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continuous time fractional-order systems with bounded time-varying delays are inves-
tigated by the monotonic and asymptotic property [14]. The stabilization problem of a
class of fractional-order chaotic systems have been addressed [12]. Pseudo-state stabiliza-
tion problem of fractional-order nonlinear systems has attracted the attention of some re-
searchers [7–9, 13, 16]. Moreover, any equilibrium of a general fractional-order nonlinear
system described by either Caputo’s or Riemann-Liouville’s definition can never be finite-
time stable was proved [26]. Finite-time fractional-order adaptive intelligent backstepping
sliding mode control have been proposed to deal with uncertain fractional-order chaotic
systems [27]. The time-optimal control problem for a class of fractional-order systemswas
proposed [28]. In addition, robust controller design problem for a class of fractional-order
nonlinear systems with time-varying delays was investigated [29] and state feedback H∞
control of commensurate fractional-order systems was studied [30].
Backstepping design method has been widely applied in stabilizing a general class of

integer-order nonlinear systems. Backstepping design offers a choice of design tools for
accommodation of uncertain nonlinearities [31]. It is well known that the backstepping
design has been reported for nonlinear systems in strict-feedback form or triangular form
[31–36]. Systematic design of globally stable and adaptive controllers for a class of para-
metric strict-feedback form are investigated by the backstepping design procedure [34].
The overparametrization and partial overparametrization problemswere soon eliminated
by elegantly introducing the tuning functions [33, 35]. On the other hand, with the aids
of this frequency distribute model and the indirect Lyapunov method, the adaptive back-
stepping control of fractional-order systems were established [37–39]. As far as we know,
there are few results on the generalization of backstepping into fractional-order systems.
It was pointed out that thewell-known Leibniz rule is not satisfied for fractional-order sys-
tems. Then an interesting question arises: when the states of system are not Leibniz rule,
how to deal with the stabilization problem through design of tuning functions and adap-
tive feedback control law? So far, the stabilization problem of fractional-order nonlinear
systems remains an open problem.
In this paper, we investigate the Mittag-Leffler stabilization problem of a class of

fractional-order nonlinear systems. Compared with the existing results, the main contri-
butions of this paper are as follows: (1) The backstepping design is extended to fractional-
order nonlinear systems with unknown control coefficients, and an adaptive control
scheme with tuning functions is proposed. It is proved that the stabilization problem of
fractional-order nonlinear systems can be solved by the designed control scheme. (2) The
Mittag-Leffler stabilization problem is achieved using a systematic design procedure and
without any growth restriction on nonlinearities. (3) The controller is designed to en-
sure that the pseudo-state of the fractional-order system convergence to the equilibrium.
(4) Successfully overcoming the difficulty of the fractional-order system without the Leib-
niz rule, and the tuning function is constructed to avoid overparameterization.
The remainder of this paper is organized as follows: Section 2 the problem formulation,

some necessary concepts and some necessary lemmas are given. In Section 3, as the main
part of this note, an adaptive controller and tuning functions are designed by using the
backstepping method for fractional-order nonlinear systems. In Section 4, two numerical
simulations are provided to illustrate the effectiveness of the proposed results. Finally,
Section 5 concludes this study.
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2 Problem formulation and preliminary results
In this paper, we consider the stabilization problem of the following nonlinear fractional
systems:

Dqxi = bixi+1 + � T � i(x1, . . . ,xi), i = 1, . . . ,n – 1,

Dqxn = � 0(x) + � T � n(x1, . . . ,xn) + bn� 0(x)u,
(1)

where x = [x1, . . . ,xn]T ∈ Rn, Dq is the Caputo fractional derivative of order 0 < q ≤ 1, � ∈
Rp is an unknown constant parameter and bi, i = 1, 2, . . . ,n, are unknown constants, called
unknown control coefficients. u ∈ R is the control input, � 0, � 0 and the components of � i,
1≤ i ≤ n are smooth nonlinear functions in Rn and � 0(x) �= 0 for all x ∈ Rn.

Remark 1 It is worth pointing out that if let the unknown constants bi = 1 (i = 1, . . . ,n) and
q = 1 in (1), the systems (1) reduces to the well-known parametric strict-feedback system.
Moreover, if bi = 1 (i = 1, . . . ,n) and � 0(x) is a constant, then system (1) will become the
parametric strict-feedback form of fractional-order nonlinear system.

Definition 1 ([40]) The fractional-order derivative Dq
t (q > 0) of g(t) in Caputo sense is

defined as

C
t0Dq

t g(t) =
1

� (n – q)

∫ t

t0
(t – s)n–q–1g(n)(s)ds, (2)

where n – 1 < q ≤ n ∈ N .

Remark 2 For simplicity, the symbol Dq is shorted for C
t0Dq

t , where t is the time.
(1) If C is a constant, then DqC = 0.

Similar to integer-order differentiation, fractional-order differentiation in Caputo’s sense
is a linear operation:

(2) Dq(µ g(t) + � h(t)) = µ Dqg(t) + � Dqh(t),
where µ and � are real numbers.

(3) Leibniz rule:

Dq(g(t)h(t)
)
=

∞∑
r=0

� (q + 1)
� (r + 1)� (q – r + 1)

Dq–rg(t)Drh(t).

Note that the sum is infinite and contains integrals of fractional order for r > [q] + 1.

Remark 3 The well-known Leibniz rule Dq(fg) = (Dqf )g + f (Dqg) is not satisfied for dif-
ferentiation of non-integer orders.

Lemma 1 ([13]) Let V : D → R be a continuous positive definite function defined on a
domain D ⊂ Rn that contains the origin. Let Bd ⊂ D for some d > 0. Then there exist class-
K functions � 1 and � 2 defined on [0,d], such that

� 1
(‖x‖) ≤ V (x)≤ � 2

(‖x‖), (3)

for all x ∈ Bd . If D = Rn, the functions � 1 and � 2 will be defined on [0,∞).
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Lemma 2 ([7, 11] (Mittag-Leffler stability)) Let x(t) = 0 be the equilibrium point of the
fractional-order system Dqx = f (x, t),x ∈ 	 , where 	 is neighborhood region of the origin.
Assume that there exists a fractional Lyapunov function V (t,x(t)) : [0,∞) × Rn → R and
class-K functions � i, i = 1, 2, 3 satisfying

(i) � 1
(‖x‖) ≤ V

(
t,x(t)

) ≤ � 2
(‖x‖);

(ii) DqV
(
t,x(t)

) ≤ –� 3
(‖x‖).

Then the fractional-order system is asymptotically Mittag-Leffler stable. Moreover, if 	 =
Rn, the fractional-order system is globally asymptotically Mittag-Leffler stable.

Lemma 3 ([24]) Let x(t) ∈ R be a real continuously differentiable function. Then, for any
time instant t ≥ t0,

1
2 t0D�

t x2(t) ≤ x(t)t0D�
t x(t), ∀� ∈ (0, 1). (4)

Remark 4 In the case when x(t) ∈ Rn, Lemma 3 is still valid. That is, � ∈ (0, 1) and t ≥ t0,
1
2D� xT (t)x(t) ≤ xT (t)D� x(t). In addition, let x(t) ∈ R be a real continuously differentiable
function. Then, for any p = 2n,n ∈ N , D� xp(t)≤ pxp–1(t)D� x(t), where 0 < � < 1 (see [7]).

3 Backstepping design
In this section, wewill give the backstepping design procedure of fractional-order systems.

Theorem 1 The fractional-order nonlinear system (1) can be asymptotically Mittag-
Leffler stable by the adaptive feedback control

u = –
1

bn� 0

(
bn–1zn–1 + cnzn + � 0 + �̂ T � n +

bn–2

bn–1
Dqzn–2 +

cn–1

bn–1
Dqzn–1

)
. (5)

� i(x1, . . . ,xi, �̂ ) = –
1
bi

(
bi–1zi–1 + cizi + �̂ T � i +

bi–2

bi–1
Dqzi–2 +

ci–1

bi–1
Dqzi–1

)
,

2 ≤ i ≤ n – 1, (6)

where � 1(x1, �̂ ) = – c1
b1

z1 – 1
b1

�̂ T � 1(x1), and c1, c2, . . . , cn are positive constants. �̂ is the esti-
mate of the unknown parameter � , �̃ = �̂ – � and update laws

Dq �̂ = 
 n = � z1� 1 +
n–1∑
k=1

� zk+1

(
� k+1 –

1
�̃ bk

Dq(�̂ � k)
)
, (7)

where � = diag[p1, . . . ,pm] > 0 is the gain matrix of the adaptive law.

Proof The design procedure is recursive. Its ith-order subsystem is stabilized with respect
to a Lyapunov function Vi by the design of a stabilizing function � i and a tuning function

 i. The update law for the parameter estimate �̂ and the feedback control u are designed
at the final step.
Step 1: Let z1 = x1 and z2 = x2 – � 1, we rewrite Dqx1 = b1x2 + � T � 1(x1) as

Dqz1 = b1(z2 + � 1) + � T � 1(x1). (8)
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Choose a Lyapunov function candidate as V1 = 1
2z21 +

1
2 �̃ T � –1 �̃ , where �̃ = �̂ – � is the

parameter estimate error. We have

DqV1 ≤ z1
[
b1(z2 + � 1) + �̂ T � 1

]
+ �̃ T � –1(Dq �̂ – 
 1

)
, (9)

where


 1 = � z1� 1(x1). (10)

To make DqV1 ≤ –c1z21, we would choose

� 1(x1, �̂ ) = –
1
b1

(
c1z1 + �̂ T � 1(x1)

)
. (11)

However, we retain 
 1 as the first tuning function and � 1 as the first stabilizing function.
We have

DqV1 ≤ –c1z21 + b1z1z2 + �̃ T � –1(Dq �̂ – 
 1
)
. (12)

The second term b1z1z2 in DqV1 will be canceled at the next step.
Substituting (11) into (8) yields

Dqz1 = –c1z1 + b1z2 + (� – �̂ )T � 1(x1). (13)

Step 2: Let z3 = x3 – � 2, we rewrite Dqx2 = b2x3 + � T � 2(x1,x2) as

Dqz2 = b2(z3 + � 2) + � T � 2 +
1
b1

(
c1Dqz1 + Dq(�̂ � 1)

)
. (14)

Choose a Lyapunov function candidate as follows: V2 = V1 + 1
2z22. We have

DqV2 ≤ –c1z21 + z2
[
b1z1 + b2(z3 + � 2) + �̂ T � 2

]
+

z2
b1

[
c1Dqz1 + Dq(�̂ � 1)

]

+ �̃ T � –1(Dq �̂ – 
 2
)
, (15)

where


 2 = �
(

z1� 1 + z2� 2 –
z2

�̃ b1
Dq(�̂ � 1)

)
= 
 1 + � z2

(
� 2 –

1
�̃ b1

Dq(�̂ � 1)
)
. (16)

Then, to make DqV2 ≤ –c1z21 – c2z22, we would choose

� 2(x1,x2, �̂ ) = –
1
b2

(
b1z1 + c2z2 + �̂ T � 2 +

c1
b1

Dqz1
)
. (17)

However, we retain 
 2 as the second tuning function and � 2 as the second stabilizing func-
tion. The resulting DqV2 is

DqV2 ≤ –c1z21 – c2z22 + b2z2z3 + �̃ T � –1(Dq �̂ – 
 2
)
. (18)
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The third term in DqV2 will be canceled at the next step.
Substituting (17) into (14) yields

Dqz2 = –b1z1 – c2z2 + b2z3 + (� – �̂ )T � 2 +
1
b1

Dq(�̂ � 1). (19)

Step 3: Let z4 = x4 – � 3, we rewrite Dqx3 = b3x4 + � T � 3(x1,x2,x3) as

Dqz3 = b3(z4 + � 3) + � T � 3 +
1
b2

(
b1Dqz1 + c2Dqz2 + Dq(�̂ � 2)

)
. (20)

Choose a Lyapunov function as V3 = V2 + 1
2z23. We have

DqV3 ≤ –c1z21 – c2z22 + z3
[
b2z2 + b3(z4 + � 3) + �̂ T � 3

]

+
z3
b2

(
b1Dqz1 + c2Dqz2 + Dq(�̂ � 2)

)
+ �̃ T � –1(Dq �̂ – 
 3

)
, (21)

where


 3 = 
 2 + � z3� 3 – �
z3

�̃ b2
Dq(�̂ � 2) = 
 2 + � z3

(
� 3 –

1
�̃ b2

Dq(�̂ � 2)
)
. (22)

Then, to make DqV3 ≤ –c1z21 – c2z22 – c3z23, we would choose

� 3(x1,x2,x3, �̂ ) = –
1
b3

(
b2z2 + c3z3 + �̂ T � 3 +

b1

b2
Dqz1 +

c2
b2

Dqz2
)
. (23)

However, we retain 
 3 as the third tuning function and � 3 as the third stabilizing function.
The resulting DqV3 is

DqV3 ≤ –c1z21 – c2z22 – c3z23 + b3z3z4 + �̃ T � –1(Dq �̂ – 
 3
)
. (24)

Substituting (23) into (20) yields

Dqz3 = –b2z2 – c3z3 + b3z4 + (� – �̂ )T � 3 +
1
b2

Dq(�̂ � 2). (25)

Step i (i ≥ 2): Let zi+1 = xi+1 – � i, we rewrite Dqxi = bixi+1 + � T � i(x1, . . . ,xi) as

Dqzi = bi(zi+1 + � i) + � T � i +
1

bi–1

(
bi–2Dqzi–2 + ci–1Dqzi–1 + Dq(�̂ � i–1)

)
. (26)

Choose a Lyapunov function of the form Vi = Vi–1 + 1
2z2i . Then

DqVi ≤ –
i–1∑
k=1

ckz2k + zi
[
bi–1zi–1 + bi(zi+1 + � i) + �̂ � i

]

+
zi

bi–1

(
bi–2Dqzi–2 + ci–1Dqzi–1 + Dq(�̂ � i–1)

)
+ �̃ T � –1(Dq �̂ – 
 i

)
, (27)
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where


 i = 
 i–1 + � zi

(
� i –

1
�̃ bi–1

Dq(�̂ � i–1)
)
. (28)

Then, to make DqVi ≤ –
∑i

k=1 ckz2k , we would choose

� i(x1, . . . ,xi, �̂ ) = –
1
bi

(
bi–1zi–1 + cizi + �̂ T � i +

bi–2

bi–1
Dqzi–2 +

ci–1

bi–1
Dqzi–1

)
. (29)

However, we retain 
 i as the ith tuning function and � i as the ith stabilizing function. The
resulting DqVi is

DqVi ≤ –
i∑

k=1

ckz2k + bizizi+1 + �̃ T � –1(Dq �̂ – 
 i
)
. (30)

Substituting (29) into (26) yields

Dqzi = –bi–1zi–1 – cizi + bizi+1 + (� – �̂ )T � i +
1

bi–1
Dq(�̂ � i–1). (31)

Step n: With zn = xn – � n–1, we rewrite Dqxn = � 0(x) + � T � n(x) + bn� 0(x)u as

Dqzn = � 0 + � T � n + bn� 0(x)u +
1

bn–1

(
bn–2Dqzn–2 + cn–1Dqzn–1 + Dq(�̂ T � n–1

))
, (32)

and we now design the Lyapunov function as Vn = Vn–1 + 1
2z2n; we have

DqVn ≤ –
n–1∑
k=1

ckz2k + zn
[
bn–1zn–1 + � 0 + � T � n + bn� 0(x)u

]

+
zn

bn–1

(
bn–2Dqzn–2 + cn–1Dqzn–1 + Dq(�̂ T � n–1

))

+ �̃ T � –1(Dq �̂ – 
 n–1
)
. (33)

To eliminate �̂ – � from DqVn we choose the update law

Dq �̂ = 
 n = 
 n–1 + � zn

(
� n –

1
�̃ bn–1

Dq(�̂ � n–1)
)
, (34)

we rewrite DqVn as

DqVn ≤ –
n–1∑
k=1

ckz2k + �̃ T � –1(Dq �̂ – 
 n
)
. (35)

Finally, we choose

u = –
1

bn� 0

(
bn–1zn–1 + cnzn + � 0 + �̂ T � n +

bn–2

bn–1
Dqzn–2 +

cn–1

bn–1
Dqzn–1

)
. (36)
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We have

DqVn ≤ –
n∑

k=1

ckz2k . (37)

Substituting (36) into (32) yields

Dqzn = –bn–1zn–1 – cnzn + (� – �̂ )T � n +
1

bn–1
Dq(�̂ T � n–1

)
. (38)

According to Lemma 1, for the Lyapunov function Vn, there exist class-K functions � 1 and
� 2 such that � 1(‖� ‖) ≤ Vn(� ) ≤ � 2(‖� ‖) where � = [z1, . . . , zn, �̃ ].
Unless zi = 0, we have DqVn ≤ 0, thus there exists a class-K function � 3 such that DqVn ≤

–� 3(‖� ‖).
According to Lemma 2, the z-system is asymptotically Mittag-Leffler stable. �

Remark 5 In this paper, we constructed the virtual controllers and tuning functions to
deal with the fractional stabilization problem, the backstepping technique has been ex-
tended to fractional-order systems. It should be noted that theMittag-Leffler stability im-
plies asymptotic stability [11]. Therefore, the Lyapunov direct method can be applied to
obtain the asymptotical stability of the closed-loop system.

4 Simulation results
In this section, two examples are given to verify the effectiveness of the proposed scheme.

Example 1 We consider the following fractional-order nonlinear system:

Dqx1 = 3x2 + 2x21,

Dqx2 = u – 2x21 – 2x2 sin(x1),
(39)

where b1 = 3, � = 2, � 1 = 2x21, � 3 = –x21 – x2 sin(x1), � = 1 and we choose q = 0.96.
Step 1: Let z1 = x1 and z2 = x2 – � 1, we rewrite Dqx1 = 3x2 + 2x21 as

Dqz1 = 3z2 + 3� 1 + 2x21, (40)

choose the Lyapunov function V1 = 1
2z21 +

1
2 (�̂ – 2)T � –1(�̂ – 2). Then

DqV1 ≤ z1
(
3z2 + 3� 1 + 2x21

)
+ (�̂ – 2)T

(
Dq �̂ – 
 1

)
, (41)

where 
 1 = x31. Meanwhile, we choose

� 1 = –
k1
3

z1 –
�̂
3

x21. (42)

Then

DqV1 ≤ –k1z21 + 3z1z2 + (�̂ – 2)T Dq(�̂ – 
 1). (43)
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The second term 3z1z2 in DqV1 will be canceled at the next step.
Substituting (42) into (40) yields

Dqz1 = –k1z1 + 3z2 + (2 – �̂ )x21. (44)

Step 2: Since z2 = x2 – � 1, we have

Dqz2 = u – 2x21 – 2x2 sin(x1) +
k1
3

(
3x2 + 2x21

)
+
2�̂
3

x1
(
3x2 + 2x21

)
. (45)

Choose the Lyapunov function V2 = V1 + 1
2z22. Then

DqV2 ≤ –k1z21 + z2
[
3z1 + u – 2x21 – 2x2 sin(x1) +

k1
3

(
3x2 + 2x21

)
+
2�̂
3

x1
(
3x2 + 2x21

)]

+ (�̂ – 2)T
(
Dq �̂ – 
 2

)
. (46)

Then, to make DqV3 ≤ –k1z21 – k2z22, we would choose

u = –k2z2 – 3z1 + 2x21 + 2x2 sin(x1) –
k1
3

(
3x2 + 2x21

)
–
2�̂
3

x1
(
3x2 + 2x21

)
. (47)

In this simulation, k1 = 3, k2 = 2. The results for the initial state condition x1(0) =
1,x2(0) = –1 are given in Figures 1-3.

Figure 1 The state trajectories x1, x2.
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Figure 2 Control input u.

Figure 3 Parameter estimate θ .

Example 2 We consider the following fractional-order nonlinear system:

Dqx1 = b1x2 + � x21,

Dqx2 = b2x3 + � x1x2,

Dqx3 = u,

(48)

where b1 = b2 = 1, � = 2, � 1(x1) = x21, � 2(x1,x2) = x1x2 and � = 1, we choose q = 0.96.
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Step 1: Let z1 = x1 and z2 = x2 – � 1, we rewrite Dqx1 = x2 + 2x21 as

Dqz1 = z2 + � 1 + 2x21. (49)

Choose the Lyapunov function V1 = 1
2z21 +

1
2 (�̂ – 2)T (�̂ – 2). Then

DqV1 ≤ z1
(
z2 + � 1 + �̂ T x21

)
+ (�̂ – 2)T

(
Dq �̂ – x31

)
, (50)

we choose


 1(x1) = x31, (51)

� 1(x1, �̂ ) = –k1x1 – �̂ T x21, (52)

we arrive at

DqV1 ≤ –k1z21 + z1z2 + (�̂ – 2)T
(
Dq �̂ – 
 1

)
. (53)

The second term z1z2 inDqV1 will be canceled at the next step. Notice thatDqz2 = Dqx2 –
Dq� 1, that is,

Dqz2 = x3 + 2x1x2 + k1
(
x2 + 2x21

)
+ Dq(�̂ T x21

)
. (54)

Let z3 = x3 – � 2, choose a Lyapunov function as V2 = V1 + 1
2z22. Then

DqV2 ≤ –k1z21 + z2
[
z1 + z3 + 2x1x2 + � 2 + k1

(
x2 + 2x21

)]
+ (�̂ – 2)T

(
Dq �̂ – 
 2

)
, (55)

where Dq �̂ = 
 2 = 
 1 – z2
�̂ –2

Dq(�̂ T x21). Then, to make DqV2 ≤ –k1z21 – k2z22 + z2z3 + (�̂ –
2)T (Dq �̂ – 
 2), we would choose

� 2(x1,x2, �̂ ) = –x1 – k2
(
x2 + k1x1 + �̂ x21

)
– 2x1x2 – k1

(
x2 + 2x21

)
. (56)

Choose the Lyapunov candidate function V3 = V2 + 1
2z23. Then

DqV3 ≤ –k1z21 – k2z22 + z3
[
z2 + u + x2 + 2x21 + k2

(
x3 + 2x1x2 + k1

(
x2 + 2x21

))

+ 4�̂ x1
(
x2 + 2x21

)
+ k1

(
x3 + 2x1x2 + 4x1

(
x2 + 2x21

))]

+ (�̂ – 2)T
(
Dq �̂ – 
 3

)
, (57)

where Dq �̂ = 
 3 = 
 2 – z3
�̂ –2

Dq(�̂ T x1x2), we choose

u = –z2 – k3z3 – x2 – 2x21 – k2
(
x3 + 2x1x2 + k1

(
x2 + 2x21

))

– 4�̂ x1
(
x2 + 2x21

)
– k1k2

(
x3 + 2x1x2 + 4x1

(
x2 + 2x21

))
, (58)

we obtain

DqV3 ≤ –
3∑

i=1

kiz2i . (59)
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Figure 4 The state trajectories x1, x2, x3.

Figure 5 Control input u.

In this simulation, k1 = k2 = k3 = 1. The results for the initial state condition x1(0) = 1,
x2(0) = –2, x3(0) = –1 are given in Figures 4-6.

5 Conclusions
The problem ofMittage-Leffler stabilization has been investigated for a class of fractional-
order nonlinear systems with the unknown control coefficients. The backstepping design
scheme is extended to fractional-order systems, and an adaptive control law is proposed
with fractional-order update laws to achieve an asymptotical Mittag-Leffler stabilization
for the close-loop system, and the tuning function is constructed to avoid overparame-
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Figure 6 Parameter estimate θ .

terization. Finally, the effectiveness of the proposed method has been verified by some
simulation examples.
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