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Abstract

There has been an increasing interest in studying fractional-order chaotic systems
and their synchronization. In this paper, the fractional-order form of a system with
stable equilibrium is introduced. It is interesting that such a three-dimensional
fractional system can exhibit chaotic attractors. Full-state hybrid projective
synchronization scheme and inverse full-state hybrid projective synchronization
scheme have been designed to synchronize the three-dimensional fractional system
with different four-dimensional fractional systems. Numerical examples have verified
the proposed synchronization schemes.
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1 Introduction

There has been a dramatic increase in studying chaos and systems with chaotic behav-
ior in the past decades [1-3]. Applications of chaos have been witnessed in various areas
ranging from path planning generator [4], secure communications [5-7], audio encryption
scheme [8], image encryption [9-11], to truly random number generator [12, 13]. Many
three-dimensional (3D) autonomous chaotic systems have been found and reported in the
literature [14]. It has previously been observed that common 3D autonomous chaotic sys-
tems, such as Lorenz system [15], Chen system [16], Lii system [17], or Yang’s system [18,
19], have one saddle and two unstable saddle-foci. However, recent evidence suggests that
chaos can be observed in 3D autonomous systems with stable equilibria [20, 21].

Several attempts have been made to investigate chaotic systems with stable equilibria.
Yang and Chen proposed a chaotic system with one saddle and two stable node-foci [20].
In spite of the fact that the Yang-Chen system connected the original Lorenz system and
the original Chen system, it was not diffeomorphic with the original Lorenz and Chen
systems. Yang et al. found an unusual Lorenz-like chaotic system with two stable node-
foci [21]. By using the center manifold theory and normal form method, Wei investigated
delayed feedback on such a chaotic system with two stable node-foci [22]. A six-term sys-
tem with stable equilibria was presented in [23]. Interestingly, the six-term system with
stable equilibria exhibited a double-scroll chaotic attractor [23]. In addition, the general-
ized Sprott C system with only two stable equilibria was introduced in [24, 25]. It is worth
noting that systems with stable equilibria are systems with ‘hidden attractors’ [26-29].
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Table 1 Synchronization schemes used for fractional-order forms of chaotic systems with
hidden attractors

System Dimension Synchronization scheme

[39] 4 adaptive sliding mode

[40] 4 observer-based method

[41] 4 one-way coupling

[42] 4 feedback controller

[43,44] 3 observer-based method

[45] 3 unidirectional coupling

[46] 3 generalized projective synchronization

This work 3 full-state hybrid projective synchronization and inverse

full-state hybrid projective synchronization

Hidden attractors have received considerable attention recently because of their roles in
theoretical and practical problems [30-38].

Different definitions and main properties of fractional calculus have been reported in
the literature [47-50]. The fractional derivatives play important roles in the field of math-
ematical modeling of numerous models such as fractional model of regularized long-wave
equation [51], Lienard’s equation [52], fractional model of convective radial fins [53], mod-
ified Kawahara equation [54], etc. In recent years, there has been an increasing inter-
est in the stability of fractional systems [55—-57]. Moreover, it is worth noting that local
fractional derivatives with special functions have received significant attention in differ-
ent areas [58—60]. Authors have focused on local fractional diffusion equations in fractal
heat transfer [61], fractal LC-electric circuit [62], and new rheological models [63, 64].
When considering the effects of fractional derivatives on systems with hidden attractors,
a few fractional-order forms of systems with hidden attractors have been introduced [39].
Fractional-order forms of systems without equilibrium were reported in [39-41, 43, 44],
while fractional-order forms of systems with an infinite number of equilibrium points were
presented in [42, 45, 46]. Sifeu et al. investigated the fractional-order form of a three-
dimensional chaotic autonomous system with only one stable equilibrium [65]. In order
to determine chaos synchronization between such fractional-order systems, some syn-
chronization schemes were constructed as summarized in Table 1. Authors have tended
to synchronize fractional systems with the same orders. Therefore, studies on synchro-
nization of such fractional systems with different orders should be considered further.

The aim of this study is to examine the fractional-order form of a 3D system with sta-
ble equilibria and its full-state hybrid projective synchronization schemes. The model of
the fractional system and its chaotic behavior are presented in Section 2. Different types
of full-state hybrid projective synchronization schemes are investigated in Section 3. Sec-
tion 4 presents results and discussions. Finally, the concluding remarks are drawn in the
last section.

2 Fractional-order form of the system with stable equilibria

We consider the three-dimensional autonomous system with six terms described by

x =a(z-x),
y=—xz+e, 1)

z=xy - bz,
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Figure 1 Chaotic attractor of the 3D system with
two stable equilibrium points for a = 14.1,

b =15, e=90, and the initial conditions (x(0),
y(0),2(0)) = (1.1,15,-1).

in which x, y, z are state variables, while 4, b, e are positive parameters (a,b,e > 0). It is
easy to see that system (1) has two following equilibrium points:

El = (\/E, b: \/E)r EZ = (_\/E’ br _\/E) (2)

According to the Routh-Hurwitz stability criterion, the equilibrium points of system (1)
are stable for b > a. In other words, we can obtain a system with two stable equilibrium
points for b > a.

Interestingly, for a = 14.1, b = 15, and e = 90, system (1) with two stable equilibria ex-
hibits chaos as shown in Figure 1. It is simple to verify that system (1) with two stable
equilibria belongs to a new class of systems with hidden attractors [26—29].

Previous studies have introduced different definitions of fractional-order derivative.
However, Grunwald-Letnikov, Riemann-Liouville, and Caputo definitions are commonly
used ones [47-50]. In this section, we utilize the Caputo definition:

1
oDIf(t) = 1;(:1
amf (0), q=m.

t (m)
7‘1)/0 (t{ﬂ%dt, m-1l<q<m,

3)

In (3), m is the first integer which is not less than g (m = [g]) and I is the gamma function
defined by

M) - / Y et s, )
0

Derived from integer-order system (1), we consider the fractional-order form of (1) given
by

D'y = a(z - x),
DPy=_xz+e, (5)

Dz =xy— bz,

in which the derivative orders are g1, q», g3 satisfying 0 < q1, 42, g3 < 1. In fractional-order
system (5), «, y, z are state variables, while 4, b, e are positive parameters (a, b, e > 0). Here,
the Caputo definition of fractional-order derivative has been used. In order to find the nu-
merical solutions of fractional-order system (5), we have applied the Adams-Bashforth-
Moulton predictor-corrector method [66, 67]. As a result, we have found the chaotic be-
havior in fractional system (5) for the incommensurate orders q; = 0.98 and g, = g3 = 0.99.
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Figure 2 Chaotic attractor of fractional-order 100
system (5) for a=14.1, b= 15, e = 90, the initial
conditions (x(0), y(0),z(0)) =(1.1,15,-1) and

q1 = 0.98, q2=q43 = 0.99. w 0

100

Chaotic behavior of fractional-order system (5) is illustrated in Figure 2. In the next sec-
tion, we will study two state hybrid projective synchronization schemes for such a 3D
fractional-order system.

3 Synchronization schemes of the 3D fractional-order chaotic system

Among all types of chaos synchronization schemes, full-state hybrid projective synchro-
nization (FSHPS) is one of the most noticeable types. It has been widely used in the syn-
chronization of fractional chaotic (hyperchaotic) systems [68]. In this type of synchroniza-
tion, each slave system state achieves synchronization with linear combination of master
system states. Recently, an interesting scheme has been introduced [69], where each mas-
ter system state synchronizes with a linear constant combination of slave system states.
Since master system states and slave system states have been inverted with respect to the
ESHPS, the new scheme has been called the inverse full-state hybrid projective synchro-
nization (IFSHPS). Obviously, the problem of IFSHPS is more difficult than the problem
of FSHPS. Studying the inverse problems of synchronization which produce new types of
chaos synchronization is an attractive research topic. Based on fractional-order Lyapunov
approach, this section first analyzes the FSHPS between the 3D fractional chaotic system
(5) and a 4D fractional chaotic system with an infinite number of equilibrium points. Suc-
cessively, the IFSHPS is proved between the 3D fractional chaotic system (5) and a 4D
fractional chaotic system without equilibrium points.

3.1 Fractional-order Lyapunov method
Lemma 1 The trivial solution of the following fractional-order system [70]

DX (8) = F(X()), ©6)

where DY = [DY,D¥,...,D}],0 < p <1, and F : R* — R", is asymptotically stable if there
exists a positive definite Lyapunov function V(X (t)) such that DY V(X (t)) < 0 for all t > 0.

Lemma 2 ([71]) VX(¢) e R",Vp € [0,1], and Vt >0

1

SDV XX () = XTOD7 (X(@)- (7)
3.2 Full-state hybrid projective synchronization (FSHPS) and inverse full-state

hybrid projective synchronization (IFSHPS)
The master system and the slave system can be described in the following forms:

Dixi(t) = Fi(X(8)), i=12,...,n, 8)
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Dliyt)=Gi(Y®) +wi, i=12,...,m, )

where X(£) = (x:)1<i<n» Y(£) = (¥i)1<i<m are the states of the master system and the slave
system, respectively, D}, DI’ are the Caputo fractional derivatives of order p; and g;,
respectively, 0 < p; <1, F;: R" > R (i=1,2,...,n), G;: R" - R (i =1,2,...,m), and u;
(i=1,2,...,m) are controllers.

In the next, we present the definitions of FSHPS and IFSHPS for the master system (8)
and the slave system (9).

Definition 1 The master system (8) and the slave system (9) are in full-state hybrid pro-
jective synchronization (FSHPS) when there are controllers u;, i = 1,2,...,m, and given
real numbers (@;)ux» such that the synchronization errors

ei(®) =yi(t) = Y oy(®), i=1,2,...,m, (10)

j=1
satisfy that lim;_, ,» €;(¢) = 0.

Definition 2 The master system (8) and the slave system (9) are in inverse full-state hy-
brid projective synchronization (IFSHPS) when there are controllers u;,i = 1,2,...,m, and

given real numbers (8;),.x» such that the synchronization errors
m
e;(t) = x;(¢t) — Z/gijyj(t)r i=1,2,...,n, (11)
j=1

satisfy that lim;_, ,» €;(¢) = 0.

3.3 FSHPS between the 3D fractional chaotic system and 4D fractional chaotic
system with an infinite number of equilibrium points

Here, the master system is described as follows:
Dflxl = a(xz —x1),
DPxy = —x1%3 + ¢, (12)
D’;Bxs = X1%y — bxs,

where (a, b, ¢) = (14.1,15,90) and (p1, p2, p3) = (0.98,0.99,0.99).

The slave system is defined as
DY%y1 =100y, = 1) + ya + w1,
D%y, = 15y1 = y1y3 + o,
(13)

D?'%yg = 4}/% - 25}’3 + Us,
D?'95y4 = —10y2 —Ya + Uy,

where U = (11, u, u3, us)” is the vector controller. It is noted that the uncontrolled system
(13) is a chaotic system with an infinite number of equilibrium points [42].
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According to the definition of FSHPS, the errors between the master system (12) and
the slave system (13) are defined as follows:

3

€ =Yi— Zaljxjt i= 1’2)314¢ (14')
j=1
where
1 -2 3
2 1 -1
(0t)axs = 3 0 4 (15)
3 1 2

The error system (14) can be derived as

D{*e; =107 = y1) +ya + 1 = D) (1 - 205 + 33),

DY%ey = 15y; — y1y3 + ty — DO (=2x1 + %3 — x3),

(16)
D%%es = 4y? — 2.5y3 + uz — D% (3w, + 43),
D} ey = =10y, — ya + 1ty — DY (3x1 + % + 2x3).
The error system (16) can be written as follows:
DY%e=Be+U+R, (17)

where e = (e, e, e3,e4)T, U = (u1, U, u3, us) 7,

B= (18)

and R = (Ry, Ry, R, Ry)T, where

Rl = —D(t)'%(xl - 2?62 + 3963),
Ry = —y1y3 — D% (=21 + x5 — x3),

(19)
R; = 4y% - D?'%(le + 4ws3),

Ry = —D?'QS(le + X9 + 2963).

Theorem 1 The master system (12) and the slave system (13) are globally FSHP synchro-
nized under the following control law:

(11, Uy, us, u4)T =—(R + Ce), (20)
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where
0 10 0 1
15 -1 0 O
C= (21)
0 0 0 0
0O -10 0 O

Proof Applying the control law given in Eq. (20) to Eq. (17) yields the resulting error dy-

namics as follows:

0.95
Dt e = —1061,

D?'%ez = —ey,
(22)
D?'%eg =—2.5e3,

0.95
Dt €4 = —€4.

4 .
i1 3¢7, then the time

Caputo fractional derivative of order 0.95 of V' along the trajectory of system (22) is as

If a Lyapunov function candidate is chosen as V(e;,es,e3,€4) = >

follows:

4
1
DY*V(er e, e5,e0) = » D‘}%Ee%. (23)
i=1

Using Lemma 2 in Eq. (23), we get

4
0.95 0.95
D, V(el,ez,eg,e4)§g e;D; ™ e;

i1

= —(106% +el+ 2.5e§ + ez) <0.

Thus, from Lemma 1, it is immediate that the zero solution of system (22) is globally
asymptotically stable; and therefore, systems (12) and (13) are FSHP synchronized. O

In order to illustrate the correction of the proposed synchronization scheme, numerical
simulations have been implemented. Figure 3 displays the synchronization errors between
the master system (12) and the slave system (13) in 4D. Obviously, Figure 3 indicates that
we have achieved the synchronization between the master system (12) and the slave sys-
tem (13).

3.4 IFSHPS between the 3D fractional system and the 4D fractional chaotic
system without equilibrium points
Now, the master system is taken as system (12), and the slave system is defined as

Diy1 =5y —y1) + ya + u1,
Dlyy = —y1y3 + u,

(24)
Dly3 = —90 + y1y5 + us,

Dlyy = —10y; + u,
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|
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Figure 3 Time series of the synchronized error signals between the master system (12) and the slave
system (13) in 4D.

where U = (uy, uy, uz, ug)T is the vector controller. It is worth noting that the uncontrolled
system (24) is a chaotic system without equilibrium points [41].
Based on the definition of IFSHPS, the errors between the master system (12) and the

slave system (24) are given as follows:

4
e =X; — Z ,6,‘,‘_)/}', i=1, 2, 3, (25)
j=1
where
1 0 0 -1
Bi)sxa=]|0 2 0 5 |. (26)
0 0 -3 4

The error system (25) can be derived as

D?'981 =—U1 + Uy + Tl,
DYy = —2uy — 5uy + T, (27)

D?'963 = 3Lt3 - 4-L£4 + Tg,
where

Ty = D1 —a(y, — 1) —ya— oy,
T2 = D?'gxz — 2y1y3 + 5cy1, (28)

T3 = D%°x3 — 3b + 3y1y, + 4cy).
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Theorem 2 The master system (12) and the slave system (24) are globally IFSHP synchro-
nized under the following control law:

11
(ul,uz,u3)T = diag(—l, —5, g) X (diag(—llel, —1262, —1363) - T) (29)
and
Uy = 0, (30)

where T = (T1, T», T5) T and ({;)1<i<3 are control positive constants.

Proof By using Eq. (30), the error system (27) can be described as
(D?‘gel,Df‘geg,D?Beg)T = diag(-1,-2,3) x (u1,up,u3)’ + T, (31)
and by substituting the control law (29) into Eq. (31), the error system can be written as

T .
(D?'961,D?'962,D?'9e3) =— dlag(ll e1, 1262, 1363). (32)

3 1,2

Ifa Lyapunov function candidate is chosen as Ve, e2,e3) = ) 7, z€;, then the time Caputo

fractional derivative of order 0.9 of V along the trajectory of system (32) is as follows:

3

1

D>V (e, e, e3) = ZD?‘QEef. (33)
i=1

Using Lemma 2 in Eq. (33), we get

3
0.95 § 0.9
Dt v(el» €2, 63164) = eiDt €
i=1

= —(lle% +hes + lgeg) <0.

Thus, from Lemma 1, it is easy to see that the zero solution of system (32) is globally
asymptotically stable; and therefore, systems (12) and (24) are IFSHP synchronized. [

For the numerical simulations, the control constants are chosen as /; = 1, /5 = 2, and
I3 = 3. As can be seen in Figure 4, the synchronization occurs between the master system
(12) and the slave system (24) in 3D.

4 Results and discussion

Figure 1 displays the chaotic attractor of three-dimensional autonomous system (1). In-
terestingly, system (1) has two stable equilibrium points, and attractors in this system are
‘hidden attractors’ because the basin of attraction for a hidden attractor is not connected
with any unstable fixed point [27-29]. Recently, a hidden attractor has been discovered in
different systems such as Chua’s system [27], model of drilling system [32], extended Rik-
itake system [36], and DC/DC converter [38]. The identification of hidden attractors in
practical applications is important to avoid the sudden change to undesired behavior [29].
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Errors

Figure 4 Time series of the synchronized error signals between the master system (12) and the slave
system (24) in 3D.

Previous research has established that derivatives are important in the field of mathemati-
cal modeling [51-54]. Fractional-order system (5) involving derivative orders is a general-
ization of autonomous system (1). Fractional system (5) exhibits chaos for the incommen-
surate orders ¢q; = 0.98, and g, = g3 = 0.99 as shown in Figure 2. In addition, we have found
that fractional system (5) also can generate chaotic behavior for commensurate orders.
Researchers have shown an increased interest in control and synchronization of
fractional-order systems [55-57, 68—70]. We have studied the synchronization of frac-
tional systems with different orders. Figure 3 illustrates the FSHPS between the consid-
ered 3D fractional chaotic system (5) and the 4D fractional chaotic system with an infinite
number of equilibrium points. Figure 4 indicates the IFSHPS between the introduced 3D
fractional system and the 4D fractional chaotic system without equilibrium. The com-
plexity of proposed synchronization schemes can be used in secure communication and
chaotic encryption schemes. In our future works, we will use the recent stability results

of fractional systems [55—57] for discrete fractional systems and their synchronization.

5 Conclusions

In this work, the fractional-order form of a 3D chaotic system with two stable equilib-
rium points has been studied. Remarkably, the fractional system can display chaotic be-
havior. Moreover, we have studied two types of synchronization for such a 3D fractional
system: full-state hybrid projective synchronization and inverse full-state hybrid projec-
tive synchronization. By using the proposed synchronization schemes, we have obtained
the synchronization between the 3D fractional-order system and the 4D fractional-order
system with an infinite number of equilibrium points as well as the 4D fractional-order
system without equilibrium. Further studies regarding practical applications of this frac-

tional system will be carried out in our next works.
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