
Song et al. Advances in Difference Equations  (2018) 2018:33 
https://doi.org/10.1186/s13662-018-1473-6

R E S E A R C H Open Access

A class of dynamic models describing
microbial flocculant with nutrient
competition and metabolic products in
wastewater treatment
Keying Song1, Wanbiao Ma1*, Songbai Guo2 and Hai Yan3

*Correspondence:
wanbiao_ma@ustb.edu.cn
1School of Mathematics and
Physics, University of Science and
Technology Beijing, Beijing, 100083,
P.R. China
Full list of author information is
available at the end of the article

Abstract
In this paper, based on the related theories of microbial continuous culture,
fermentation dynamics, and microbial flocculant, a class of dynamic models which
describe microbial flocculant with resource competition and metabolic products in
wastewater treatment is proposed. By analyzing the global dynamic properties of the
model, the feasibility of employing microbial metabolites as flocculant to remove
harmful microorganisms is considered.
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1 Introduction and statement of model formulation
With the increase in global population and the rapid development of industry and agri-
culture, water consumption increases sharply. Wastewater containing harmful substances,
such as harmful microbes and heavy metal elements, is discharged into lakes, rivers, etc.,
and the ecological environment is seriously polluted. Water pollution threatens human
health and the sustainable development of the whole society. In order to control water pol-
lution, a series of methods of wastewater treatment have been proposed [1]. The methods
of wastewater treatment typically involve physical treatment (such as filtering), chemi-
cal treatment (such as electrolysis), and biological treatment (such as aerobic/anaerobic
method). Biological treatment is to remove harmful microorganisms in wastewater by us-
ing the metabolism of organisms such as bacteria, molds, or protozoa. Biological treat-
ment largely depends on the process of adsorption degradation to organic material solids,
harmful microbes, etc. [2, 3]. Because of its cost effectiveness, superior performance, and
environmental friendliness, biological treatment has been generally employed in wastew-
ater treatment [3, 4].

In the past few years, the flocculation sedimentation method has been widely used
in wastewater treatment and collecting microorganisms [5, 6]. Harmful substances in
wastewater can be degraded by using flocculants. There are many kinds of flocculants,
which mainly include two categories: inorganic flocculants and organic flocculants [7].
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Inorganic flocculants mainly include inorganic coagulants and inorganic high molecular
flocculants such as iron salt, aluminum salt, etc. [8]. Related studies have shown that in-
organic flocculants are likely to cause secondary pollution which has a negative impact
on human health [9]. Organic flocculants include synthetic organic polymer flocculants,
natural organic high molecular flocculants, and microbial flocculants such as polyacry-
lamide [4]. With the progress of science and technology, the research and development of
different kinds of microbial flocculants have been carried out rapidly.

As a new type of flocculants, microbial flocculants have been widely used in wastewater
treatment [3, 10, 11]. Microbial flocculants are mainly divided into three types according
to their compositions [12]: (1) microbial cells such as some bacteria; (2) microbial cell
extracts such as yeast cell wall glucan; and (3) microbial metabolites. Microbial flocculants
have many advantages such as biodegradation, no secondary pollution, non-toxicity, high
security, etc. A lot of experimental studies have been carried out on microbial flocculants
[13].

In the research of microbial flocculants, flocculant-producing bacteria have received ex-
tensive attention. As early as 1935, Butterfield successfully isolated flocculant-producing
bacteria from activated sludge. Since 1970s, researchers have isolated a variety of
flocculant-producing bacteria from the environment. Kurane and Tomizuka isolated
Rhodococcus erythropolis with flocculant activity from nature and first got microbial floc-
culant NOC-1 [14]. The flocculant has a very good effectiveness on the livestock wastew-
ater treatment, expansion of sludge treatment, and so on.

The chemostat is an important experimental device which has been used extensively
in microbial continuous culture and environmental pollution treatment [15–19]. The
chemostat can be used to model nutrient consumption and microbial competition [20–
27]. In some cases, microorganisms can produce toxins or inhibitors against its competi-
tors. Chao and Levin performed a basic experiment about antibiotic inhibitors [28]. In the
evolutive chemostat model, in order to make it more biologically significant, inhibitors or
toxins are introduced to competitive models [29–33]. For example, in [29, 33], and [34],
the chemostat models with internal and external inhibitors were established, respectively.

The following classic model equipped with toxins produced by microorganism in
chemostat is proposed in [32]:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ṡ(t) = D(S0 – S(t)) – m1S(t)
a1+S(t)

x(t)
γ1

– m2S(t)
a2+S(t)

y(t)
γ2

,

ẋ(t) = x(t)[ m1S(t)
a1+S(t) – D – γ P(t)],

ẏ(t) = y(t)[(1 – k) m2S(t)
a2+S(t) – D],

Ṗ(t) = k m2S(t)y(t)
a2+S(t) – DP(t).

(1)

In model (1), S(t), x(t), y(t), and P(t) denote the concentrations of nutrient, toxin-sensitive
microorganism, toxin-producing organism, and toxin present at time t, respectively. S0 is
the input concentration of nutrient. D is the washout rate. mi are the maximal growth
rates. ai are the Michaelis-Menten constants. γi are the yield constants (i = 1, 2). k (0 <
k < 1) is the toxin production rate. In appropriate biological backgrounds, model (1) can
be applied to the removal of toxin-sensitive microorganism (considered as harmful mi-
croorganism).



Song et al. Advances in Difference Equations  (2018) 2018:33 Page 3 of 14

In this paper, motivated by microbial flocculants and model (1), we propose a model
which may have potential applications of microbial metabolites as flocculants in the con-
trol of harmful microorganisms in wastewater treatment.

Let s(t), x(t), y(t), and p(t) denote the concentrations of limiting nutrient, harmful mi-
croorganism (such as E. coli), microbial flocculant-producing bacterium (such as Bacillus
subtilis), and microbial flocculant at time t, respectively. We need to point out that the
microbial flocculant is the metabolic product of the microbial flocculant-producing bac-
terium. It is assumed that the constant s0 is the input concentration of nutrient, and the
constant D is the washout rate of nutrient. Furthermore, from [35], we see that the mi-
crobial flocculant-producing bacterium and its metabolic products follow the following
relationship:

ṗ(t) = αẏ(t) + βy(t),

where α and β are determined by pH value [35]. Further, the metabolic products are the
microbial flocculant used to flocculate the harmful microorganism. Therefore, we finally
assume that the change rate ṗ(t) is in accordance with the following equation:

ṗ(t) = α
(
c1s(t)y(t) – Dy(t)

)
+ βy(t) – Dp(t) – d3x(t)p(t),

where c1 is the nutrient uptake rate of microbial flocculant-producing bacterium. d3 is the
consumption rate of the microbial flocculant. In accordance with the biological meanings,
it is assumed that Dα ≤ β .

From the above analysis and the discussions in [24, 36], and [37], we have the following
model:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ṡ(t) = Ds0 – Ds(t) – a1s(t)x(t) – a2s(t)y(t),

ẋ(t) = b1s(t)x(t) – Dx(t) – b2x(t)p(t),

ẏ(t) = c1s(t)y(t) – Dy(t),

ṗ(t) = α
(
c1s(t)y(t) – Dy(t)

)
+ βy(t) – Dp(t) – d3x(t)p(t),

(2)

where a1 and a2 are the nutrient uptake rates of the harmful microorganism and the mi-
crobial flocculant-producing bacterium, respectively. b1 and c1 are the growth rates of the
harmful microorganism and the microbial flocculant-producing bacterium. b2 is the re-
moving rate of the harmful microorganism by the microbial flocculant. In addition, we
assume that D > 0 and all other parameters are nonnegative.

If β – Dα = d3 = 0, model (2) has a similar structural form to model (1). In [32], model
(1) has been completely analyzed by reducing the dimension.

As usual, for the convenience of theoretical analysis, model (2) will be first transformed
into a dimensionless form. Let

s = s0S, x = X, y = Y , p = P, t =
t̄
D

, ā1 =
a1

D
, ā2 =

a2

D
,

b̄1 =
b1s0

D
, b̄2 =

b2

D
, c̄1 =

c1s0

D
, ᾱ = α, β̄ =

β

D
, d̄3 =

d3

D
.
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Model (2) becomes

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ṡ(t) = 1 – S(t) – a1S(t)X(t) – a2S(t)Y (t),

Ẋ(t) = b1S(t)X(t) – X(t) – b2X(t)P(t),

Ẏ (t) = c1S(t)Y (t) – Y (t),

Ṗ(t) = d1c1S(t)Y (t) + d2Y (t) – P(t) – d3X(t)P(t).

(3)

In model (3), we still use t, ai, bi, c1, α, β , and d3 to denote t̄, āi, b̄i, c̄1, ᾱ, β̄ , i = 1, 2, and d̄3,
respectively, and let d1 = α, d2 = β̄ – ᾱ.

Based on biological meanings, the initial condition of model (3) is given as follows:

S(0) = S0 ≥ 0, X(0) = X0 ≥ 0, Y (0) = Y0 ≥ 0, P(0) = P0 ≥ 0, (4)

where S0, X0, Y0, and P0 denote the initial concentrations of nutrient, harmful microorgan-
ism, microbial flocculant-producing bacterium, and the microbial flocculant, respectively.

The remaining part of this paper is organized as follows. In Section 2, global existence,
uniqueness, nonnegativity, and boundedness of the solutions of model (3) with the initial
condition (4) are investigated. The existence of the equilibria of model (3) and their stabil-
ity are considered in Section 3. Finally, some numerical simulations and conclusions are
given in Section 4.

2 Global existence, uniqueness, nonnegativity, and boundedness of solutions
In this section, the existence, uniqueness, nonnegativity, and boundedness of the solutions
of model (3) with the initial condition (4) are studied.

Theorem 2.1 The solution of model (3) with the initial condition (4) is existent, unique,
andnonnegativeon [0,∞) andsatisfies lim supt→+∞ H(t) ≤ N(d2 +1) and lim inft→+∞ S(t) ≥
Q0, where H(t) = NS(t) + X(t) + (d2 + 1)Y (t) + P(t),

N =
b1

a1
+

c1(d1 + d2 + 1)
a2

, Q0 =
1

1 + N(d2 + 1)(a1 + a2)
.

Proof From local existence and uniqueness theorems of solutions [38], we have that the
solution (S(t), X(t), Y (t), P(t)) of model (3) with the initial condition (4) is existent and
unique on [0, δ) for some constant δ > 0. Furthermore, it is easy to show that the solution
(S(t), X(t), Y (t), P(t)) is also nonnegative on [0, δ).

Next, let us show that the solution (S(t), X(t), Y (t), P(t)) can be extended to [0, +∞). Tak-
ing derivative of H(t), it follows that, for t ∈ [0, δ),

Ḣ(t) ≤ N –
H(t)

d2 + 1
. (5)

By applying the well-known comparison principle to (5), we have that H(t) is bounded
on [0, δ). Accordingly, the solution (S(t), X(t), Y (t), P(t)) is bounded on [0, δ). With the aid
of the continuation theorem [38], the solution (S(t), X(t), Y (t), P(t)) can be extended to
[0, +∞). Furthermore, we can also get that the solution (S(t), X(t), Y (t), P(t)) is nonnegative
on [0, +∞).
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From (5), it easily follows that lim supt→+∞ H(t) ≤ N(d2 + 1). Hence, from the first
equation of model (3) and lim supt→+∞(X(t) + Y (t)) ≤ N(d2 + 1), we easily get that
lim inft→+∞ S(t) ≥ Q0.

The proof is complete. �

Furthermore, we can easily show the following result.

Corollary 2.1 The set G = {U = (S, X, Y , P) ∈ R
+
4 : H = NS + X + (d2 + 1)Y + P ≤

N(d2 + 1), Q0 ≤ S ≤ 1} attracts all of solutions of model (3) and is positively invariant
with respect to model (3).

The subsequent discussion will be confined to the closed set G.

3 The existence of equilibria and their stability analysis
3.1 The existence of equilibria
For the existence of the equilibria of model (3), we have the following results.

(a) Model (3) always has the boundary equilibrium E0 = (S0, X0, Y0, P0) = (1, 0, 0, 0)
without harmful microorganism, microbial flocculant-producing bacterium, and
microbial flocculant.

(b) If b1 > 1, then model (3) has the second boundary equilibrium
E1 = (S1, X1, Y1, P1) = ( 1

b1
, b1–1

a1
, 0, 0) without microbial flocculant-producing

bacterium and microbial flocculant.
(c) If c1 > 1, then model (3) has the third boundary equilibrium that is harmful

microorganism free equilibrium E2 = (S2, X2, Y2, P2) = ( 1
c1

, 0, c1–1
a2

, (d1+d2)(c1–1)
a2

).
(d) If b1 > c1 and b2c1(d1 + d2)(c1 – 1) > a2(b1 – c1), then model (3) has a positive

equilibrium E∗ = (S∗, X∗, Y ∗, P∗), where

S∗ =
1
c1

, X∗ =
b2c1(c1 – 1)(d1 + d2) – a2(b1 – c1)

a1b2c1(d1 + d2) + a2d3(b1 – c1)
,

Y ∗ =
P∗(1 + d3X∗)

d1 + d2
, P∗ =

b1 – c1

b2c1
.

Model (3) has the above three boundary equilibria E0, E1, E2 and the positive equilibrium
E∗. Figure 1 gives existence regions of the equilibria E0, E1, and E2, and E∗. In Figure 1, the
curve l0 is determined by b2c1(d1 + d2)(c1 – 1) = a2(b1 – c1).

The biological meanings of the conditions for the existence of the equilibria will be given
in Remarks 3.1, 3.2, 3.3, and 3.4 in Subsection 3.2.

3.2 Stability of the boundary equilibria
Stability of the boundary equilibrium E0 is given as follows.

Theorem 3.1 If b1 < 1 and c1 < 1, then the boundary equilibrium E0 is globally asymptot-
ically stable with respect to G.

Proof By calculating, the characteristic equation at the boundary equilibrium E0 is given
by (λ+ 1)2(λ– b1 + 1)(λ– c1 + 1) = 0. Clearly, the boundary equilibrium E0 is locally asymp-
totically stable since b1 < 1 and c1 < 1. Thus, we only need to show that E0 is globally at-
tractive.
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Figure 1 Existence regions of the equilibria in
the c1-b1 plane.

Define a function V0 as follows:

V0 = X + Y .

V0 is continuous on the set G(= Ḡ). The derivative of V0 along the solutions of model (3)
is given by

V̇0 =
(
b1S(t) – 1 – b2P(t)

)
X(t) +

(
c1S(t) – 1

)
Y (t) ≤ (b1 – 1)X(t) + (c1 – 1)Y (t) ≤ 0 (6)

for t ≥ 0. Hence, from (6), we have that V0 is a Lyapunov function of model (3) on G.
Define E = {(X, S, Y , P)|(X, S, Y , P) ∈ Ḡ, V̇0 = 0}. Then we have that

E ⊂ {
(X, S, Y , P)|(X, S, Y , P) ∈ Ḡ, X = 0, Y = 0

}
.

Let M be the largest set in E which is invariant with respect to model (3). Clearly, M is not
empty since E0 ∈ M. From the invariance of M and model (3), we can further show that
M = {E0}. By the LaSalle invariance principle [38], it follows that E0 is globally attractive.

The proof is completed. �

Remark 3.1 The conditions b1 < 1 and c1 < 1 in Theorem 3.1 are equivalent to b1s0 <
D and c1s0 < D for model (2). From biological points of view, stability of the boundary
equilibrium E0 = (1, 0, 0, 0) indicates that, for the fixed input concentration of nutrient
s0, when both the growth rate of harmful microorganism b1 and microbial flocculant-
producing bacterium c1 are smaller comparing with the washout rate D, as the time t
goes on, the concentrations of harmful microorganism, microbial flocculant-producing
bacterium, and microbial flocculant, x(t), y(t), and p(t), tend to zero, and the concentration
of nutrient s(t) tends to some constant value.

Stability of the boundary equilibrium E1 is given as follows.

Theorem 3.2 If b1 > 1 and c1 < b1, then the boundary equilibrium E1 is locally asymp-
totically stable. In addition, if a1 > 0, b2 > 0, and b2c1(d1 + d2)(b1 – 1) < a2(b1 – c1), then
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the boundary equilibrium E1 is globally asymptotically stable with respect to G1, where
G1 = {(S, X, Y , P) | (S, X, Y , P) ∈ G, X > 0}.

Proof By calculating, the characteristic equation of model (3) at the boundary equilibrium
E1 is given by (λ + 1 – c1

b1
)(λ + 1 + d3(b1–1)

a1
)(λ + 1)(λ + b1 – 1) = 0. Clearly, the boundary

equilibrium E1 is locally asymptotically stable since b1 > 1 and c1 < b1. Thus, we only need
to show that E1 is globally attractive.

Let ∂G1 = {(S, X, Y , P) | (S, X, Y , P) ∈ G1, XYP = 0}. We can easily show that G1 is also
positively invariant with respect to model (3). Consider a function V1 as follows:

V1 = S – S1 – S1 ln S
S1

+ a1
b1

(X – X1 – X1 ln X
X1

) + a2+b2d2(b1–1)
b1

Y + b2(b1–1)
b1

P.
V1 is continuous on the set G1 and satisfies condition (ii) of Definition 1.1 in [39] or
Lemma 3.1 in [40] on ∂G = G\G1. The derivative of V1 along the solutions of model (3) is
given by

V̇1 = (S1 + a1S1X1)
(

2 –
S(t)
S1

–
S1

S(t)

)

–
(

a1b2

b1
+

b2d3(b1 – 1)
b1

)

X(t)P(t)

+
(

b2c1d1(b1 – 1)
b1

+
a2c1 + b2c1d2(b1 – 1)

b1
– a2

)

S(t)Y (t)

≤ 0

for t ≥ 0. Thus, V1 is a Lyapunov function on G1 (see, for example, [39, 40]). Define
E = {(S, X, Y , P) : (S, X, Y , P) ∈ Ḡ, V̇1(S, X, Y , P) = 0}. It is obvious that E ⊂ {(S, X, Y , P) :
(S, X, Y , P) ∈ Ḡ, S = S1, XP = 0, Y = 0}. Let M be the largest set in E which is invariant with
respect to model (3). Hence, we have that

M ⊂ {
(S, X, Y , P) : (S, X, Y , P) ∈ Ḡ, S = S1, XP = 0, Y = 0

}
.

From the invariance of M and model (3), we can show that M = {E1}. Therefore, it follows
from Theorem 1.2 in [39] or Lemma 3.1 in [40] that E1 is globally attractive with respect
to G1.

The proof is completed. �

Remark 3.2 The conditions c1 < b1 and b1 > 1 in Theorem 3.2 are equivalent to c1 < b1

and D < b1s0 for model (2). From biological points of view, stability of the boundary equi-
librium E1 = ( 1

b1
, b1–1

a1
, 0, 0) implies that, for the fixed input concentration of nutrient s0,

when (i) the growth rate of harmful microorganism b1 is larger comparing with the growth
rate of microbial flocculant-producing bacterium c1, and (ii) the growth rate of harmful
microorganism b1 is larger comparing with the washout rate D, as the time t goes on, the
concentrations of microbial flocculant-producing bacterium and microbial flocculant, y(t)
and p(t), tend to zero, and the concentrations of nutrient and harmful microorganism, s(t)
and x(t), tend to some constant values.

Stability of the boundary equilibrium E2 is given as follows.

Theorem 3.3 If b2c1(d1 +d2)(c1 –1) > a2(b1 –c1) and c1 > 1, then the boundary equilibrium
E2 is locally asymptotically stable. In addition, if a1 > 0 and c1 > b1, then the boundary
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equilibrium E2 is globally asymptotically stable with respect to G2, where G2 = {(S, X, Y , P) |
(S, X, Y , P) ∈ G, Y > 0}.

Proof The characteristic equation of model (3) at the boundary equilibrium E2 is given by
(λ + 1)(λ + 1 – b1

c1
+ b2(d1+d2)(c1–1)

a2
)(λ + 1)(λ + c1 – 1) = 0. Clearly, the boundary equilibrium

E2 is locally asymptotically stable since c1 > 1 and b2c1(d1 + d2)(c1 – 1) > a2(b1 – c1). Thus,
we only need to show that the boundary equilibrium E2 is globally attractive.

Let ∂G2 = {(S, X, Y , P) | (S, X, Y , P) ∈ G2, XYP = 0}. We can easily show that G2 is also
positively invariant with respect to model (3). Consider a function V2 as follows:

V2(S, X, Y , P) = S – S2 – S2 ln
S
S2

+
a1

b1
X +

a2

c1

(

Y – Y2 – Y2 ln
Y
Y2

)

.

It is clear that V2 is continuous on the set G2 and satisfies condition (ii) of Definition 1.1
in [39] or Lemma 3.1 in [40] on ∂G = G\G2. The derivative of V2 along the solutions of
model (3) is given by

V̇2 = (S2 + a2S2Y2)
(

2 –
S(t)
S2

–
S2

S(t)

)

+
a1

b1

(
b1

c1
– 1 – b2P(t)

)

X(t)

≤ 2 –
S(t)
S2

–
S2

S(t)
+

a1

b1

(
b1

c1
– 1

)

X(t)

≤ 0 (7)

for t ≥ 0. Thus, V2 is a Lyapunov function on G2 (see, for example, [39, 40]). Define
E = {(S, X, Y , P) : (S, X, Y , P) ∈ Ḡ, V̇2(S, X, Y , P) = 0}. It is obvious that E ⊂ {(S, X, Y , P) :
(S, X, Y , P) ∈ Ḡ, S = S2, X = 0}. Let M be the largest set in E which is invariant with respect
to model (3). Hence, we have that

M ⊂ {
(S, X, Y , P) : (S, X, Y , P) ∈ Ḡ, S = S2, X = 0

}
.

From the invariance of M and model (3), we can show that M = {E2}. Therefore, it follows
from Theorem 1.2 in [39] or Lemma 3.1 in [40] that E2 is globally attractive with respect
to G2.

The proof is completed. �

Remark 3.3 The conditions b2c1(d1 + d2)(c1 – 1) > a2(b1 – c1) and c1 > 1 in Theorem 3.3
are equivalent to b2c1β(c1s0 – D) > D2a2(b1 – c1) and c1s0 > D for model (2). From bio-
logical points of view, stability of the boundary equilibrium E2 = ( 1

c1
, 0, c1–1

a2
, (d1+d2)(c1–1)

a2
)

indicates that, for the fixed input concentration of nutrient s0, when (i) the growth rate of
microbial flocculant-producing bacterium c1 or the removing rate of microbial flocculant-
producing bacterium b2 is larger comparing with the washout rate D, and (ii) the growth
rate of harmful microorganism b1 is sufficiently small, as the time t goes on, the concen-
tration of harmful microorganism x(t) tends to zero (i.e., harmful microorganism can be
removed successfully), and the concentrations of nutrient, microbial flocculant-producing
bacterium, and microbial flocculant, s(t), y(t), and p(t), tend to some constant values.



Song et al. Advances in Difference Equations  (2018) 2018:33 Page 9 of 14

3.3 Stability of the positive equilibrium
For stability of the positive equilibrium E∗, we have the following result.

Theorem 3.4 If b1 > c1 and b2c1(d1 + d2)(c1 – 1) > a2(b1 – c1), then the positive equilibrium
E∗ is unstable.

Proof The characteristic equation of model (3) at the positive equilibrium E∗ is given by
F(λ) = λ4 + Aλ3 + Bλ2 + Cλ + D = 0, where

A = 1 + c1 + d3X∗,

B = c1 + a1b1S∗X∗ + a2Y ∗ + c1d3X∗ – b2d3P∗X∗,

C = a1b1S∗X∗ + a2Y ∗ + a1b1d3S∗X∗2 – b2c1d3P∗X∗ + a2d3X∗Y ∗

– a1b2d1X∗Y ∗,

D = –a1b2(d1 + d2)X∗Y ∗ – a2b2d3X∗Y ∗P∗.

It is easy to know that the above characteristic equation has at least one positive real root
since D < 0. Therefore, the positive equilibrium E∗ is unstable.

The proof is completed. �

Remark 3.4 Instability of the positive equilibrium E∗ in Theorem 3.4 indicates that, un-
der certain conditions, the evolution among nutrient, harmful microorganism, microbial
flocculant-producing bacterium, and microbial flocculant may become more complicated.
Whether or not harmful microorganism can be removed will depend on the initial state
(S0, X0, Y0, P0).

4 Numerical simulations and discussions
4.1 Numerical simulations
In Section 3, stability of the equilibria of model (3) is analyzed. From Theorem 3.1, we
have that the boundary equilibrium E0 is globally asymptotically stable when b1 < 1 and
c1 < 1, and Figure 2 gives the corresponding numerical simulation. From Theorem 3.2,
we have that the boundary equilibrium E1 is locally asymptotically stable when c1 < b1

and b1 > 1, and Figure 3 gives the corresponding numerical simulation. From Theo-
rem 3.3, we have that the boundary equilibrium E2 is locally asymptotically stable when
b2c1(d1 + d2)(c1 – 1) > a2(b1 – c1) and c1 > 1, and Figure 4 gives the corresponding nu-
merical simulation. From Theorem 3.4, we have that the positive equilibrium E∗ is always
unstable when it exists, i.e., b1 > c1 and b2c1(d1 + d2)(c1 – 1) > a2(b1 – c1). Furthermore, we
have from Theorems 3.2 and 3.3 that, in the existence region of the positive equilibrium
E∗, both the boundary equilibrium E1 and the boundary equilibrium E2 are asymptotically
stable, i.e., the region is a bistable region. Figure 5 gives the corresponding numerical sim-
ulation. The local asymptotic stability regions of all the equilibria are shown in Figure 6,
where the curve l1 is determined by b2c1(d1 + d2)(c1 – 1) = a2(b1 – c1).

Furthermore, from Theorems 3.2 and 3.3, we have that, in order to ensure global asymp-
totic stability of the boundary equilibria E1 and E2, additional conditions b2c1(d1 + d2)(b1 –
1) < a2(b1 – c1) and c1 > b1 are assumed, respectively. The global asymptotic stability re-
gions of the boundary equilibria E1 and E2 are shown in Figures 7 and 8. The curve l2 is
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Figure 2 The boundary equilibrium E0 is asymptotically stable with the parameters a1 = 1, a2 = 1,
b1 = 0.9, b2 = 1, c1 = 0.9, d1 = 1, d2 = 1 and d3 = 1.

Figure 3 The boundary equilibrium E1 is locally asymptotically stable with the parameters a1 = 1,
a2 = 1, b1 = 1.5, b2 = 1, c1 = 0.7, d1 = 1, d2 = 1 and d3 = 1.

determined by b2c1(d1 + d2)(b1 – 1) = a2(b1 – c1) for b2(d1 + d2) < a2, and the curve l3 is
also determined by b2c1(d1 + d2)(b1 – 1) = a2(b1 – c1) for b2(d1 + d2) > a2.

However, the numerical simulations strongly suggest that, in the regions D1 and D2 in
Figures 7 and 8, respectively, the boundary equilibrium E1 should also be globally asymp-
totically stable.
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Figure 4 The boundary equilibrium E2 is locally asymptotically stable with the parameters a1 = 1,
a2 = 1, b1 = 2, b2 = 2, c1 = 1.2, d1 = 1, d2 = 1 and d3 = 1.

Figure 5 The positive equilibrium E∗ is unstable, and both the boundary equilibrium E1 and the
boundary equilibrium E2 are locally asymptotically stable with the parameters a1 = 1, a2 = 1, b1 = 2,
b2 = 1, c1 = 1.5, d1 = 1, d2 = 1 and d3 = 1.

4.2 Discussions
Firstly, it should be pointed out that we cannot get global asymptotic stability of the bound-
ary equilibrium E1 in the regions D1 and D2 in Figures 7 and 8 because of the difficulties
in constructing suitable Lyapunov functions.

Secondly, in biology, when model (3) is applied to some wastewater treatment, and
the state variable x(t) represents harmful microorganism to be removed, the local/global
asymptotic stability of the boundary equilibrium E1 = (S1, X1, Y1, P1) = ( 1

b1
, b1–1

a1
, 0, 0) in
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Figure 6 The local asymptotic stability regions
of the equilibria in the c1-b1 plane.

Figure 7 The global asymptotic stability regions
of the boundary equilibria E1 and E2
(b2(d1 + d2) > a2) in the c1-b1 plane.

Figure 8 The global asymptotic stability regions
of the boundary equilibria E1 and E2
(b2(d1 + d2) < a2) in the c1-b1 plane.

Theorem 3.2 implies that harmful microorganism cannot be removed by using the micro-
bial flocculant because of insufficiency of the growth of microbial flocculant-producing
bacterium and microbial flocculant.
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On the other hand, the local/global asymptotic stability of the boundary equilibrium
E2 = (S2, X2, Y2, P2) = ( 1

c1
, 0, c1–1

a2
, (d1+d2)(c1–1)

a2
) in Theorem 3.3 implies that harmful microor-

ganism can be removed successfully by using microbial flocculant under suitable assump-
tions. Hence, Theorem 3.3 gives some feasible strategy to control harmful microorganism
in applications. However, from Theorem 3.4, we have that the positive equilibrium E∗ is
always unstable if it exists, and there exists a bistable region (i.e., both the boundary equi-
librium E1 and the boundary equilibrium E2 are asymptotically stable). Thus, Theorem
3.4 implies that the controlling of harmful microorganism will become more complicated,
and the initial value (S0, X0, Y0, P0) will play an important role.

Finally, model (2) can be also considered as a class of chemostat competition models. It
is well known that the general chemostat competition models have been studied system-
atically [15] and ‘competitive exclusion principle’ holds in general chemostat competition
models [41–44]. The so-called competitive exclusion principle refers to the phenomenon
that different species compete in a shortage of resources, making a species excluded or re-
placed in competition. In 1980, Hansen and Hubbel [43] observed the competitive exclu-
sion principle in the biological chemostat experiments. Some important research shows
that, if inhibitors are considered (for example, model (1)), the competition results may
be changed [32]. In model (2), microbial flocculant-producing bacterium and microbial
flocculant are considered and Theorems 3.2 and 3.3 show similar properties.
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