. When h =
h1, flip bifurcation emerges from the equilibrium point E1 with χ1 = –0.871, χ2 = 0.015 >
0 and (α, h,β ,�,μ, r) = (0.99, 2.305, 0.09, 3.5, 0.145, 0.12) ∈ �1. The occurrence of these
bifurcations is illustrated in Figure 1(a)–(c). These figures show that E1 is stable when
h < 2.305 and loses its stability through the flip bifurcation when h = 2.305. Period-2, 4, 8,
16 orbits appear as h increases in the range when h ∈ (2.305, 2.83). The phase portraits for
h ∈ (2.305, 2.83) are plotted in Figure 2(a)–(d) to illustrate these observations further. The
emergence of period-2, 4, 8 and 16 orbits are observed when h = 2.5, 2.75, 2.8 and 2.82 in
Figure 2(a)–(d). Some interesting phenomena are also seen when h increases further: for
instance, when h = 2.9 (Figure 2(e)), period-12 orbit appears. The occurrence of chaotic
regions is also observed in Figure 1(a)–(c): these phenomena can be illustrated by the
phase portrait in Figure 2(f ) (e.g. when h = 2.95). Maximal Lyapunov exponents (LEs) are
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(g) Periodic-13 orbits at α = 0.921 (h) Chaotic attractor at α = 0.95

(i) Chaotic attractor at α = 0.99

Figure 5 Continued

Figure 6 Maximal Lyapunov exponents corresponding to Figure 4

computed in Figure 3 corresponding to observations in Figure 1(a)–(c). It is observed that
some LE values are positive and some are negative, so there exist stable fixed points or
stable period windows in the chaotic regions. Generally, a positive LE is considered to be
one of the characteristics which imply the existence of chaos (e.g. when h > 2.83).
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In Case 2, the basic reproduction number �0 = 1.5 > 1, thus, model (3.7) has one posi-
tive endemic equilibrium point E1(5, 1). Since � = –0.11 < 0, according to Theorem 4.4
E1 is asymptotically stable (sink) when α < 0.826 and unstable when α > 0.826. The
Neimark–Sacker (N-S) bifurcation emerges from E1 at α = 0.826 with � = –0.778 < 0 and
(α, h,β ,�,μ, r) = (0.826, 8.1, 0.1, 1.5, 0.2, 0.3) ∈ �3. The occurrence of an N-S bifurcation
is illustrated in Figure 4(a)–(c). Figure 4 shows that E1 is stable for α < 0.826 and loses
its stability through an N-S bifurcation at α = 0.826. Attracting invariant circle appears as
fractional-order parameter increases in the range of α ∈ (0.826, 0.87). The phase portraits
for various α-values corresponding to Figure 4 are plotted in Figure 5(a)–(i) to illustrate
these observations. Furthermore, the quasi-periodic orbits (α = 0.913) and periodic-13 or-
bits (α = 0.921) are observed within the chaotic regions in Figure 5(f ) and (g), respectively.
Attracting chaotic sets are also seen when α increases further and these observations are
plotted in Figure 5(h)–(i). Maximal Lyapunov exponents corresponding to observations
in Figure 4(a)–(c) are computed in Figure 6. It is observed that some LE values are positive
and some are negative. So there exist stable fixed points or stable period windows in the
chaotic regions (e.g. when α > 0.921).

8 Discussion and conclusion
A new discrete-time SI epidemic model has been discussed in this paper. Such a discrete-
time model is obtained from the discretization of the fractional-time SI model. The
discretization process provides crucial terms such as h (time step parameter) and α

(fractional-order parameter), which are then varied in order to describe the dynamical
behaviors of the model. As h and α are varied, the model exhibits several complicated dy-
namical behaviors including the emergence of flip and N-S bifurcations, period-2, 4, 8, 12,
13, 16 orbits, quasi-periodic orbits, attracting invariant circle and chaotic sets. Analyti-
cally, necessary and sufficient conditions on the parameters for the occurrence of flip and
N-S bifurcations are derived. Moreover, numerical continuation is carried out to illustrate
the validity of the analytical results and it is observed that both numerical and analyti-
cal findings are in good agreement. In conclusion, the proposed fractional-time SI model
can engender more complex dynamical behaviors than its continuous model counterpart.
Studying the dynamical behaviors of the full avian–human influenza SIR epidemic model
described by a discrete-time with fractional-order version will be our future work.
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