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Abstract
A non-linear mathematical model with non-integer order γ , 0 < γ ≤ 1, is used to
analyze the dengue virus transmission in the human body. Both disease-free F0 and
endemic F∗ equilibria are calculated. Their stability is also described using the
stability theorem of non-integer order. The threshold parameterR0 demonstrates an
important behavior in the stability of a considerable model. ForR0 < 1, the
disease-free equilibrium (DFE) F0 is an attractor. ForR0 > 1, F0 is not stable, the
endemic equilibrium (EE) F∗ exists, and it is an attractor. Numerical examples of the
proposed model are also proven to study the behavior of the system.

Keywords: dengue model; fractional derivatives; stability; predictor-corrector
method; Grunwald-Letnikov method

1 Introduction
Dengue viral diseases are a standout amongst the supreme critical mosquito-borne mal-
adies these days. They create problems like dengue fever (DF), dengue hemorrhagic fever
(DHF), and dengue stun disorder (DSS) or dengue hemorrhagic fever (DHF). Lately,
the frequency of DHF has expanded significantly. Dengue may be caused by one of the
serotypes DEN-1 to DEN-4. For the most part, septicity with one serotype presents
upcoming defensive resistance against that specific serotype yet not against different
serotypes. When anyone is infected for the second time with various serotypes, a se-
rious disease will occur [1]. After an infected mosquito bites, the virus enters the hu-
man body and repeats inside the cell of the mononuclear phagocyte ancestry (mono-
cytes, macrophages, and B cell). The incubation time frame is 7-10 days. Then a viremia
stage, where the patient is plainly febrile and infective, takes place. From that point, the
infected human body may either recuperate or advance to the leakage stage, prompting
DHF and/or potentially DSS [2]. To calculate the span of viremia, analysts’ assumed that
noticeable viremia began on the eve of onset of ailment, and after the recognition of the
disease in the human body, it vanishes soon.

Non-integer calculus characterizes a speculation of conventional integration, differenti-
ation to the fractional number and complex order. For instance, control theory, viscoelas-
ticity, electricity, heat conduction, fractals, chaos, etc. searching real frameworks exam-
ples portray by the non-integer derivative is an open problem in the field of non-integer
calculus [3]. The generalization of differential calculus to the fractional order of deriva-
tives can be followed back to Leibnitz. It can help us to decrease inaccuracies emerging
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from the ignored parameters in the modeling of real-life problems. Different applications,
like in the anomalous electron transport in amorphous materials, the reaction kinetics of
proteins, the irregular electron transference in undefined materials, the di-electrical or
mechanical relation of polymers, the demonstrating of glass framing fluids, and in many
other fields, are effectively achieved in various articles [4]. The principle purpose behind
utilizing non-fractional order models was the non-appearance of arrangement techniques
for non-integer DEs. It is an evolving field in the area of mathematical physics and applied
mathematics, like chemistry, biology, economics, and image and signal dispensation. It
has several uses in numerous fields of engineering and science. The calculus of variations
is broadly used for some disciplines such as pure mathematics, engineering, and applied
mathematics. In addition, the analysts have lately revealed that the physical frameworks
with dissipation can be unmistakably modeled more precisely by utilizing non-integer rep-
resentations [5].

Derivatives of fractional order involve more information about the system in study than
integer order derivatives, which are local operators. The physical and geometrical impor-
tance of the fractional integral containing the complex and real conjugate power-law expo-
nent has been proposed. One physical connotation of the non-integer order in non-integer
derivatives is that of the file (index) of memory [6]. The memory property is very useful in
modeling of several phenomena. The state of infection at a given moment t depends on
the state before t, namely t – 1, t – 2, . . . . In this sense fractional calculus may help to distin-
guish distinct routes in (dengue) infection in different patients. We note that, for smaller
value of γ , the variable approaches the corresponding asymptotic values faster [7].

Additionally, non-integer calculus shows a vital part of superdiffusive and subdiffusive
procedures, which make it a helpful instrument in the study of disease transmission [8].
Since integer order differential conditions cannot decisively portray the exploratory and
field estimation information, alternative tactic fractional order differential equation mod-
els are presently being widely applied [9, 10]. The upside of non-integer order differential
equation systems over ordinary differential equation frameworks is that they allow more
noteworthy degrees of flexibility and incorporate memory effect in the model. In other
words, they give a magnificent device for the portrayal of memory and traditional chat-
tels which were not considered in the established non-fractional order prototypes [11].
Fractional calculus has heretofore been applied in epidemiological investigations [12–15].
Also, fractional order models possess memory, fractional order differential equations give
us a more realistic way to model the dengue system. Lately, they have been utilized to
analyze a dengue plague prototype [16]. Regardless of the way that the operator of the
non-integer is more complex than the traditional one, there occur numerical strategies
for cracking systems of DEs which are nonlinear [17].

Purohit and Kalla [18] discussed the generalized non-integer PDEs containing the Li-
ouville space non-integer derivatives and the Caputo time non-integer derivatives. The
elucidations of these equations were attained using the Laplace and Fourier transforms.
Also, Purohit [19] discussed the generalized non-integer partial differential including the
Hilfer time non-integer derivative and the space non-integer generalized Laplace opera-
tors occurring in quantum mechanics. Chouhan et al. [20] presented the technique for
developing the result of the generalized forms of non-integer DE and Volterra-type DE.
Nisar et al. [21] discussed a generalized non-integer kinetic equation containing a gener-
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alized Bessel function of the first kind. Also, some of the interesting nonlinear models and
fractional models were discussed in [22–35].

Lately, the majority of the dynamical frameworks based on the non-fractional order cal-
culus have been changed into the non-integer order domain. Because of the additional
degrees of opportunity and the adaptability which can be utilized to decisively fit the test
information much more superior to anything in the integer order modeling, the concept
of fractional calculus has become an alternative mathematical method to describe mod-
els with non-local behavior. These models represented by fractional differential equations
contain the historical memory and global information of physical problems. In fact, the
fractional approach generalizes the classical models of the dengue model. The purpose of
this modification is to have better understanding and prediction of epidemic patterns and
intervention measures.

The fractional order models are said to be useful in distinguishing distinct patterns in
patients’ disease progression and possibly provide better fit data. Clinicians may use the
information from the general fractional order system to devise new treatments to each in-
dividual in particular by fitting his/her data with the most appropriate fixed index. We an-
alyze the model’s behavior for distinct values of the order of the fractional derivative γ and
for biologically relevant parameters, namely the ones related with the infection and treat-
ment [7]. Also biological systems have fractal structures and very close ties with fractional
equations. Thus using the fractional differential equation for this system can produce nat-
ural results. A more reliable model can be obtained by choosing a relevant fractional index
according to available real data.

This article is organized into five sections. The introduction is the first section in which
we elaborate on some history of fractional calculus. In Section 2, we give notations related
to the concept of FDEs. In Section 3, we ponder on the fractional order model linked with
the dynamics of dengue model. Qualitative dynamics of the considerable system is resolute
using an elementary reproduction number. We provide a comprehensive investigation of
the global asymptotical stability of the DFE point and the native asymptotical stability of
the EE point. In Section 4, numerical imitations are offered to validate the main outcomes,
and conclusion is drawn in Section 5.

2 Inceptions
For several ages, there have been numerous demarcations that apt the notion of fractional
derivatives [36, 37]. In this article, the Caputo (C), Riemann-Liouville (RL), and Grunwald-
Letnikov (GL) fractional derivative (FD) demarcations are presented. Firstly, we present
the demarcation of the RL non-integer integral

Jς g(z) =
(
�(ς )

)–1
∫ z

0

g(s)
(z – s)1–γ

ds, (1)

where γ > 0, g ∈ L1(R+), and �(·) is the gamma function.
The RL derivative is given by

Dγ

Rg(z) =
dm

dzm

[
Jm–γ g(z)

]
=

1
�(m – γ )

dm

dzm

∫ z

0

g(s)
(z – s)1–m+γ

ds, m – 1 ≤ γ < m. (2)
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The Caputo fractional derivative is agreed to be as follows:

Dγ

Cg(x) = JM–ς

[
dM

dxM g(x)
]

=
1

�(M – ς )

∫ x

0
(x – s)M–ς–1g(M)(s) ds, (3)

where M > γ , ∀M ∈ Z+.
The GL derivative is agreed to be

aDγ
xk

g(x) = lim
h→0

1
hγ

[ x–a
h ]∑

j=0

(–1)j
(

γ

j

)
g(x – jh), (4)

where [·] means the integer part.
The Laplace transform of the Caputo FD is specified by

L
[
Dϕ

Cg(x)
]

= sϕG(s) –
n–1∑

j=0

g(j)(0)sϕ–j–1. (5)

The Mittag-Leffler function (MLF) is considered by using infinite power series:

Eα,β (s) =
∞∑

k=0

sk

(αk + β)
. (6)

The Laplace transform of the functions is

L
[
tβ–1Eα,β

(±atα
)]

=
sα–β

sα ∓ a
. (7)

Let α,β > 0 and z ∈ C, and the Mittag-Leffler functions satisfy the equality given by
Theorem 4.2 in [36]:

Eα,β (z) = zEα,α+β (z) +
1

�(β)
. (8)

Definition 1 ([22]) “A function F is Holder continuous if there are non-negative amounts
W , ν such that

∥∥F(s) – F(t)
∥∥ ≤ W‖s – t‖ν (9)

for all s, t in the purview of F and ν is the Holder exponent. We represent the space of
Holder-continuous functions by W 0,ν”.

We improve a generalized inequality, in which the core appraisal system is a vector frac-
tional order system.

A non-negative vector ν means that each constituent of ν is non-negative. We represent
a non-negative vector by 0 ≤≤ ν .

Consider the fractional order system:

Dϕ
C	 (H) = z(H,	 ), (10)
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with the initial condition 	 (0) = 	0, where Dς

C	 (H) = (Dς

C	1(H), Dς

C	2(H), Dς

C	3(H), . . . ,
Dς

C	m(H))T , 0 < ς < 1, 	 (H)∈F ⊂Rm, H ∈ [0, T) (T ≤ ∞), F is an open set, 0 ∈ F , and
z : [0, T)×F →Rm is continuous in H and mollifies the Lipschitz condition

∥∥z
(
H,	 ′) – z

(
H,	 ′′)∥∥ ≤ P

∥∥	 ′ – 	 ′′∥∥, H ∈ [0, T) (11)

for all 	 ′,	 ′′ ∈ 
 ⊂F , where P > 0 is a Lipschitz constant.

Theorem 1 ([3, 22]) “Let the solution of (10) be u(H), H ∈ [0, H). If there exists a vector
function 	 = (	1,	2, . . . ,	m)H : [0, H) →F such that 	i ∈ G0,ν , ς < 	 < 1, i = 1, 2, . . . , m,
and

Dϕ
C	 ≤≤ g(H,	 ), H ∈ [0, H]. (12)

If 	 (0) ≤≤ u0, u0 ∈F , then w ≤≤ u, H ∈ [0, H]”.

Let g : F → Rm, F ∈Rm, we consider the following system of fractional order:

Dς

Cx(t) = g(x), x(0) = x0. (13)

Definition 2 ([22]) “We say that F is an equilibrium point of (13) if and only if g(F ) = 0”.

Remark 1 When ς ∈ (0, 1), the fractional system Dς

Cx(t) = g(x) has the identical equilib-
rium points as the arrangement dx(t)

dt = g(x).

Definition 3 ([22]) “The equilibrium point F of autonomous (13) is said to be stable if,
for all ε > 0, ε > 0 exists such that if ‖x0 – F‖ < ε, then ‖x – F‖ < ε, t ≥ 0; the equilibrium
point F of autonomous (13) is said to be asymptotically unwavering if limt→∞ x(t) = F”.

Theorem 2 ([22, 38]) “The equilibrium points of system (13) are locally asymptotically
stable if all eigenvalues λi of the Jacobian matrix J , calculated in the equilibrium points,
satisfy | arg(λi)| > ς π

2 ”.

Here are a few newly developed various definitions of fractional derivative including
one-parameter and two-parameter fractional derivatives:

Definition 4 ([39]) “The Caputo fractional time derivative (UFDt) of order α is given by

D
(α)
t

(
f (t)

)
=

1
�(1 – α)

∫ t

0
(t – τ )–α ḟ (τ ) dτ (14)

with α ∈ [0, 1] and a ∈ [–∞, t), f ∈ H1(a, b), b > a”.

Definition 5 ([39]) “If we change the kernel (t – τ )–α with the function e– α
1–α t and 1

�(1–α)
with M(α)

1–α
, we obtain the following new definition of fractional time derivative (NFDt):

D
(α)
t

(
f (t)

)
=

M(α)
(1 – α)

∫ t

a
e– α(t–τ )

1–α ḟ (τ ) dτ , (15)
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where M(α) is a normalization function such that M(0) = M(1) = 1. According to defini-
tion (15), the NFDt is zero when f (t) is constant as, in the UFDt , the kernel does not have
singularity for t = τ ”.

Definition 6 ([40]) “Let u be a function in H1(a; b); b > a; α ∈ [0; 1], then the new Caputo
derivative of a fractional derivative of order α is defined as follows:

CF
D

(α)
t

(
u(t)

)
=

M(α)
(1 – α)

∫ t

0
e– α(t–τ )

1–α u̇(τ ) dτ ,

where M(α) is a normalization function such that M(0) = M(1) = 1. However, for the func-
tion that does not belong to H1(a; b), we defined its Caputo-Fabrizio fractional as

CF
D

(α)
t

(
u(t)

)
=

αM(α)
(1 – α)

∫ t

0
e– α(t–τ )

1–α
(
u(t) – u(τ )

)
dτ .

The definition of Caputo-Fabrizio fractional derivative (CFFD) was improved by Losada
and Nieto [41] to become

CF
D

(α)
t

(
u(t)

)
=

(2 – α)M(α)
2(1 – α)

∫ t

0
e– α(t–τ )

1–α u̇(τ ) dτ , (16)

where M(α) is a normalization constant depending on α. The CFFD has no singular kernel
due to the substitution of the kernel (t – τ )–α appearing in the classical definition”.

Definition 7 ([42]) “A great development of fractional calculus theory was made possible
by the introduction of a number of variants of the Mittag-Leffler function since the early
1900s. One of them is the two-parameter Mittag-Leffler function

Eα,β (z) =
∞∑

k=0

zk

�(αk + β)
, α,β , z ∈C,R(α) > 0,R(β) > 0, (17)

also called the generalized Mittag-Leffler function. It has been improved by many re-
searchers. On the top of being a non-local function, the two-parameter Mittag-Leffler
function plays a very vital role in the theory of fractional calculus”.

Definition 8 ([42]) “Let u be a function in H1(a; b); b > a; α ∈ [0; 1], β ∈ (0, +∞), then the
Caputo-sense two-parameter fractional derivative of order α knowing β (or simply the
2-GC derivative of order α knowing β) is defined as

gc
a Dα,β

t u(t) =
βW (α,β)

(β – α)

∫ t

a
u̇(t)(t – τ )β–1 × Eα,β

[
–

αβ(t – τ )α

β – α

]
dτ , (18)

where W (α,β) is a two-variable normalization function such that W (0, 1) = W (1, 1) = 1.

It is obvious to see that 2-GC derivative of any order α knowing β is zero when u(t)
is constant and its kernel does not have any singularity at t = τ . Moreover, the kernel is
non-local due to the two-parameter Mittag-Leffler function Eα,β [– αβ(t–τ )α

β–α
].



Zafar et al. Advances in Difference Equations  (2018) 2018:23 Page 7 of 23

If the function u does not belong to H1(a; b), then for any function u ∈ L1(–∞, b), its
2-GC derivative of order α knowing β is defined as

gc
a Dα,β

t u(t) =
αW (α,β)

(β – α)

∫ t

a

(
u(t) – u(τ )

)
(t – τ )β–1 × Eα,β

[
–

αβ(t – τ )α

β – α

]
dτ . (19)

Note that (18) can be rewritten as

gc
a Dα,β

t u(t) =
βW (α,β)

(β – α)
(
u̇(t) ∗ v(t)

)
, (20)

where

v(t) = tβ–1Eα,β

[
–

αβtα

β – α

]
, (21)

and ∗ the usual Laplace convolution operator giving the convolution integral with two
casual functions is expressed as

u(t) ∗ v(t) =
∫ t

a
u(τ )v(t – τ ) dτ .

This property is fundamental for filtering and image processing”.

Definition 9 ([42]) “Let u be a function in H1(a; b); b > a; α ∈ [0; 1], β ∈ (0, +∞), then the
Riemann-Liouville-sense two-parameter fractional derivative of order α knowing β (or
simply the 2-GRL derivative of order α knowing β) is defined as

gr
a Dα,β

t u(t) =
βW (α,β)

(β – α)
d
dt

∫ t

a
u(t)(t – τ )β–1 × Eα,β

[
–

αβ(t – τ )α

β – α

]
dτ , (22)

where W (α,β) is a two-variable normalization function such that W (0, 1) = W (1, 1) = 1.
Equation (22) can be written as

gr
a Dα,β

t u(t) =
βW (α,β)

(β – α)
d
dt

(
u(t) ∗ v(t)

)
, (23)

where v(t) is the same as (21)”.

Definition 10 ([43]) “Given a function f : [0,∞) → R. Then the conformable fractional
derivative of f of order α is defined by

Tα(f )(t) = lim
ε→0

f (t + εt1–α)
ε

for all t > 0, α ∈ (0, 1). If f is α-differentiable in some (0, a), a > 0, and limt→0+ f α(t) exists,
then define f α(0) = limt→0+ f α(t).

Note that Tα(f )(t) = f α(t) denotes the conformable fractional derivatives of f of order α.
If the conformable fractional derivative of f of order α exists, then we simply say that f is
α-differentiable. Since it is given that Tα(tp) = ptp–α . Further, this definition coincides with
the classical definitions of RL and of Caputo fractional derivatives on polynomials (up to
constant multiple)”.
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Figure 1 Flow chart.

3 Mathematical model
To develop the equations, the dengue viruses are virulent and no other microorganism
that bout human body. It is thought that macrophages, monocytes and other cells of retic-
uloendothelial origin primarily support dengue virus infections (in vivo) [44]. The suscep-
tible cell is denoted by S, the infected cell by I , and the free virus by V . The transmission
virus in the patient is described in the flow chart (Figure 1).

The model in ordinary differential equation is [45]

⎧
⎪⎪⎨

⎪⎪⎩

dS
dτ

= α – βS(τ )V (τ ) – δS(τ ),
dI
dτ

= βS(τ )V (τ ) – σ I(τ ),
dV
dτ

= μnI(τ ) – (p1 + p2)V (τ ) – βS(τ )V (τ ).

(24)

In this model, we used the assumption that all the parameters are positive constants. We
utilized the greenest supposition that susceptible cells are formed at a constant rate α and
expire at a rate δS(τ ). Free virus particles infect susceptible cells at a rate corresponding to
the product of their plenitudes βS(τ )V (τ ). The steady rate β pronounces the viability of
this process, including the rate and likelihood of successful septicity. Septic cells yield free
virus at a rate proportional to their plenitude μnI(τ ), with n being the multiplication rate,
and free infection particles are expelled from the system at a rate (p1 + p2)V (τ ), where γ1

is the natural demise rate of virus and γ2 is the death rate of virus by T-cells. The free virus
also moves to the susceptible cells compartment as βS(τ )V (τ ). The infected cells bite the
dust at a rate σ I(τ ). We consider this model as a model of virus dynamics depicted in [46].

3.1 Fractional order model
These days, a substantial attention to the fractional calculus has been shown, which allows
us to consider integration and differentiation of any order. The usefulness of a FDE system
is that it allows the users to handle the greater degree of freedom. The new system of FDEs
to the dengue model is as follows:

⎧
⎪⎪⎨

⎪⎪⎩

dγ1 S
dτγ1 = α – βS(τ )V (τ ) – δS(τ ),
dγ2 I
dτγ2 = βS(τ )V (τ ) – σ I(τ ),
dγ3 V
dτγ3 = μnI(τ ) – (p1 + p2)V (τ ) – βS(τ )V (τ ), γ ∈ (0, 1).

(25)

The system is called commensurate if γ = γ1 = γ2 = γ3; otherwise, it is incommensurate.
Chaotic behavior of the model is noted when the total order of the system is less than three
and it is connected to the fractal phase space in dynamics. If γ1 = γ2 = γ3 = 1, the system
will be that of nonlinear ordinary differential equations as presented in [45]. The region of
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stability of the non-integer order system as reviewed in [38, 47, 48] is the region in which
the system eigenvalues λ of the characteristic equation obtained from the Jacobian matrix
of system (25) at a certain equilibrium point satisfy | arg(λi)| > γiπ/2, i = 1, 2, 3.

3.2 Equilibrium points and stability
The equilibrium points of (25) are attained by cracking the nonlinear algebraic equations

Dγ1 S(τ ) = Dγ2 I(τ ) = Dγ3 V (τ ) = 0. (26)

System (25) has a disease-free equilibrium point F0( α
δ

, 0, 0) if R0 < 1, while if R0 > 1,
there is, in addition to F0, a positive endemic equilibrium F∗(S∗, I∗, V ∗) and the values of
S∗, I∗, and V ∗ are as follows:

S∗ =
σ (p1 + p2)
β(μn – σ )

=
α

δR0
, I∗ =

αβ(μn – σ ) – σδ(p1 + p2)
σβ(μn – σ )

=
α(R0 – 1)

σR0
,

V ∗ =
αβ(μn – σ ) – σδ(p1 + p2)

σβ(p1 + p2)
=

δ

β
(R0 – 1),

where R0 is the basic reproduction number defined in [45] as follows:

R0 =
αβ(μn – σ )
σδ(p1 + p2)

(27)

The value that R0 takes can signpost the situations wherein an epidemic is conceivable.
Threshold quantity (R0) is used to analyze the stability of system (25).

3.3 R0 sensitivity analysis
To check the sensitivity of R0 for each parameter,

∂R0

∂α
=

β(μn – σ )
σδ(p1 + p2)

> 0,

∂R0

∂β
=

α(μn – σ )
σδ(p1 + p2)

> 0,

∂R0

∂μn
=

αβ

σδ(p1 + p2)
> 0,

∂R0

∂δ
=

–αβ(μn – σ )
σδ2(p1 + p2)

< 0,

∂R0

∂p1
=

–αβ(μn – σ )
σδ(p1 + p2)2 < 0,

∂R0

∂p2
=

–αβ(μn – σ )
σδ(p1 + p2)2 < 0,

∂R0

∂σ
=

–αβ

σδ(p1 + p2)
–

αβ(μn – σ )
σ 2δ(p1 + p2)

< 0.

Thus R0 is increasing with α, β , and μn, decreasing with δ, p1, p2, and σ and μn > σ .
The following theorem defines the stability behavior of system (25) around the disease-

free equilibrium point F0.
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Theorem 3 System (25) will be locally asymptotically stable around F0 if R0 < 1, and it
will not be stable if R0 > 1.

Proof Since the characteristic equation of the Jacobian matrix for (25) around F0 is

(–δ – λ)
(
λ2 + q1λ + q2

)
= 0, (28)

where q1 = σ + p1 + p2 + αβ

δ
, q2 = σ (p1 + p2) – αβ(μn–σ )

δ
.

The eigenvalues of Eq. (28) are λ1 = –δ, and the roots of the quadratic equation

λ2 + q1λ + q2 = 0. (29)

If q2 > 0, then R0 < 1. So

σ (p1 + p2) –
αβ(μn – σ )

δ
> 0,

1 >
αβ(μn – σ )
δσ (p1 + p2)

⇒ R0 < 1.

Since all the parameters are positive and there is no negative term in q1, so q1 > 0. Then
applying the Routh-Hurwitz criteria, we ensure that F0 is locally asymptotically stable. If
R0 > 1, then q2 < 0, and there is one positive real root for Eq. (29), thus F0 will be unsta-
ble. �

3.4 Global stability analysis of the disease-free equilibrium
Here, global stability is calculated for DFE for system (25). The condition for model (25)
which guarantees the global stability of the disease-free state is the following.

“If a model system can be written as

dγ U
dτ γ

= H(U , W ),

dγ V
dτ γ

= Z(U , W ), Z(U , 0) = 0,
(30)

where U = (S) and W = (I, V ), with U ∈ R1
+ denoting the number of uninfected individ-

uals and Z ∈ R
2
+ denoting the number of infected individuals (including the latent, the

infectious, and the drug-resistant), the disease-free equilibrium is denoted by P = (U∗, 0),
where U∗ = ( α

δ
, 0).

The conditions (H1) and (H2) must be met to guarantee the global asymptotic stability
of the disease-free equilibrium of model (25):

H1: For
dγ U
dτ γ

= H
(
U∗, 0

)
is globally asymptotically stable.

H2: Z(U , W ) = AW – Ž(U , W ), Ž ≥ 0, for (U , W ) ∈ I2, (31)

where A = DW Z(U∗, 0) is an M-matrix (the off-diagonal elements of A are non-negative)
and I2 is the region where the model makes biological sense. If system (25) satisfies the
conditions in (31), the next theorem follows.
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Theorem 4 ([7]) The fixed point P = (U∗, 0) is globally asymptotically stable equilibrium
of system (30) provided R0 < 1 and that the assumptions in (31) are satisfied”.

Proof Let us begin by showing condition (H1) as

H(U , 0) =
[
α – δS(τ )

]
,

A =

(
–σ

βα

δ

μn – βα

δ
– (p1 + p2)

)

and

Ž(U , W ) =
(
Ž11(U , W ) Ž22(U , W )

)
=

(
β( α

δ
– S)V
0

)

. �

Lemma 1 System (25) will be locally stable around F0 if R0 = 1.

Proof Since R0 = 1, then q2 = 0, q1 > 0, then the roots of Eq. (29) will be λ2 = 0, λ3 = –q1,
so the system will be locally stable. �

Hence we will discuss the stability of the endemic equilibrium point F∗.

Definition 11 ([48]) “The discriminate D(K) of a polynomial R(λ) = λ3 + c1λ
2 + c2λ + c3

is defined by

D(K) = 18c1c2c3 + (c1c2)2 – 4c3(c1)2 – 4(c2)3 – 27(c3)2”. (32)

The characteristic equation of system (25) around F∗ is as follows:

λ3 + c1λ
2 + c2λ + c3 = 0, (33)

where

c1 = δR0 + σ +
μn(p1 + p2)

(μn – σ )
,

c2 = (δσ + αβ)R0 +
αβ(μn – σ )

σ
,

c3 =
αβ(σ – μn) + δσR2

0(p1 + p2)
R0

(34)

=
αβ(σ – μn)

R0
+ δσR0(p1 + p2)

= αβ(μn – σ )
(

1 –
1
R0

)
.

Theorem 5 For R0 > 1 in system (25), the epidemic point F∗ will be asymptotically stable
if:

D(K) > 0, c1c2 > c3, γ ∈ (0, 1] (35)
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or

D(K) < 0, and γ ∈
[

0,
2
3

)
, (36)

where D(K), c1, c2, and c3 are defined in (33) and (34).

Proof For D(K) > 0, c1c2 > c3, then c1 > 0, c3 > 0, using the Routh-Hurwitz criteria, then
| arg(λ)| > γπ/2, and the system will be locally asymptotically stable around F∗.

Since it is clear from c1 > 0, c2 > 0, and c1c2 > c3, the conditions for stability of the non-
integer order system are satisfied [49], and so F∗ is locally asymptotically stable. �

4 Numerical simulations
Here, we calculate different scenarios for different values of fractional exponent γ on the
dynamics of dengue disease. The graphical view has been illustrated using the results of
system (25). Here, three different techniques are considered using Matlab program.

Example The parameters of system (25) were chosen from the literature [45]. We can
simulate any time units to see the asymptotic behavior of the given model. The units and
values used in the numerical simulations of model (25) are given in Table 1.

For the disease-free equilibrium, the threshold parameter R0 has the value 0.04574,
the value below one could help control the infection. The unique equilibrium point
F0 = (4.265, 0, 0) is asymptotically stable, this result enhances Theorem 1. For the endemic
equilibrium point, the threshold parameter R0 has the value 257.098, the value above one
and the endemic equilibrium point F∗ = (0.5313, 1.7432, 10.50).

The effects of γ on the dynamics of the non-integer order model (25), we conclude sev-
eral numerical imitations varying the value of parameters. These simulations reveal the
dynamics of the system disturbed using the value γ . Figures 5, 11, and 17 depict that for
lower values of γ , the epidemic peak is wider and lower than the true equilibrium points.
Figures 2-4, 6-10, 12-16, 18-19 illustrate that for lower values of γ , the epidemic peak is
wider and higher for true steady states. Numerical simulations of an improved epidemic
model with arbitrary order show that fractional order is related to relaxation time, i.e.,
the time taken to reach equilibrium. The chaotic behavior of the system when the total
order of the system is less than three is sketched. A comparison between the four differ-
ent values of fractional order is shown in Figures 2-19. Figures 2-4, 8-10, and 14-16 show
different behaviors for γ = 1.00, γ = 0.95, γ = 0.90, and γ = 0.85. The chaotic behavior

Table 1 Parameters used and their values

Parameter Values Reference Unit

DFE EE

α 0.56 0.56 [45] day–1

β 0.001 0.1 [45] day–1

δ 0.1313 0.0041 [45] day–1

σ 0.5 0.32 [45] day–1

μn 156 175 [45] day–1

p1 4 4 [45] day–1

p2 25 25 [45] day–1
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Figure 2 Dynamics of S(t) with γi = 1 (solid red line), γi = 0.95 (dashed blue line), γi = 0.9 (dotted
green line) and γi = 0.85 (dotted dashed magenta line), i = 1, 2, 3.

Figure 3 Dynamics of I(t) with γi = 1 (solid red line), γi = 0.95 (dashed blue line), γi = 0.9 (dotted
green line) and γi = 0.85 (dotted dashed magenta line), i = 1, 2, 3.

Figure 4 Dynamics of V(t) with γi = 1 (solid red line), γi = 0.95 (dashed blue line), γi = 0.9 (dotted
green line) and γi = 0.85 (dotted dashed magenta line), i = 1, 2, 3.

Figure 5 Dynamics of S(t) with γi = 1 (solid red line), γi = 0.95 (dashed blue line), γi = 0.9 (dotted
green line) and γi = 0.85 (dotted dashed magenta line), i = 1, 2, 3.
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Figure 6 Dynamics of I(t) with γi = 1 (solid red line), γi = 0.95 (dashed blue line), γi = 0.9 (dotted
green line) and γi = 0.85 (dotted dashed magenta line), i = 1, 2, 3.

Figure 7 Dynamics of V(t) with γi = 1 (solid red line), γi = 0.95 (dashed blue line), γi = 0.9 (dotted
green line) and γi = 0.85 (dotted dashed magenta line), i = 1, 2, 3.

Figure 8 Dynamics of S(t) with γi = 1 (solid red line), γi = 0.95 (dashed blue line), γi = 0.9 (dotted
green line) and γi = 0.85 (dotted dashed magenta line), i = 1, 2, 3.

Figure 9 Dynamics of I(t) with γi = 1 (solid red line), γi = 0.95 (dashed blue line), γi = 0.9 (dotted
green line) and γi = 0.85 (dotted dashed magenta line), i = 1, 2, 3.
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Figure 10 Dynamics of V(t) with γi = 1 (solid red line), γi = 0.95 (dashed blue line), γi = 0.9 (dotted
green line) and γi = 0.85 (dotted dashed magenta line), i = 1, 2, 3.

Figure 11 Dynamics of S(t) with γi = 1 (solid red line), γi = 0.95 (dashed blue line), γi = 0.9 (dotted
green line) and γi = 0.85 (dotted dashed magenta line), i = 1, 2, 3.

Figure 12 Dynamics of I(t) with γi = 1 (solid red line), γi = 0.95 (dashed blue line), γi = 0.9 (dotted
green line) and γi = 0.85 (dotted dashed magenta line), i = 1, 2, 3.

Figure 13 Dynamics of V(t) with γi = 1 (solid red line), γi = 0.95 (dashed blue line), γi = 0.9 (dotted
green line) and γi = 0.85 (dotted dashed magenta line), i = 1, 2, 3.
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Figure 14 Dynamics of S(t) with γi = 1 (solid red line), γi = 0.95 (dashed blue line), γi = 0.9 (dotted
green line) and γi = 0.85 (dotted dashed magenta line), i = 1, 2, 3.

Figure 15 Dynamics of I(t) with γi = 1 (solid red line), γi = 0.95 (dashed blue line), γi = 0.9 (dotted
green line) and γi = 0.85 (dotted dashed magenta line), i = 1, 2, 3.

Figure 16 Dynamics of V(t) with γi = 1 (solid red line), γi = 0.95 (dashed blue line), γi = 0.9 (dotted
green line) and γi = 0.85 (dotted dashed magenta line), i = 1, 2, 3.

Figure 17 Dynamics of S(t) with γi = 1 (solid red line), γi = 0.95 (dashed blue line), γi = 0.9 (dotted
green line) and γi = 0.85 (dotted dashed magenta line), i = 1, 2, 3.
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Figure 18 Dynamics of I(t) with γi = 1 (solid red line), γi = 0.95 (dashed blue line), γi = 0.9 (dotted
green line) and γi = 0.85 (dotted dashed magenta line), i = 1, 2, 3.

Figure 19 Dynamics of V(t) with γi = 1 (solid red line), γi = 0.95 (dashed blue line), γi = 0.9 (dotted
green line) and γi = 0.85 (dotted dashed magenta line), i = 1, 2, 3.

of the proposed system (25) can also be seen numerically as illustrated in Tables 2 and 3.
The proposed model is a fractional order model, that’s why we considered three distinct
orders γ = 0.95, γ = 0.90, γ = 0.85, and the figures also illustrate different time values,
e.g., time varies from 0 to 100. And from the figures, one can check that as time varies
from 0 to 100, the simulations of different orders come closer to the equilibrium point.
For all four cases, the disease evolves to the disease-free and endemic equilibrium points.
However, it is slower for γ = 0.95, when γ = 0.90, it is slower than γ = 0.95, it is much
slower whenγ = 0.85. For an epidemiological prospective, this feature is necessary for the
interpreted display of a longer period in which infected ones can affect the healthy ones.
Figures 2-19 illustrate that the model gradually tends towards the steady state for differ-
ent γ .

(i) Adams-Bashforth-Moulton algorithm
We simulate model (25) for different values of the order of the fractional derivative,

γ ∈ [0, 1], and biologically relevant parameters. We apply the predictor-corrector PECE
method of Adams-Bashford-Moulton type [50–53].

Sℵ+1 = S(0) +
hγ1

�(γ1 + 2)
(
α – βSp

ℵ+1V p
ℵ+1 – δSp

ℵ+1
)

+
hγ1

�(γ1 + 2)

ℵ∑

d=0

aj,ℵ+1(α – βSdVd – δSd),



Zafar et al. Advances in Difference Equations  (2018) 2018:23 Page 18 of 23

Table 2 Values of disease-free equilibrium at different time periods

Values of disease-free equilibrium in 100 days

γi = 1, i = 1, 2, 3 γi = 0.95, i = 1, 2, 3 γi = 0.90, i = 1, 2, 3 γi = 0.85, i = 1, 2, 3

Susceptible
Adams. 4.265 6.597 10.37 16.02
Bin. coeff. 4.265 4.398 4.491 4.514
GL coeff. 4.265 4.398 4.491 4.514

Infected
Adams. 6.181× 10–12 0.004913 0.01693 0.0454
Bin. coeff. 2.034× 10–17 0.0002202 4.194× 10–5 1.639× 10–5

GL coeff. 2.048× 10–17 0.000225 4.365× 10–5 1.742× 10–5

Free Virus
Adams. 3.334× 10–11 0.02707 0.093 0.2486
Bin. coeff. 1.112× 10–16 0.001204 0.0002293 8.971× 10–5

GL coeff. 1.12× 10–16 0.00123 0.0002386 9.533× 10–5

Values of disease-free equilibrium in 75 days

γi = 1, i = 1, 2, 3 γi = 0.95, i = 1, 2, 3 γi = 0.90, i = 1, 2, 3 γi = 0.85, i = 1, 2, 3

Susceptible
Adams. 4.271 7.565 12.68 19.93
Bin. coeff. 4.271 4.593 4.798 4.842
GL coeff. 4.271 4.593 4.798 4.843

Infected
Adams. 1.678× 10–10 0.00964 0.03389 0.0938
Bin. coeff. 3.055× 10–12 0.0004264 7.839× 10–5 2.973× 10–5

GL coeff. 3.067× 10–12 0.0004357 8.15× 10–5 3.16× 10–5

Free Virus
Adams. 9.045× 10–10 0.05296 0.1857 0.5125
Bin. coeff. 1.67× 10–11 0.002331 0.0004286 0.0001627
GL coeff. 1.677× 10–11 0.002381 0.000446 0.0001729

Values of disease-free equilibrium in 60 days

γi = 1, i = 1, 2, 3 γi = 0.95, i = 1, 2, 3 γi = 0.90, i = 1, 2, 3 γi = 0.85, i = 1, 2, 3

Susceptible
Adams. 4.307 8.69 15.15 23.73
Bin. coeff. 4.307 4.982 5.31 5.331
GL coeff. 4.306 4.981 5.31 5.332

Infected
Adams. 5.115× 10–9 0.0169 0.0611 0.1751
Bin. coeff. 3.895× 10–9 0.0007376 0.0001308 4.809× 10–5

GL coeff. 3.902× 10–9 0.0007536 0.0001361 5.112× 10–5

Free Virus
Adams. 2.787× 10–8 0.09263 0.3342 0.955
Bin. coeff. 2.129× 10–8 0.004032 0.0007151 0.0002632
GL coeff. 2.133× 10–8 0.004118 0.0007442 0.0002797

Iℵ+1 = I(0) +
hγ2

�(γ2 + 2)
(
βSp

ℵ+1V p
ℵ+1 – σ Ip

ℵ+1
)

+
hγ2

�(γ2 + 2)

ℵ∑

d=0

ad,ℵ+1(βSdVd – σ Id),

V ℵ+1 = V (0) +
hγ3

�(γ + 2)
(
μnIp

ℵ+1 – (p1 + p2)V p
ℵ+1 – βSp

ℵ+1V p
ℵ+1

)

+
hγ3

�(γ3 + 2)

ℵ∑

d=0

ad,ℵ+1
(
μnId – (p1 + p2)Vd – βSdVd

)
,
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Table 3 Values of endemic equilibrium at different time periods

Values of endemic equilibrium in 100 days

γi = 1, i = 1, 2, 3 γi = 0.95, i = 1, 2, 3 γi = 0.90, i = 1, 2, 3 γi = 0.85, i = 1, 2, 3

Susceptible
Adams. 0.5313 0.5185 0.5066 0.4969
Bin. coeff. 0.5313 0.5266 0.5241 0.5239
GL coeff. 0.5313 0.5264 0.5237 0.5233

Infected
Adams. 1.743 2.612 4.006 6.139
Bin. coeff. 1.743 1.757 1.763 1.761
GL coeff. 1.743 1.758 1.765 1.762

Free Virus
Adams. 10.5 15.74 24.14 37.01
Bin. coeff. 10.5 10.58 10.62 10.61
GL coeff. 10.5 10.59 10.63 10.62

Values of endemic equilibrium in 75 days

γi = 1, i = 1, 2, 3 γi = 0.95, i = 1, 2, 3 γi = 0.90, i = 1, 2, 3 γi = 0.85, i = 1, 2, 3

Susceptible
Adams. 0.5313 0.501 0.4817 0.4696
Bin. coeff. 0.5313 0.5159 0.5068 0.5034
GL coeff. 0.5313 0.5152 0.5055 0.5018

Infected
Adams. 1.743 3.235 5.547 8.951
Bin. coeff. 1.743 1.791 1.818 1.824
GL coeff. 1.743 1.793 1.822 1.829

Free Virus
Adams. 10.5 19.5 33.44 53.97
Bin. coeff. 10.5 10.79 10.96 10.99
GL coeff. 10.5 10.81 10.98 11.02

Values of endemic equilibrium in 60 days

γi = 1, i = 1, 2, 3 γi = 0.95, i = 1, 2, 3 γi = 0.90, i = 1, 2, 3 γi = 0.85, i = 1, 2, 3

Susceptible
Adams. 0.5313 0.5104 0.4945 0.4833
Bin. coeff. 0.5313 0.5222 0.5168 0.5153
GL coeff. 0.5313 0.5217 0.516 0.5142

Infected
Adams. 1.743 2.961 4.761 7.528
Bin. coeff. 1.743 1.771 1.786 1.786
GL coeff. 1.743 1.773 1.788 1.790

Free Virus
Adams. 10.5 17.57 28.7 45.39
Bin. coeff. 10.5 10.67 10.76 10.76
GL coeff. 10.5 10.68 10.78 10.78

where

Sp
ℵ+1 = S(0) +

1
�(γ1)

ℵ∑

d=0

bd,ℵ+1(α – βSdVd – δSd),

Ip
ℵ+1 = I(0) +

1
�(γ2)

ℵ∑

d=0

bd,ℵ+1(βSdVd – σ Id),

V p
ℵ+1 = V (0) +

1
�(γ3)

ℵ∑

d=0

bd,ℵ+1
(
μnId – (p1 + p2)Vd – βSdVd

)
,
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with

ad,ℵ+1 =

⎧
⎪⎪⎨

⎪⎪⎩

ℵγi+1 – (ℵ – γi)(ℵ + 1)γi , d = 0,

(ℵ – d + 2)γi+1 + (ℵ – d)γi+1 – 2(ℵ – d + 1)γi+1, 1 ≤ d ≤ ℵ,

1, d = ℵ + 1

and

bd,ℵ+1 =
hγi

γi

(
(ℵ – d + 1)γi – (ℵ – d)γi

)
, 0 ≤ d ≤ ℵ

with i = 1, 2, 3.
Disease-free equilibrium (Figures 2-4).
Endemic equilibrium (Figures 5-7).

(ii) GL algorithm (GL coefficients)
Here we simulate model (25) for different values of the order of the fractional derivative,

γ ∈ [0, 1], and biologically relevant parameters. We apply the Grunwald-Letnikov method
by using the GL-coefficient [37, 54, 55].

ℵ+1∑

j=0

Pγ1
j Sℵ+1–j = α – βSℵ+1V ℵ – δSℵ+1, (37)

ℵ+1∑

j=0

Pγ2
j Iℵ+1–j = βSℵ+1V ℵ – σ Iℵ+1, (38)

ℵ+1∑

j=0

Pγ3
j V ℵ+1–j = μnIℵ+1 – βSℵ+1V ℵ+1 – (p1 + p2)V ℵ+1, (39)

(37) ⇒ Sℵ+1 =
α –

∑ℵ+1
j=1 Pγ1

j Sℵ+1–j

Pχ1
0 + βV n + δ

, (40)

(38) ⇒ Iℵ+1 =
βSℵ+1V ℵ –

∑ℵ+1
j=1 Pγ2

j Iℵ+1–j

Pχ2
0 + σ

, (41)

(39) ⇒ V ℵ+1 =
μnIℵ+1 –

∑ℵ+1
j=1 Pγ3

j (Y2)ℵ+1–j

Pχ3
0 + βSℵ+1 + (p1 + p2)

(42)

with Pγ1
0 = ( e(δ)h–1

δ
)–γ1 , Pγ2

0 = ( e(σ )h–1
σ

)–γ2 , Pγ3
0 = ( e(p1+p2)h–1

p1+p2
)–γ3 and Pγm

i = (1 – 1+γm
i )Pγm

i–1, m =
1, 2, 3.

Disease-free equilibrium (Figures 8-10).
Endemic equilibrium (Figures 11-13).

(iii) Grunwald-Letnikov algorithm (binomial coefficients)
Here we simulate model (25) for different values of the order of the fractional derivative,

γ ∈ [0, 1], and biologically relevant parameters. We apply the Grunwald-Letnikov method
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by using binomial coefficients [48, 56–58].

S(tℵ) =
{
α – βS(tℵ–1)V (tℵ–1) – δS(tℵ–1)

}
hγ1 –

ℵ∑

j=1

P(γ1)
j S(tℵ–j),

I(tℵ) =
{
βS(tℵ)V (tℵ–1) – σ I(tℵ–1)

}
hγ2 –

ℵ∑

j=1

P(γ2)
j I(tℵ–j),

V (tℵ) =
{
μnI(tℵ) – (p1 + p2)V (tℵ–1) – βS(tℵ)V (tℵ–1)

}
hγ3 –

ℵ∑

j=1

P(γ3)
j V (tℵ–j),

where P(γi)
0 = 1, P(γi)

j = (1 – j–1(1 + γi))P
(γi)
j–1 , i = 1, 2, 3.

Disease-free equilibrium (Figures 14-16).
Endemic equilibrium (Figures 17-19).

5 Conclusion
A nonlinear mathematical dengue model with fractional order γi, i = 1, 2, 3, is formulated.
The stability of both DFE and EE points is discussed. Sufficient conditions for local sta-
bility of the DFE point F0 are given in terms of the basic reproduction number R0 of the
model, where it is asymptotically stable if R0 < 1. The positive infected equilibrium F∗

exists when R0 > 1, and sufficient conditions that guarantee the asymptotic stability of
this point are calculated. Besides this sensitivity analysis of the parameters involved, the
threshold parameter (R0) is also discussed. Three fractional order techniques are used to
check the best performance of the model. When simulating the model with all three algo-
rithms, we have observed that all methods are converging to the disease-free and endemic
equilibrium points through different paths and for different values of γi, i = 1, 2, 3. The
values are very close to each other in all three techniques as given in Tables 2 and 3. How-
ever, the time consumed (Core i5 laptop) by Grunwald-Letnikov (binomial coefficient) is
3125.817 sec ≈ 52 min, by Grunwald-Letnikov (GL coefficient) is 2483.031 sec ≈ 41 min,
and by the Adams-Bashforth-Moulton algorithm is 67326.743 sec ≈ 18.7 hrs, which indi-
cates that the computational cost for Grunwald-Letnikov (GL coefficients) is cheaper than
that for the other two. Dengue is one of the most rapidly spreading mosquito-borne viral
diseases in the world, and it inflicts significant health, economics, and social burdens on
populations. The main purpose of analyzing the dengue model with these techniques is
that it helps the researchers and policy makers in targeting, prevention, and treatment re-
sources for maximum effectiveness. Numerical simulations with different order show that
the system decays to the equilibrium condition, e.g., power of t–γ . The result provides an
important insight into the use of fractional order to model the dengue internal disease. The
order of the fractional derivative γ may be associated with differences in individuals’ im-
mune system, age, treatment compliance, treatment toxicities and other co-morbidities,
amongst others. The fractional order may provide more ‘freedom’ to adjust the model to
real data of specific patients. That is to say, the fractional order index contributes positively
to better fit the patient data.

In the future, optimal control strategies can be incorporated into the proposed model
for the control of virus inside the body.
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