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Abstract
This paper is concerned with the iterative learning control problem for a class of
discrete-time singular systems. According to the characteristics of the systems, a
closed-loop PD-type learning algorithm is proposed and the convergence condition
of the algorithm is established. It is shown that the algorithm can guarantee the
system output converges to the desired trajectory on the whole time interval.
Moreover, the presented algorithm is also suitable for discrete-time singular systems
with state delay. Finally, the validity of the presented algorithm is verified by two
numerical examples.
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1 Introduction
Iterative learning control (ILC) is an effective control strategy to achieve perfect trajectory
tracking for repetitive systems in a finite time interval (see [1, 2]). The basic idea of ILC is
to improve the current tracking performance by fully utilizing the past control experience.
Since the complete iterative learning algorithm was initially proposed by Arimoto et al. [3],
it has attracted extensive attention in the field of control theory and many efforts have been
made devoted to the progress of ILC in recent years (see [4–8] and the references therein).

Singular systems have essential differences than the normal systems in many aspects,
due to the fact that singular systems can preserve the structure of physical systems and
impulsive elements. In many practical engineering problems, the systems have singular
system models, such as circuit systems, large-scale systems, constrained mechanical sys-
tems and robotic systems (see [9, 10]). Hitherto, many significant results based on the
theory of normal systems have been successfully extended to singular systems and the
related research has been published (see [9–13] and the references therein). Meanwhile,
there is some work which has been reported on the ILC for singular systems, but most of
it has focused mainly on the continue-time singular systems (see [14–17]). For instance,
reference [14] analyzed the convergence of D-type and PD-type closed-loop learning al-
gorithms for linear singular systems in the sense of the Frobenius norm. Based on the
Weierstrass canonical form of singular systems, reference [15] proposed a P-type ILC al-
gorithm for the fast subsystems with impulse. In [16], the ILC technique was applied to a
class of singular systems with state delay, then the convergence of the algorithm and the
possibility of the state tracking were analyzed. Based on the nonsingular transformation
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method, a PD-type algorithm was designed in [17] to study the state tracking problem for
a class of singular systems. Very recently, reference [18] applied the ILC strategy to a class
of discrete singular systems, then the convergence analysis of the algorithm was given in
detail by using λ-norm.

On the other hand, it should be pointed out that most of the singular systems studied in
the above-mentioned works are based on the assumption that the matrix A22 is nonsingu-
lar (see [16–18]), which implies that the systems are impulse-free (for continue-time sin-
gular systems) or causal (for discrete-time singular systems). However, in many practical
singular system models, the matrix A22 may be singular. Motivated by the aforementioned
discussions, the ILC problem for a class of discrete-time singular systems will be further
considered in this paper. According to the characteristics of the systems, a closed-loop
PD-type learning algorithm is proposed and the convergence condition of the algorithm
is established. It is worth pointing out that the algorithm presented in this paper has the
ability to eliminate the non-causality of discrete-time singular systems. Under the action
of the algorithm, the uniform convergence of the output tracking error is guaranteed with
the aid of λ-norm. Furthermore, the result is extended to discrete-time singular systems
with state delay. In the end, two numerical examples are given to support the theoretical
analysis.

Throughout this paper, I denotes the identity matrix with appropriate dimensions. For a
given vector or matrix X, ‖X‖ denotes its Euclidean norm. For a discrete system, t ∈ [0, T]
denotes the integer sequence t = 0, 1, 2, . . . , T . For a function h: [0, T] → Rn and a real
number 0 < λ < 1, ‖h‖λ denotes the λ-norm defined by ‖h‖λ = supt∈[0,T]{λt‖h(t)‖}.

2 Problem description
Consider the following discrete-time singular system:

⎧
⎨

⎩

Exk(t + 1) = Axk(t) + Buk(t),

yk(t) = Cxk(t),
(1)

where k denotes the iteration index, t ∈ [0, T] denotes the time index, E ∈ Rn×n is a singular
matrix and rank(E) = q < n. xk(t) ∈ Rn, uk(t) ∈ Rm, yk(t) ∈ Rr represent the state, control
input and output of the system, respectively. A, B and C are real matrices with appropriate
dimensions.

Definition 1 ([9]) The system (1) is said to be regular if there exists a constant complex
s0 such that det(s0E – A) �= 0.

Before giving our ILC law, basic assumptions for the system (1) are first given as follows.

Assumption 1 For the given desired output trajectory yd(t), there exists a desired control
input ud(t) such that

⎧
⎨

⎩

Exd(t + 1) = Axd(t) + Bud(t),

yd(t) = Cxd(t),

where xd(t) is the desired state.
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Assumption 2 The initial resetting condition holds for all iterations, i.e.,

xk(0) = xd(0), k = 0, 1, 2, . . . ,

where xd(0) is the initial value of the desired state.

Assumption 3 ([9]) The system (1) is regular, controllable and observable.

Given a desired output trajectory yd(t), the target of this paper is to design an appropriate
learning algorithm and generate the control sequence uk(t), such that the system output
yk(t) can track the desired trajectory yd(t) as the iteration number increases.

3 Convergence analysis of the algorithm
In this paper, we adopt the following closed-loop PD-type learning algorithm:

uk+1(t) = uk(t) + �ek+1(t + 1) + Kek+1(t), (2)

where �, K ∈ Rm×r are the learning gain matrices, and ek(t) = yd(t) – yk(t) is the output
tracking error at the kth iteration.

Theorem 1 Consider the system (1) satisfying Assumptions 1-3. If there exists the gain
matrix � ∈ Rm×r such that the matrix E + B�C is nonsingular and

ρ = ‖I – �CB̃‖ < 1, (3)

where B̃ = (E + B�C)–1B. Then the system output yk(t) can converge to the desired trajectory
yd(t) on the time interval [0, T + 1] by using the algorithm (2), i.e., limk→∞ yk(t) = yd(t), t ∈
[0, T + 1].

Proof Denote �xk(t) = xd(t)–xk(t), �uk(t) = ud(t)–uk(t). From (1), (2) and Assumption 1,
we have

E�xk(t + 1) = A�xk(t) + B�uk(t) (4)

and

�uk(t) = �uk–1(t) – �ek(t + 1) – Kek(t)

= �uk–1(t) – �C�xk(t + 1) – KC�xk(t). (5)

Substituting (5) into (4) results in

E�xk(t + 1) = (A – BKC)�xk(t) + B�uk–1(t) – B�C�xk(t + 1),

that is,

(E + B�C)�xk(t + 1) = (A – BKC)�xk(t) + B�uk–1(t).
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Since the matrix E + B�C is nonsingular, further we can get

�xk(t + 1) = Ã�xk(t) + B̃�uk–1(t), (6)

where

Ã = (E + B�C)–1(A – BKC), B̃ = (E + B�C)–1B.

Taking the Euclidean norm on both sides of (6) gives

∥
∥�xk(t + 1)

∥
∥ ≤ ‖Ã‖∥∥�xk(t)

∥
∥ + ‖B̃‖∥∥�uk–1(t)

∥
∥

= c1
∥
∥�xk(t)

∥
∥ + c2

∥
∥�uk–1(t)

∥
∥, (7)

where c1 = ‖Ã‖, c2 = ‖B̃‖. Noting that ‖�xk(0)‖ = 0 by Assumption 2, for t ≥ 1, we can
obtain

∥
∥�xk(t)

∥
∥ ≤ c1

∥
∥�xk(t – 1)

∥
∥ + c2

∥
∥�uk–1(t – 1)

∥
∥

≤ ct
1
∥
∥�xk(0)

∥
∥ +

t–1∑

s=0

ct–s–1
1 c2

∥
∥�uk–1(s)

∥
∥

=
t–1∑

s=0

ct–s–1
1 c2

∥
∥�uk–1(s)

∥
∥.

Multiplying both sides of the above inequality by λt (0 < λ < 1) yields

λt∥∥�xk(t)
∥
∥ ≤

t–1∑

s=0

(λc1)t–s–1λc2λ
s∥∥�uk–1(s)

∥
∥

≤
t–1∑

s=0

(λc1)t–s–1λc2 sup
t∈[0,T–1]

{
λt�uk–1(t)

}

≤
t–1∑

s=0

(λc1)t–s–1λc2‖�uk–1‖λ

≤ 1 – (λc1)T

1 – λc1
λc2‖�uk–1‖λ.

Applying the definition of the λ-norm to the above expression results in

‖�xk‖λ ≤ λc3‖�uk–1‖λ, (8)

where

c3 =
1 – (λc1)T

1 – λc1
c2.

It follows from (5) and (6) that

�uk(t) = �uk–1(t) – �C�xk(t + 1) – KC�xk(t)

= (I – �CB̃)�uk–1(t) – (KC + �CÃ)�xk(t).



Gu et al. Advances in Difference Equations  (2018) 2018:13 Page 5 of 14

Taking the Euclidean norm on both sides of the above equation and combining with (3)
yields

∥
∥�uk(t)

∥
∥ ≤ ρ

∥
∥�uk–1(t)

∥
∥ + c4

∥
∥�xk(t)

∥
∥,

where c4 = ‖KC + �CÃ‖. Combining with (8), we can derive

‖�uk‖λ ≤ ρ‖�uk–1‖λ + c4‖�x1k‖λ

≤ ρ‖�uk–1‖λ + λc3c4‖�uk–1‖λ

= ρ̂‖�uk–1‖λ, (9)

where ρ̂ = ρ + λc3c4. Since 0 ≤ ρ < 1 by (3), it is possible to choose λ sufficiently small so
that ρ̂ < 1. Therefore, (9) is a contraction in ‖�uk‖λ, and we have

lim
k→∞

‖�uk‖λ = 0. (10)

It follows from (8) and (10) that

lim
k→∞

‖�xk‖λ = 0.

Since 0 < λ < 1, we have λT ≤ λt ≤ 1 for t ∈ [0, T]. Furthermore, we have

λT sup
t∈[0,T]

∥
∥�xk(t)

∥
∥ ≤ sup

t∈[0,T]

{
λt∥∥�xk(t)

∥
∥
}

= ‖�xk‖λ,

therefore

sup
t∈[0,T]

∥
∥�xk(t)

∥
∥ ≤ λ–T‖�xk‖λ.

It is obvious that limk→∞ supt∈[0,T] ‖�xk(t)‖= 0, that is,

lim
k→∞

∥
∥�xk(t)

∥
∥ = 0, t ∈ [0, T].

Recalling (7), we can obtain

lim
k→∞

∥
∥�xk(t)

∥
∥ = 0, t ∈ [0, T + 1].

Therefore, we have

lim
k→∞

yk(t) = yd(t), t ∈ [0, T + 1].

This completes the proof. �
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4 Extension to systems with state delay
In this section, we further extend the result of Theorem 1 to a discrete-time singular sys-
tem with state delay, which is described by

⎧
⎨

⎩

Exk(t + 1) = Axk(t) + Dxk(t – τ ) + Buk(t),

yk(t) = Cxk(t),
(11)

where τ is a known positive integer time delay. For t ∈ [–τ , 0], xk(t) = ϕk(t) and ϕk(t) is the
initial function of the system.

Basic assumptions for the system (11) are given for further analysis.

Assumption 4 For the given desired output trajectory yd(t), there exists a desired control
input ud(t) such that

⎧
⎨

⎩

Exd(t + 1) = Axd(t) + Dxd(t – τ ) + Bud(t),

yd(t) = Cxd(t),

where xd(t) is the desired state.

Assumption 5 The initial resetting condition holds for all iterations, i.e.,

ϕk(t) = ϕd(t), t ∈ [–τ , 0], k = 0, 1, 2, . . . ,

where ϕd(t) is the desired initial function.

Assumption 6 The system (11) is regular, controllable and observable.

Theorem 2 Consider the system (11) satisfying Assumptions 4-6. If there exists the gain
matrix � ∈ Rm×r such that the matrix E + B�C is nonsingular and the convergence condi-
tion (3) holds, then the system output yk(t) can converge to the desired trajectory yd(t) on
the time interval [0, T + 1] by using the algorithm (2), i.e., limk→∞ yk(t) = yd(t), t ∈ [0, T + 1].

Proof Repeating the similar procedure as that (4) to (6), we can get

�xk(t + 1) = Ã�xk(t) + D̃�xk(t – τ ) + B̃�uk–1(t), (12)

where D̃ = (E + B�C)–1D. Taking the Euclidean norm on both sides of (12) results in

∥
∥�xk(t + 1)

∥
∥ ≤ ‖Ã‖∥∥�xk(t)

∥
∥ + ‖D̃‖∥∥�xk(t – τ )

∥
∥ + ‖B̃‖∥∥�uk–1(t)

∥
∥

= c1
∥
∥�xk(t)

∥
∥ + c5

∥
∥�xk(t – τ )

∥
∥ + c2

∥
∥�uk–1(t)

∥
∥, (13)

where c5 = ‖D̃‖. From Assumption 5, we know

∥
∥�xk(t)

∥
∥ =

∥
∥ϕd(t) – ϕk(t)

∥
∥ = 0, t ∈ [–τ , 0]. (14)
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Noting that ‖�xk(0)‖ = 0 by (14), for t ≥ 1, we can derive

∥
∥�xk(t)

∥
∥ ≤ c1

∥
∥�xk(t – 1)

∥
∥ + c5

∥
∥�xk(t – 1 – τ )

∥
∥ + c2

∥
∥�uk–1(t – 1)

∥
∥

≤ ct
1
∥
∥�xk(0)

∥
∥ +

t–1∑

s=0

ct–s–1
1

{
c5

∥
∥�xk(s – τ )

∥
∥ + c2

∥
∥�uk–1(s)

∥
∥
}

=
t–1∑

s=0

ct–s–1
1

{
c5

∥
∥�xk(s – τ )

∥
∥ + c2

∥
∥�uk–1(s)

∥
∥
}

.

Multiplying both sides of the above inequality by λt (0 < λc1 < 1) and combining with (14)
gives

λt∥∥�xk(t)
∥
∥

≤
t–1∑

s=0

(λc1)t–s–1λ
{

c5λ
τλs–τ

∥
∥�xk(s – τ )

∥
∥ + c2λ

s∥∥�uk–1(s)
∥
∥
}

≤
t–1∑

s=0

(λc1)t–s–1λ
{

c5λ
τ sup

t∈[–τ ,T–τ ]

{
λt∥∥�xk(t)

∥
∥
}

+ c2 sup
t∈[0,T–1]

{
λt∥∥�uk–1(s)

∥
∥
}}

=
t–1∑

s=0

(λc1)t–s–1λ
{

c5λ
τ sup

t∈[0,T–τ ]

{
λt∥∥�xk(t)

∥
∥
}

+ c2 sup
t∈[0,T–1]

{
λt∥∥�uk–1(s)

∥
∥
}}

≤
t–1∑

s=0

(λc1)t–s–1λ
{

c5λ
τ‖�xk‖λ + c2‖�uk–1‖λ

}

≤ 1 – (λc1)T

1 – λc1
λ
{

c5λ
τ‖�xk‖λ + c2‖�uk–1‖λ

}
.

Applying the definition of the λ-norm the above expression becomes

‖�xk‖λ ≤ 1 – (λc1)T

1 – λc1
λ
{

c5λ
τ‖�xk‖λ + c2‖�uk–1‖λ

}
. (15)

Letting the above λ be such that

λτ+1c5
1 – (λc1)T

1 – λc1
< 1

holds, further we have

‖�xk‖λ ≤ λc6‖�uk–1‖λ, (16)

where

c6 =
1–(λc1)T

1–λc1

1 – λτ+1c5
1–(λc1)T

1–λc1

c2.
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It follows from (5) and (12) that

�uk(t) = �uk–1(t) – �C�xk(t + 1) – KC�xk(t)

= (I – �CB̃)�uk–1(t) – (KC + �CÃ)�xk(t) + �CD̃�xk(t – τ ).

Taking the Euclidean norm on both sides of the above expression and combining with (3)
yield

∥
∥�uk(t)

∥
∥ ≤ ρ

∥
∥�uk–1(t)

∥
∥ + c4

∥
∥�xk(t)

∥
∥ + c7

∥
∥�xk(t – τ )

∥
∥,

where c7 = ‖�CD̃‖. Combining with (14) and (16), we can derive

‖�uk‖λ ≤ ρ‖�uk–1‖λ + c4‖�xk‖λ + c7 sup
t∈[0,T]

{
λt∥∥�xk(t – τ )

∥
∥
}

= ρ‖�uk–1‖λ + c4‖�xk‖λ + c7λ
τ sup

t∈[–τ ,T–τ ]

{
λt∥∥�xk(t)

∥
∥
}

= ρ‖�uk–1‖λ + c4‖�xk‖λ + c7λ
τ sup

t∈[0,T–τ ]

{
λt∥∥�xk(t)

∥
∥
}

≤ ρ‖�uk–1‖λ +
(
c4 + c7λ

τ
)‖�xk‖λ

≤ ρ‖�uk–1‖λ + λc6
(
c4 + c7λ

τ
)‖�uk–1‖λ

= ρ̃‖�uk–1‖λ, (17)

where ρ̃ = ρ + λc4c6 + λτ+1c6c7. Since 0 ≤ ρ < 1 by (3), it is possible to choose λ sufficiently
small so that ρ̃ < 1. Therefore, (17) is a contraction in ‖�uk‖λ, then we have

lim
k→∞

‖�uk‖λ = 0. (18)

Similarly, it follows from (16) and (18) that

lim
k→∞

∥
∥�xk(t)

∥
∥ = 0, t ∈ [0, T].

Recalling (13), we can obtain

lim
k→∞

∥
∥�xk(t)

∥
∥ = 0, t ∈ [0, T + 1].

Therefore, we have

lim
k→∞

yk(t) = yd(t), t ∈ [0, T + 1].

This completes the proof. �

Remark 1 For the discrete singular delay system (11), when the closed-loop PD-type
learning algorithm (2) is applied, the delay variable �xk(t – τ ) can be transformed into
the variable �xk(t) with the aid of Assumption 5 and the λ-norm.
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5 Numerical examples
In this section, two numerical examples are constructed to demonstrate the validity of the
presented closed-loop PD-type learning algorithm.

Example 1 Consider the following discrete-time singular system:
⎧
⎨

⎩

Exk(t + 1) = Axk(t) + Buk(t),

yk(t) = Cxk(t),

where t ∈ [0, 14], and

E =

⎡

⎢
⎣

1 0 0
0 1 0
0 0 0

⎤

⎥
⎦ , A =

⎡

⎢
⎣

1 0 0
0 1 0

0.2 –0.3 1

⎤

⎥
⎦ ,

B =

⎡

⎢
⎣

–0.5 –2
1 0
1 0.2

⎤

⎥
⎦ , C =

[
1 –1 0.5
0 0.2 1

]

.

According to the algorithm (2), take the gain matrices

� =

[
1 0
0 2

]

, K =

[
–1 0
0 0.2

]

,

furthermore, we can compute that

B̃ = (E + B�C)–1B =

⎡

⎢
⎣

1.0881 –0.2720
0.1036 –0.0259
0.2383 0.4404

⎤

⎥
⎦ .

Then we have ρ = ‖I – �CB̃‖ = 0.6076 < 1, i.e., the convergence condition (3) holds. Take
the given desired output trajectory as

yd(t) =

[
y(1)

d (t)
y(2)

d (t)

]

=

[
0.01t(5t – 14)
0.02t(t – 10)

]

.

Set the initial state and the initial input

xk(t) = [0 0 0]T, u0(t) = [0 0]T.

Figures 1 and 2 give the tracking situations of the system outputs y(1)
k (t) and y(2)

k (t) to
the desired trajectories at the 7th, 10th and 16th iterations, respectively. From Figure 3,
we know that the maximum tracking errors e(1)

k (t) and e(2)
k (t) tend to zero as the iteration

number increases by using the closed-loop PD-type learning algorithm (2).

Example 2 Consider the following discrete-time singular system with state delay:
⎧
⎨

⎩

Exk(t + 1) = Axk(t) + Dxk(t – τ ) + Buk(t),

yk(t) = Cxk(t),
(19)
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Figure 1 The tracking performance of the system output y(1)
k (t) to the desired trajectory y(1)

d (t) at
different iterations by using the learning algorithm (2).

Figure 2 The tracking performance of the system output y(2)
k (t) to the desired trajectory y(2)

d (t) at
different iterations by using the learning algorithm (2).

where t ∈ [0, 14], the time delay τ = 1, and

E =

[
1 0
0 0

]

, A =

[
1 0.1

0.5 0

]

, D =

[
0 0.1

0.1 0.2

]

, B = C =

[
1 0
0 1

]

.
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Figure 3 The maximum tracking error versus iteration number.

By Lemma 1 in [19], we know that the system (19) is noncausal. According to the algo-
rithm (2), take the gain matrices

� =

[
2 3
0 2

]

, K =

[
0.1 0
0 0.1

]

,

we further have

B̃ = (E + B�C)–1B =

[
0.3333 –0.5

0 0.5

]

,

so ρ = ‖I – �CB̃‖ = 0.6009 < 1, i.e., the convergence condition (3) is satisfied. Take the
given desired output trajectory as

yd(t) =

[
y(1)

d (t)
y(2)

d (t)

]

=

[
cos(0.4t)
e0.1t – 1

]

.

Set the initial state and the initial input

xk(t) =

[
1 + t

2t

]

, t ∈ [–1, 0], u0(t) =

[
0
0

]

.

Correspondingly, the simulation results are shown in Figures 4-6. From Figures 4 and 5,
it is obvious that the trajectories y(1)

k (t) and y(2)
k (t) at the 11th iteration can follow the de-

sired ones. From Figure 6, we can see that the uniform convergence of the output tracking
error is guaranteed under the action of closed-loop PD-type learning algorithm (2).
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Figure 4 The tracking performance of the system output y(1)
k (t) to the desired trajectory y(1)

d (t) at
different iterations by using the learning algorithm (2).

Figure 5 The tracking performance of the system output y(2)
k (t) to desired trajectory y(2)

d (t) at different
iterations by using the learning algorithm (2).

6 Conclusion
In this paper, the problem of iterative learning control is investigated for a class of discrete-
time singular systems. Then a closed-loop PD-type learning algorithm is adopted for such
singular systems, and the convergence condition of the algorithm is established. We show
that the algorithm can ensure the output tracking error converges to zero on the whole
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Figure 6 The maximum tracking error versus iteration number.

time interval. The corresponding result is further extended to discrete-time singular sys-
tems with state delay. In the end, two numerical examples are constructed to illustrate the
effectiveness of the presented algorithm.
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