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Abstract
In this paper, we investigate the existence of positive solutions for a class of high order
fractional differential equation integral boundary value problems with changing sign
nonlinearity. By applying cone expansion and cone compression fixed point theorem,
we have obtained and proved theorems related to the existence of positive solutions,
which highlight the influences of the parameters in different ranges on the existence
of positive solutions. Finally, we also give some examples to illustrate our main results.
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1 Introduction
In this paper, we investigate the existence of positive solutions for a class of high order
fractional differential equation integral boundary value problems with changing sign non-
linearity:

⎧
⎪⎪⎨

⎪⎪⎩

Dα
0+ u(t) + λf (t, u(t)) = 0, t ∈ (0, 1),

u(0) = u′(0) = · · · = u(n–2)(0) = 0,

Dβ

0+ u(1) =
∫ 1

0 Dβ

0+ u(t) dA(t),

(1.1)

where Dα
0+ is the Riemann-Liouville fractional derivative of order α, n – 1 < α ≤ n, n ≥ 3,

0 < β ≤ 1,λ > 0, and
∫ 1

0 Dβ

0+ u(t) dA(t) denotes the Riemann-Stieltjes integrals with respect
to A, in which A(t) is a monotone increasing function and f : [0, 1] ×R

+ →R may change
sign, R+ = [0, +∞).

In recent years, fractional differential equations arise in many engineering and scien-
tific fields such as mathematical modeling of systems physics, chemistry, aerodynamics,
electrodynamics of complex medium, polymer rheology, and so forth. Researchers have
reached a significance in ordinary and partial differential equations involving fractional
derivatives, see [1–3] and the references therein. Since the boundary value problems play
an important role in fractional differential equations theory, more attention has been paid
and plenty of meaningful results have been obtained, see [4–26].
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Generally speaking, in order to guarantee the existence of positive solutions of boundary
value problems, the nonlinearity is usually nonnegative, see [6, 7, 9, 10, 16, 17, 20, 21, 24]
and the references therein. And with the nonlinearity changing sign, it will bring much
more difficulties to the study of the problem, and the papers studying this are relatively
few, see [11, 12, 15, 17, 27] and the references therein. Compared with Riemann integral,
Riemann-Stieltjes integral is more general. For example, the Riemann-Stieltjes integral
∫ 1

0 u(t) dA(t) will become the Riemann integral
∫ 1

0 A′(t)u(t) dt when A has a continuous
derivative. Moreover, Riemann-Stieltjes integral will become more important when A is
not differentiable or A is discontinuous. Any finite or infinite sum can be expressed as
a Riemann-Stieltjes integral by a suitable choice of discontinuous A, see [28]. Since the
nonlocal boundary value problems include the multi-point boundary value problem (A is
a step function) and the Riemann integral boundary value problem (A has a continuous
derivative), it has become a more general case where we study the boundary value prob-
lem with integral boundary conditions of Riemann-Stieltjes type. Many researchers have
done a lot of work on this class of boundary value problems, see [12, 22, 25, 29, 30] and
the references therein.

In [12], Zhang studied the following nonlinear fractional boundary value problem:

⎧
⎪⎪⎨

⎪⎪⎩

Dα
0+ u(t) + f (t, u(t)) = 0, t ∈ (0, 1),

u(0) = u′(0) = 0,

Dβ

0+ u(1) =
∫ 1

0 Dβ

0+ u(t) dA(t),

(1.2)

where 2 < α ≤ 3, 0 < β ≤ 1, the nonlinearity f (t, u) may change sign on some set. By means
of the monotone iterative technique, the existence of nontrivial solutions or positive so-
lutions is obtained. However, f (t, u) is monotone increasing with respect to the fact that u
in some interval is restricted, that is to say, f (t, u) has local monotonicity.

In our work, it is not necessary to have monotonicity of the nonlinearity f (t, u) since
we derive the properties of the corresponding integral kernel function and get a more
accurate inequality than the literature [12]. By a fixed point theorem, sufficient conditions
for the existence of positive solutions of boundary value problem (1.1) are obtained. It is
worth mentioning that the nonlinearity f (t, u) does not need to be nonnegative and lower
bounded. We also focus on studying the impact of the parameter λ on the existence of
positive solutions, and we obtain sufficient conditions so that the problem has at least one
positive solution when the parameter λ belongs to two intervals.

We say that f satisfies the L1-Carathéodory conditions on [0, 1] ×R
+ if

(1) f (·, u) is measurable for all u ∈R
+;

(2) f (t, ·) is continuous for a.e. t ∈ [0, 1];
(3) for each r > 0, there exists ϕr ∈ L1[0, 1], ϕr(t) ≥ 0, such that f (t, u) ≤ ϕr(t) for all

u ∈ [0, r] and a.e. t ∈ [0, 1].
Denote � =

∫ 1
0 tα–β–1 dA(t), in this paper, assume that

∫ 1
0 tα–β–1 dA(t) < 1 holds.

2 Preliminaries
The definitions of fractional integral and fractional derivative and the related lemmas can
be found in [1–3].

Let the space E = C[0, 1], then E is a Banach space with the norm ‖u‖ = maxt∈[0,1] |u(t)|.
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Definition 2.1 If u ∈ E, Dα
0+u ∈ L1[0, 1] and satisfies (1.1), u is called a solution of frac-

tional boundary value problem (1.1). Furthermore, if u(t) > 0, t ∈ (0, 1), u is called a posi-
tive solution of fractional boundary value problem (1.1).

Lemma 2.1 (see[17]) If Dα
0+ u ∈ L1[0, 1], then In–α

0+ u ∈ ACn[0, 1].

Lemma 2.2 For any y ∈ L1[0, 1], the unique solution of the boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

Dα
0+ u(t) + y(t) = 0, t ∈ (0, 1),

u(0) = u′(0) = · · · = u(n–2)(0) = 0,

Dβ

0+ u(1) =
∫ 1

0 Dβ

0+ u(t) dA(t)

(2.1)

is given by

u(t) =
∫ 1

0
G(t, s)y(s) ds, (2.2)

where

G(t, s) = H(t, s) +
tα–1

1 – �

∫ 1

0
K(τ , s) dA(τ ), (2.3)

H(t, s) =
1

�(α)

⎧
⎨

⎩

tα–1(1 – s)α–β–1 – (t – s)α–1, 0 ≤ s < t ≤ 1,

tα–1(1 – s)α–β–1, 0 ≤ t ≤ s ≤ 1,
(2.4)

K(τ , s) =
1

�(α)

⎧
⎨

⎩

(τ (1 – s))α–β–1 – (τ – s)α–β–1, 0 ≤ s < τ ≤ 1,

(τ (1 – s))α–β–1, 0 ≤ τ ≤ s ≤ 1.
(2.5)

Proof Suppose u is a solution to boundary value problem (2.1). Since y ∈ L1[0, 1], then
Dα

0+ u ∈ L1[0, 1]. By Lemma 2.1, In–α
0+ u ∈ ACn[0, 1]. Thus we have

Iα
0+

(
Dα

0+ u
)
(t) = u(t) –

n∑

k=1

cktα–k ,

that is,

u(t) = –
1

�(α)

∫ t

0
(t – s)α–1y(s) ds + c1tα–1 + c2tα–2 + · · · + cntα–n, (2.6)

where ci ∈R, i = 1, 2, . . . , n.
From the boundary conditions u(0) = u′(0) = · · · = u(n–2)(0) = 0, we can get cn = cn–1 =

cn–2 = · · · = c2 = 0. Thus,

u(t) = –
1

�(α)

∫ t

0
(t – s)α–1y(s) ds + c1tα–1, (2.7)

and from the boundary condition Dβ

0+ u(1) =
∫ 1

0 Dβ

0+ u(t) dA(t), we can get

c1 =
1

�(α)(1 – �)

(∫ 1

0
(1 – s)α–β–1y(s) ds –

∫ 1

0

(∫ τ

0
(τ – s)α–β–1y(s) ds

)

dA(τ )
)

.
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Therefore, the unique solution of boundary value problem (2.1) is

u(t) = –
1

�(α)

∫ t

0
(t – s)α–1y(s) ds +

tα–1

�(α)(1 – �)

(∫ 1

0
(1 – s)α–β–1y(s) ds

–
∫ 1

0

(∫ τ

0
(τ – s)α–β–1y(s) ds

)

dA(τ )
)

= –
1

�(α)

∫ t

0
(t – s)α–1y(s) ds +

tα–1

�(α)

∫ 1

0
(1 – s)α–β–1y(s) ds

+
tα–1

�(α)(1 – �)

(∫ 1

0

(∫ 1

0
τα–β–1(1 – s)α–β–1y(s) ds

)

dA(τ )

–
∫ 1

0

(∫ τ

0
(τ – s)α–β–1y(s) ds

)

dA(τ )
)

=
∫ 1

0

(

H(t, s) +
tα–1

�(α)(1 – �)

∫ 1

0
K(τ , s) dA(τ )

)

y(s) ds

=
∫ 1

0
G(t, s)y(s) ds,

where G(t, s), H(t, s), and K(t, s) are defined by (2.3), (2.4), and (2.5), respectively.
On the other hand, if u satisfies (2.2), then u will also satisfy (2.6). Thus, we have

(
Dα

0+ u
)
(t) =

(
d
dt

)n

In–α
0+ u(t) = –

(
d
dt

)n(
In–α

0+ Iα
0+ y

)
(t) = –

(
d
dt

)n

In
0+ y(t) = –y(t),

which implies the equation of boundary value problem (2.1) is satisfied.
We can easily show that u satisfies the boundary condition of boundary value problem

(2.1). �

Lemma 2.3 The function H(t, s), which is defined by (2.4), satisfies the following condi-
tions:

(1) H(t, s) ≥ 0 is continuous for t, s ∈ [0, 1] and H(t, s) > 0 for t, s ∈ (0, 1);
(2) For t, s ∈ [0, 1], we have

H(t, s) ≤ 1
�(α)

tα–1(1 – s)α–β–1;

(3) For t, s ∈ [0, 1], we have

β

�(α)
tα–1s(1 – s)α–β–1 ≤ H(t, s) ≤ 1

�(α)
s(1 – s)α–β–1.

Proof (1) By (2.4), it is clear that H(t, s) is continuous on [0, 1]× [0, 1] and H(t, s) ≥ 0 when
0 ≤ t ≤ s ≤ 1.

For 0 ≤ s ≤ t ≤ 1, we have

tα–1(1 – s)α–β–1 – (t – s)α–1 ≥ tα–1(1 – s)α–β–1 – tα–1(1 – s)α–1

= tα–1(1 – s)α–β–1(1 – (1 – s)β
) ≥ 0.
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So, we have H(t, s) ≥ 0 for any t, s ∈ [0, 1]. Similarly, for t, s ∈ (0, 1), we have H(t, s) > 0.
(2) It follows from (2.4) that H(t, s) ≤ 1

�(α) tα–1(1 – s)α–β–1 .
(3) Since n – 1 < α ≤ n, n ≥ 3, it is easy to show that H(t, s) ≤ 1

�(α) s(1 – s)α–β–1 for 0 ≤ t ≤
s ≤ 1.

For 0 ≤ s ≤ t ≤ 1, let

h(t, s) =
1

�(α)
(
tα–1(1 – s)α–β–1 – (t – s)α–1) –

1
�(α)

s(1 – s)α–β–1.

We have

h(1, s) ≤ 0, h(s, s) ≤ 0,

and

∂h(t, s)
∂t

=
α – 1
�(α)

(
tα–2(1 – s)α–β–1 – (t – s)α–2).

If there exists t0 ∈ (s, 1) such that ∂h(t0,s)
∂t = 0, then

t0
α–2(1 – s)α–β–1 = (t0 – s)α–2,

which implies that

h(t0, s) =
1

�(α)
(
t0

α–1(1 – s)α–β–1 – (t0 – s)α–1 – s(1 – s)α–β–1)

=
1

�(α)
(
t0

α–1(1 – s)α–β–1 – (t0 – s)α–2(t0 – s) – s(1 – s)α–β–1)

=
1

�(α)
(
t0

α–1(1 – s)α–β–1 – t0
α–2(1 – s)α–β–1(t0 – s) – s(1 – s)α–β–1)

=
1

�(α)
(1 – s)α–β–1(t0

α–1 – t0
α–2(t0 – s) – s

)

=
1

�(α)
(1 – s)α–β–1s

(
t0

α–2 – 1
) ≤ 0.

Hence, we have

h(t, s) =
1

�(α)
(
tα–1(1 – s)α–β–1 – (t – s)α–1) –

1
�(α)

s(1 – s)α–β–1 ≤ 0,

which implies that H(t, s) ≤ 1
�(α) s(1 – s)α–β–1 for 0 ≤ s < t ≤ 1.

Therefore, we can get that

H(t, s) ≤ 1
�(α)

s(1 – s)α–β–1 for any t, s ∈ [0, 1].

On the other hand, for 0 ≤ s < t ≤ 1, we can show

H(t, s) =
1

�(α)
(
tα–1(1 – s)α–β–1 – (t – s)α–1)
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≥ 1
�(α)

(
tα–1(1 – s)α–β–1 – tα–1(1 – s)α–1)

=
1

�(α)
tα–1(1 – s)α–β–1(1 – (1 – s)β

)

≥ β

�(α)
tα–1s(1 – s)α–β–1.

For 0 ≤ t ≤ s ≤ 1, we have

H(t, s) =
1

�(α)
tα–1(1 – s)α–β–1 ≥ β

�(α)
tα–1(1 – s)α–β–1s.

Hence, (3) holds. �

Lemma 2.4 The function K (τ , s), which is defined by (2.5), satisfies the following condi-
tions:

(1) K(τ , s) ≥ 0 is continuous for τ , s ∈ [0, 1] and K(τ , s) > 0 for τ , s ∈ (0, 1);
(2) For τ ∈ [0, 1], s ∈ [0, 1], we have

K(τ , s) ≤ 1
�(α)

(1 – s)α–β–1;

(3) For τ ∈ (0, 1], s ∈ [0, 1], we have

min{α – β – 1, 1}
�(α)

τα–β–1(1 – τ )s(1 – s)α–β–1 ≤ K(τ , s)

≤ max{α – β – 1, 1}
�(α)

τα–β–2s(1 – s)α–β–1.

Proof By the expression of K(τ , s), it is easy to check that (1) and (2) hold.
(3) Similar to the proof of Lemma 2.8 in [12], we can prove

K(τ , s) ≥ min{α – β – 1, 1}
�(α)

τα–β–1(1 – τ )s(1 – s)α–β–1.

In the following we will prove

K(τ , s) ≤ max{α – β – 1, 1}
�(α)

τα–β–2s(1 – s)α–β–1.

We divide the proof into the following two cases for α – β – 1 ∈ (0, +∞).
Case 1: 0 < α – β – 1 ≤ 1.
If 0 ≤ s < τ ≤ 1, then

K(τ , s) =
1

�(α)
(
τα–β–1(1 – s)α–β–1 – (τ – s)α–β–1)

=
τα–β–2(1 – s)α–β–2

�(α)

(

τ (1 – s) – (τ – s)
(1 – s

τ
)α–β–2

(1 – s)α–β–2

)

≤ τα–β–2(1 – s)α–β–2

�(α)
(
τ (1 – s) – (τ – s)

)
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=
τα–β–2(1 – s)α–β–2

�(α)
s(1 – τ )

≤ 1
�(α)

τα–β–2s(1 – s)α–β–1.

If 0 ≤ τ ≤ s ≤ 1, then

K(τ , s) =
1

�(α)
τα–β–1(1 – s)α–β–1 ≤ 1

�(α)
τα–β–2s(1 – s)α–β–1.

Case 2: 1 < α – β – 1.
If 0 ≤ s < τ ≤ 1, we have

K(τ , s) =
1

�(α)
(
τα–β–1(1 – s)α–β–1 – (τ – s)α–β–1)

≤ α – β – 1
�(α)

(
τ (1 – s)

)α–β–2(
τ (1 – s) – (τ – s)

)

≤ α – β – 1
�(α)

(
τ (1 – s)

)α–β–2s(1 – τ )

≤ α – β – 1
�(α)

τα–β–2s(1 – s)α–β–1.

If 0 ≤ τ ≤ s ≤ 1, we have

K(τ , s) =
1

�(α)
τα–β–1(1 – s)α–β–1 ≤ α – β – 1

�(α)
τα–β–2s(1 – s)α–β–1.

Therefore, we can get that (3) holds. �

Denote

M1 =
1

�(α)

(

β +
min{α – β – 1, 1} ∫ 1

0 τα–β–1(1 – τ ) dA(τ )
1 – �

)

,

M2 =
1

�(α)

(

1 +
max{α – β – 1, 1} ∫ 1

0 τα–β–2 dA(τ )
1 – �

)

,

M3 =
1

�(α)

(

1 +
A(1) – A(0)

1 – �

)

.

Lemma 2.5 The function G(t, s), which is defined by (2.3), satisfies the following condi-
tions:

(1) G(t, s) ≥ 0 is continuous for t, s ∈ [0, 1] and G(t, s) > 0 for t, s ∈ (0, 1);
(2) For t, s ∈ [0, 1], we have

G(t, s) ≤ M3tα–1;

(3) For t, s ∈ [0, 1], we have

M1tα–1s(1 – s)α–β–1 ≤ G(t, s) ≤ M2s(1 – s)α–β–1 ≤ M2.
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Proof (1) From Lemmas 2.3 and 2.4, we obtain that G(t, s) ≥ 0 is continuous for t, s ∈ [0, 1]
and G(t, s) > 0 for t, s ∈ (0, 1).

(2) For any t, s ∈ [0, 1], from (2) of Lemma 2.3 and (2) of Lemma 2.4, we have

G(t, s) = H(t, s) +
tα–1

1 – �

∫ 1

0
K(τ , s) dA(τ )

≤ 1
�(α)

tα–1(1 – s)α–β–1 +
tα–1(A(1) – A(0))

�(α)(1 – �)
(1 – s)α–β–1

≤ 1
�(α)

(

1 +
A(1) – A(0)

1 – �

)

tα–1(1 – s)α–β–1

≤ tα–1

�(α)

(

1 +
A(1) – A(0)

1 – �

)

= M3tα–1.

(3) For any t, s ∈ [0, 1], from (3) of Lemma 2.3 and (3) of Lemma 2.4, we have

G(t, s) = H(t, s) +
tα–1

1 – �

∫ 1

0
K(τ , s) dA(τ )

≤ 1
�(α)

s(1 – s)α–β–1 +
tα–1 max{α – β – 1, 1} ∫ 1

0 τα–β–2 dA(τ )
�(α)(1 – �)

s(1 – s)α–β–1

≤ s(1 – s)α–β–1

�(α)

(

1 +
max{α – β – 1, 1} ∫ 1

0 τα–β–2 dA(τ )
1 – �

)

= M2s(1 – s)α–β–1

≤ M2.

On the other hand, for any t, s ∈ [0, 1], we have

G(t, s) = H(t, s) +
tα–1

1 – �

∫ 1

0
K(τ , s) dA(τ )

≥ 1
�(α)

tα–1sβ(1 – s)α–β–1

+
tα–1 min{α – β – 1, 1} ∫ 1

0 τα–β–1(1 – τ ) dA(τ )
�(α)(1 – �)

s(1 – s)α–β–1

=
tα–1s(1 – s)α–β–1

�(α)

(

β +
min{α – β – 1, 1} ∫ 1

0 τα–β–1(1 – τ ) dA(τ )
1 – �

)

= M1tα–1s(1 – s)α–β–1. �

3 Existence of positive solutions of the boundary value problem
We make the following assumption throughout this paper.

(H1) There exists a nonnegative function p ∈ L1[0, 1] and
∫ 1

0 p(s) ds > 0 such that

f (t, u) ≥ –p(t);
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(H2) There exists [θ1, θ2] ⊂ (0, 1) such that

lim inf
u→+∞ inf

t∈[θ1,θ2]

f (t, u)
u

= +∞;

(H3) There exists [θ3, θ4] ⊂ (0, 1) such that

lim inf
u→+∞ inf

t∈[θ3,θ4]
f (t, u) >

2M2M3
∫ 1

0 p(s) ds

M2
1θ

α–1
3

∫ θ4
θ3

s(1 – s)α–β–1 ds
,

and

lim sup
u→+∞

sup
t∈[0,1]

f (t, u)
u

= 0.

Define P = {u ∈ E : u(t) ≥ M1tα–1

M2
‖u‖, t ∈ [0, 1]}. Obviously, P ⊂ E is a cone of E.

We denote Br = {u ∈ E : ‖u‖ < r}, Pr = P ∩ Br , and ∂Pr = P ∩ ∂Br .
Let ω(t) be the solution of the boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

Dα
0+ u(t) + λp(t) = 0, t ∈ (0, 1),

u(0) = u′(0) = · · · = u(n–2)(0) = 0,

Dβ

0+ u(1) =
∫ 1

0 Dβ

0+ u(t) dA(t).

(3.1)

By Lemma 2.2, we have

ω(t) = λ

∫ 1

0
G(t, s)p(s) ds

is the unique solution of boundary value problem (3.1).
Denote [u(t) – ω(t)]+ = max{u(t) – ω(t), 0}, let

f ∗(t, u(t)
)

= f
(
t,

[
u(t) – ω(t)

]+)
+ p(t), t ∈ (0, 1).

Next we will consider the following boundary value problem:

⎧
⎪⎪⎨

⎪⎪⎩

Dα
0+ u(t) + λf ∗(t, u(t)) = 0, t ∈ (0, 1),

u(0) = u′(0) = · · · = u(n–2)(0) = 0,

Dβ

0+ u(1) =
∫ 1

0 Dβ

0+ u(t) dA(t).

(3.2)

We define an operator T : P → E by

Tu(t) = λ

∫ 1

0
G(t, s)f ∗(s, u(s)

)
ds.

Lemma 3.1 Assume (H1) holds. Then u∗ is a positive solution of boundary value problem
(1.1) if and only if u = u∗ + ω is a positive solution of boundary value problem (3.2) and
u(t) ≥ ω(t) for t ∈ [0, 1].
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Proof If u∗ is a positive solution of boundary value problem (1.1), then

Dα
0+

(
u∗(t) + ω(t)

)
= Dα

0+u∗(t) + Dα
0+ω(t)

= –λf
(
t, u∗(t)

)
– λp(t)

= –λ
(
f
(
t, u∗(t)

)
+ p(t)

)

= –λf ∗(t,
(
u∗(t) + ω(t)

))
,

which implies that

Dα
0+u(t) = –λf ∗(t, u(t)

)
.

Since u∗ is a positive solution, then u(t) ≥ ω(t) ≥ 0 for t ∈ [0, 1]. It is easy to show that
u(t) satisfies the boundary conditions. Therefore, u(t) is a positive solution of boundary
value problem (3.2).

On the other hand, if u = u∗ + ω is a positive solution of boundary value problem (3.2)
and u(t) ≥ ω(t) for t ∈ [0, 1], we can easily prove that u∗ is a positive solution of boundary
value problem (1.1). �

Lemma 3.2 Assume that (H1) holds and f satisfies the L1-Carathéodory conditions, then
T : P → P is completely continuous.

Proof (1) We can show that T : P → P.
According to Lemmas 2.2 and 2.5, we have Tu(t) ≥ 0 on [0, 1] for u ∈ P and

Tu(t) = λ

∫ 1

0
G(t, s)f ∗(s, u(s)

)
ds

≥ λtα–1M1

∫ 1

0
s(1 – s)α–β–1f ∗(s, u(s)

)
ds.

On the other hand, we have

Tu(t) = λ

∫ 1

0
G(t, s)f ∗(s, u(s)

)
ds

≤ λM2

∫ 1

0
s(1 – s)α–β–1f ∗(s, u(s)

)
ds.

Then Tu(t) ≥ M1tα–1

M2
‖Tu‖, which implies T : P → P.

(2) We show that T is a continuous operator.
Let {un} ⊂ P, u0 ∈ P, and ‖un – u0‖ → 0 as n → ∞, there exists a constant r0 > 0 such

that ‖un‖ ≤ r0 and ‖u0‖ ≤ r0. Therefore, for a.e. s ∈ [0, 1], we have

∣
∣f ∗(s, un(s)

)
– f ∗(s, u0(s)

)∣
∣ → 0, n → ∞,

and

∣
∣f ∗(s, un(s)

)
– f ∗(s, u0(s)

)∣
∣ ≤ 2ϕr0 (s).
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By the Lebesgue dominated convergence theorem, we can get

lim
n→∞‖Tun – Tu0‖ = 0, n → ∞.

Hence, T : P → P is continuous.
(3) T : P → P is relatively compact.
Let � ⊂ P be any bounded set, then there exists a constant l > 0 such that ‖u‖ ≤ l for

each u ∈ �, we have

∣
∣Tu(t)

∣
∣ =

∣
∣
∣
∣λ

∫ 1

0
G(t, s)f ∗(s, u(s)

)
ds

∣
∣
∣
∣ ≤ λM2

∫ 1

0

(
ϕl(s) + p(s)

)
ds < +∞,

which implies that ‖Tu‖ ≤ λM2
∫ 1

0 (ϕl(s) + p(s)) ds. Hence, T(�) is uniformly bounded.
In addition, for any given u ∈ �, because G(t, s) is continuous for (t, s) ∈ [0, 1] × [0, 1],

then it must be uniformly continuous. So, for any ε > 0, there exists a constant δ > 0 such
that, for any t1, t2, s ∈ [0, 1], as |t1 – t2| < δ, we can get

∣
∣G(t1, s) – G(t2, s)

∣
∣ <

ε

λ
∫ 1

0 (ϕl(s) + p(s)) ds + 1
.

Then

∣
∣Tu(t1) – Tu(t2)

∣
∣ ≤ λ

∫ 1

0

∣
∣G(t1, s) – G(t2, s)

∣
∣
∣
∣f ∗(s, u(s)

)∣
∣ds < ε.

Thus, we prove T(�) is equicontinuous.
According to the Arzela-Ascoli theorem, we conclude that T(�) is relatively compact.
Therefore, T : P → P is completely continuous. �

Theorem 3.3 Assume that (H1) and (H2) hold. Then there exists a constant λ∗ > 0 such
that boundary value problem (1.1) has at least one positive solution for any λ ∈ (0,λ∗).

Proof By assumption (H2), there exists a constant N > 0 such that, for any t ∈ [θ1, θ2] and
u > N , we have f (t, u) > L̃u, where L̃ = 2M2

λM2
1θ

2(α–1)
1

∫ θ2
θ1

s(1–s)α–β–1 ds
.

For any λ > 0, let r1 > max{ 2λM2M3
M1

∫ 1
0 p(s) ds, 2M2N

M1θα–1
1

}.
Then, for any u ∈ ∂Pr1 , t ∈ [0, 1], we have

u(t) – ω(t) ≥ M1tα–1

M2
r1 – λ

∫ 1

0
G(t, s)p(s) ds

≥ M1tα–1

M2
r1 – λM3tα–1

∫ 1

0
p(s) ds

≥ tα–1
(

M1

M2
r1 – λM3

∫ 1

0
p(s) ds

)

≥ tα–1
(

M1

M2
r1 –

M1

2M2
r1

)

=
M1

2M2
r1tα–1 ≥ 0.
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Thus, for any t ∈ [θ1, θ2], we have

u(t) – ω(t) ≥ M1θ
α–1
1

2M2
r1 ≥ N .

Hence, we get

‖Tu‖ = max
t∈[0,1]

λ

∫ 1

0
G(t, s)f ∗(s, u(s)

)
ds

= max
t∈[0,1]

λ

∫ 1

0
G(t, s)

(
f
(
s,

[
u(s) – ω(s)

]+)
+ p(s)

)
ds

= max
t∈[0,1]

λ

∫ 1

0
G(t, s)

(
f
(
s, u(s) – ω(s)

)
+ p(s)

)
ds

≥ max
t∈[θ1,θ2]

λ

∫ θ2

θ1

G(t, s)f
(
s, u(s) – ω(s)

)
ds

≥ max
t∈[θ1,θ2]

λL̃
∫ θ2

θ1

G(t, s)
(
u(s) – ω(s)

)
ds

≥ λL̃
M1θ

α–1
1

2M2
r1

∫ θ2

θ1

M1θ
α–1
1 s(1 – s)α–β–1 ds

=
λM2

1θ
2(α–1)
1

∫ θ2
θ1

s(1 – s)α–β–1 ds
2M2

L̃r1 = r1.

Thus

‖Tu‖ ≥ ‖u‖, for u ∈ ∂Pr1 .

Take 0 < r2 < r1. Choose λ∗ = min{ M1r2
M2M3

∫ 1
0 p(s) ds

, r2
M2

∫ 1
0 (ϕr2 (s)+p(s)) ds

}.

For any λ ∈ (0,λ∗), u ∈ ∂Pr2 , u(t) ≥ M1tα–1

M2
r2 and

ω(t) = λ

∫ 1

0
G(t, s)p(s) ds ≤ λM3tα–1

∫ 1

0
p(s) ds.

We have

0 ≤ M1tα–1

M2
r2 – λM3tα–1

∫ 1

0
p(s) ds ≤ u(t) – ω(t) ≤ r2.

Therefore,

Tu(t) = λ

∫ 1

0
G(t, s)f ∗(s, u(s)

)
ds

= λ

∫ 1

0
G(t, s)

(
f
(
s, u(s) – ω(s)

)
+ p(s)

)
ds

≤ λM2

∫ 1

0

(
ϕr2 (s) + p(s)

)
ds

< λ∗M2

∫ 1

0

(
ϕr2 (s) + p(s)

)
ds
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≤ r2

M2
∫ 1

0 (ϕr2 (s) + p(s)) ds
M2

∫ 1

0

(
ϕr2 (s) + p(s)

)
ds

= r2.

Thus,

‖Tu‖ ≤ ‖u‖, for u ∈ ∂Pr2 .

By Lemma 3.2, we know that T is a completely continuous operator.
According to cone expansion and cone compression fixed point theorem (see [31]), we

can obtain that T has a fixed point u such that r1 ≤ ‖u‖ ≤ r2 in P ∩ (B̄r2 \ Br1 ).
Let u∗ = u – ω. For t ∈ (0, 1), we have

u∗(t) =
M1tα–1

M2
‖u‖ – λM3tα–1

∫ 1

0
p(s) ds > tα–1

(
M1

M2
r2 – λ∗M3

∫ 1

0
p(s) ds

)

> 0.

Then u∗ is the positive solution of (1.1).
Hence, there exists a constant λ∗ > 0 such that boundary value problem (1.1) has at least

one positive solution for any λ ∈ (0,λ∗). �

Theorem 3.4 Assume that (H1) and (H3) hold. Then there exists a constant λ̄∗ > 0 such
that boundary value problem (1.1) has at least one positive solution for any λ ∈ (λ̄∗, +∞).

Proof By the first limit of (H3), there exists a constant N > 0 such that, for any t ∈ [θ3, θ4],
u > N , we have

f (t, u) ≥ 2M2M3
∫ 1

0 p(s) ds

M2
1θ

α–1
3

∫ θ4
θ3

s(1 – s)α–β–1 ds
.

Choose λ̄∗ = Nθ1–α
3

M3
∫ 1

0 p(s) ds
, R1 = 2λM2M3

∫ 1
0 p(s) ds

M1
.

Then, for any λ ∈ (λ̄∗, +∞), u ∈ ∂PR1 , we have

u(t) – ω(t) ≥ M1tα–1

M2
R1 – λM3tα–1

∫ 1

0
p(s) ds

= λM3tα–1
∫ 1

0
p(s) ds.

Hence, for any t ∈ [θ3, θ4], u(t) – ω(t) ≥ Ntα–1θ1–α
3 ≥ N , we get

Tu(t) = λ

∫ 1

0
G(t, s)f ∗(s, u(s)

)
ds

≥ λ

∫ θ4

θ3

G(t, s)f
(
s, u(s) – ω(s)

)
ds

≥ 2λM2M3
∫ 1

0 p(s) ds

M2
1θ

α–1
3

∫ θ4
θ3

s(1 – s)α–β–1 ds

∫ θ4

θ3

G(t, s) ds
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≥ 2λM2M3
∫ 1

0 p(s) ds

M2
1θ

α–1
3

∫ θ4
θ3

s(1 – s)α–β–1 ds

∫ θ4

θ3

tα–1M1s(1 – s)α–β–1 ds

≥ 2λM2M3
∫ 1

0 p(s) ds
M1

= R1.

Thus

‖Tu‖ ≥ ‖u‖, for u ∈ ∂PR1 .

On the other hand, let ε = 1
3λM2

, by (H3), lim supu→+∞ supt∈[0,1]
f (t,u)

u = 0, there exists a
constant M > R1 such that

f (t, u) ≤ εu for t ∈ [0, 1] and u > M.

Since f satisfies the L1-Carathéodory conditions on [0, 1] × [0, +∞), we have

f (t, u) ≤ ϕM(t) for t ∈ [0, 1] and 0 ≤ u ≤ M.

Let

R2 > max

{

M,
λM2M3

∫ 1
0 p(s) ds

M1
, 3λM2

∫ 1

0
p(s) ds, 3λM2

∫ 1

0
ϕM(s) ds

}

.

Then, for any u ∈ ∂PR2 and t ∈ [0, 1], we have

u(t) – ω(t) ≥ M1tα–1

M2
R2 – λM3tα–1

∫ 1

0
p(s) ds ≥ 0.

Hence, for any t ∈ [0, 1], we get

Tu(t) = λ

∫ 1

0
G(t, s)f ∗(s, u(s)

)
ds

= λ

∫ 1

0
G(t, s)

(
f
(
s, u(s) – ω(s)

)
+ p(s)

)
ds

≤ λM2

∫ 1

0

(
f
(
s, u(s) – ω(s)

)
+ p(s)

)
ds

= λM2

∫ 1

0
f
(
s, u(s) – ω(s)

)
ds + λM2

∫ 1

0
p(s) ds

= λM2

(∫

u(s)–ω(s)>M
f
(
s, u(s) – ω(s)

)
ds +

∫

0≤u(s)–ω(s)≤M
f
(
s, u(s) – ω(s)

)
ds

)

+ λM2

∫ 1

0
p(s) ds

≤ λM2εR2 + λM2

∫ 1

0
ϕM(s) ds + λM2

∫ 1

0
p(s) ds

≤ R2

3
+

R2

3
+

R2

3
= R2.
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Thus,

‖Tu‖ ≤ ‖u‖ for u ∈ ∂PR2 .

By Lemma 3.2, we know that T is a completely continuous operator.
According to cone expansion and cone compression fixed point theorem (see [31]), we

can obtain that T has a fixed point u such that R1 ≤ ‖u‖ ≤ R2 in P ∩ (B̄R2 \ BR1 ).
Let u∗(t) = u(t) – ω(t), t ∈ [0, 1]. We have

u∗(t) =
M1tα–1

M2
‖u‖ – λM3tα–1

∫ 1

0
p(s) ds ≥

(

λM3

∫ 1

0
p(s) ds

)

tα–1.

Then u∗ is the positive solution of (1.1).
Therefore, there exists a constant λ̄∗ > 0 such that boundary value problem (1.1) has at

least one positive solution for any λ ∈ (λ̄∗, +∞). �

4 Illustration
To illustrate our main results, we present the following examples.

Example 4.1 We consider the boundary value problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D
7
2
0+ u(t) + λ(u 3

2 (t) + ln t) = 0, t ∈ (0, 1),

u(0) = u′(0) = u′′(0) = 0,

D
1
2
0+ u(1) =

∫ 1
0 D

1
2
0+ u(t) dt,

(4.1)

where α = 7
2 , n = 4, β = 1

2 , A(t) = t. Choose f (t, u) = u 3
2 + ln t. Then

–| ln t| = ln t ≤ f (t, u) = u
3
2 + ln t, t ∈ (0, 1),

where

p(t) = | ln t|, q(t) = 1, g(u) = u
1
2 .

By direct calculation, we have

M1 = 0.2256758, M2 = M3 = 0.7522528,
∫ 1

0
p(s) ds = 1,

and

lim inf
u→+∞ inf

t∈[θ1,θ2]

f (t, u)
u

= +∞.

So all the conditions of Theorem 3.3 are satisfied. By Theorem 3.3, there exists λ∗ > 0 such
that boundary value problem (4.1) has at least one positive solution provided λ ∈ (0,λ∗).
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Example 4.2 We consider the boundary value problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D
8
3
0+ u(t) + λ(– sin(2πu(t))√

t(1–t) + u 1
2 (t)) = 0, t ∈ (0, 1),

u(0) = u′(0) = 0,

D
1
8
0+ u(1) = D

1
8
0+ u( 1

4 ) + D
1
8
0+ u( 3

4 ),

(4.2)

where α = 8
3 , n = 3, β = 1

8 , f (t, u) = – sin(2πu)√
t(1–t) + u 1

2 ,

A(t) =

⎧
⎪⎪⎨

⎪⎪⎩

0, 0 ≤ t < 1
4 ,

1, 1
4 ≤ t < 3

4 ,

2, 3
4 ≤ t < 1.

Let p(t) = 2√
t(1–t) . Clearly, for t ∈ (0, 1), we have

f (t, u) > –p(t).

By direct calculation, we have

M1 = 2.461073, M2 = 6.3273, M3 = 6.197864,
∫ 1

0
p(s) ds = 6.283185,

and

lim sup
u→+∞

sup
t∈[0,1]

f (t, u)
u

= 0.

So, all the conditions of Theorem 3.4 are satisfied. By Theorem 3.4, there exists λ̄∗ > 0 such
that boundary value problem (4.2) has at least one positive solution provided λ ∈ (λ̄∗, +∞).
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