
Bai Advances in Difference Equations  (2018) 2018:4 
https://doi.org/10.1186/s13662-017-1460-3

R E S E A R C H Open Access

Existence and uniqueness of solutions for
fractional boundary value problems with
p-Laplacian operator
Chuanzhi Bai*

*Correspondence:
czbai8@sohu.com
Department of Mathematics,
Huaiyin Normal University, Huaian,
Jiangsu 223300, P.R. China

Abstract
In this paper, we investigate the existence and uniqueness of solutions for a fractional
boundary value problem involving the p-Laplacian operator. Our analysis relies on
some properties of the Green function and the Guo-Krasnoselskii fixed point theorem
and the Banach contraction mapping principle. Two examples are given to illustrate
our theoretical results.
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1 Introduction
Fractional differential equations have excited, in the past decades, a considerable interest
both in mathematics and in applications. They were used in the mathematical modeling
of systems and processes occurring in many engineering and scientific disciplines; for in-
stance, see [1–7]. On the other hand, for studying the turbulent flow in a porous medium,
Leibenson [8] introduced the model of a differential equation with the p-Laplacian oper-
ator. Since then, differential equations with a p-Laplacian operator are widely applied in
different fields of physics and natural phenomena; for examples, see [9–12] and the refer-
ences therein.

The topic of fractional-order boundary value problems with the p-Laplacian operator
has been intensively studied by several researchers in the recent years. We refer the reader
to [13–17] and the references therein.

Chen et al. [18] studied the existence of solutions for the boundary value problem of the
fractional p-Laplacian equation

⎧
⎨

⎩

cDβ

0+ (ϕp(cDα
0+ x(t))) = f (t, x(t), Dα

0+ x(t)), 0 < t < 1,
cDα

0+ x(0) = cDα
0+ x(1) = 0,

(1.1)

where 0 < α,β ≤ 1, 1 < α + β ≤ 2, cDα
0+ is the Caputo fractional derivative of order α,

ϕp(s) = |s|p–2s, p > 1, and f : [0, 1] × R
2 → R is a continuous function. Obviously, ϕp is

invertible, and its inverse operator is ϕq, where q > 1 is a constant such that 1
p + 1

q = 1.
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Arifi et al. [19] investigated the following nonlinear fractional boundary value problem
with p-Laplacian operator:

⎧
⎨

⎩

Dβ

a+ (ϕp(Dα
a+ u(t))) + χ (t)ϕp(u(t)) = 0, a < t < b,

u(a) = u′(a) = u′(b) = 0, Dα
a+ u(a) = Dα

a+ u(b) = 0,
(1.2)

where 2 < α ≤ 3, 1 < β ≤ 2, p > 1, Dα
a+ is the Riemann-Liouville fractional derivative of

order α, and χ : [a, b] →R is a continuous function. Necessary conditions for the existence
of nontrivial solutions to (1.2) were given.

In our recent paper [20], we consider the following fractional boundary value problem
with mixed fractional derivative and p-Laplacian operator

⎧
⎨

⎩

Dβ

a+ (ϕp(cDα
a+ u(t))) = k(t)f (u(t)), a < t < b,

u′(a) = cDα
a+ u(a) = 0, u(b) = cDα

a+ u(b) = 0,
(1.3)

where 1 < α,β ≤ 2, p > 1, and k : [a, b] →R is a continuous function. Under some assump-
tions on the nonlinear term f , the existence of positive solutions to (1.3) was obtained, and
two Lyapunov-type inequalities were established.

Motivated by the works mentioned, in this paper, we investigate the existence of positive
solutions and the uniqueness of a solution for the following boundary value problem of
fractional differential equation with p-Laplacian operator:

⎧
⎨

⎩

(ϕp(Dα
0+ u(t)))′ + f (t, u(t)) = 0, 0 < t < 1,

u(0) = Dα
0+ u(0) = 0, cDβ

0+ u(0) = cDβ

0+ u(1) = 0,
(1.4)

where 0 < β ≤ 1, 2 < α < 2+β , Dα
0+ and cDβ

0+ are the Riemann-Liouville fractional derivative
and Caputo fractional derivative of orders α,β , respectively, p > 1, and f : [a, b] ×R → R

is a continuous function.
The paper is organized as follows. In Section 2, we briefly introduce some necessary

basic knowledge and definitions about fractional calculus theory. In Section 3, we write
(1.4) as an equivalent integral equation, and then, under some assumptions on the non-
linear term f , we establish three theorems on the existence of nontrivial positive solutions
and uniqueness of a solution for FBVP (1.4) by means of the Guo-Krasnoselskii fixed point
theorem and the Banach contraction mapping principle, respectively. Finally, in Section 4,
we give two examples to show the effectiveness of the results obtained.

2 Preliminaries
In this section, we introduce some concepts and results of fractional calculus. For more
details, we refer to [2, 3].

Definition 2.1 The Riemann-Liouville fractional integral operator of order α > 0 of a
function f : (0, +∞) → R is given by

(
Iα

0+ f
)
(t) =

1
�(α)

∫ t

0
(t – s)α–1f (s) ds,

where � denotes the gamma function.
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Definition 2.2 The Riemann-Liouville fractional derivative of order α > 0 of a continuous
function f : (0, +∞) → R is given by

(
Dα

0+ f
)
(t) =

1
�(n – α)

dn

dtn

∫ t

0

f (s)
(t – s)α–n+1 ds,

where n = [α] + 1.

Definition 2.3 The Caputo fractional derivative of order α > 0 of a function f : (0, +∞) →
R is given by

(cDα
0+ f

)
(t) =

1
�(n – α)

∫ t

0
(t – s)n–α–1f (n)(s) ds,

where n = [α] + 1.

We now state some properties of fractional operators.

Lemma 2.4 ([3]) Let α,β ∈R
+ and u ∈ L1[0, 1]. Then Iα

0+ Iβ

0+ u(x) = Iα+β

0+ almost everywhere
on [0, 1].

Lemma 2.5 ([3]) Let α ∈R
+ and u ∈ C[0, 1]. Then cDα

a+ Iα
a+ u(x) = u(x).

Lemma 2.6 ([3]) If α > 0, n = [α] + 1, and u ∈ ACn[0, 1], then Iα
0+

cDα
0+ u(x) = u(x) –

∑n–1
k=0

xk

k! u(k)(0).

Lemma 2.7 ([21]) Let X be a Banach space, and let P ⊂ X be a cone. Let �1 and �2 be
bounded open subsets of X with 0 ∈ �1 ⊂ �̄1 ⊂ �2, and let T : P ∩ (�̄2 \ �1) → P be a
completely continuous operator such that

(i) ‖Tu‖ ≥ ‖u‖ for any u ∈ P ∩ ∂�1 and ‖Tu‖ ≤ ‖u‖ for any u ∈ P ∩ ∂�2; or
(ii) ‖Tu‖ ≤ ‖u‖ for any u ∈ P ∩ ∂�1 and ‖Tu‖ ≥ ‖u‖ for any u ∈ P ∩ ∂�2.

Then, T has a fixed point in P ∩ (�̄2 \ �1).

3 Main results
Let E = C[0, 1] be endowed with the norm ‖x‖ = maxt∈[0,1] |x(t)|.

We now consider the following boundary value problem:
⎧
⎨

⎩

(ϕp(Dα
0+ u(t)))′ + h(t) = 0, 0 < t < 1,

u(0) = Dα
0+ u(0) = 0, cDβ

0+ u(0) = cDβ

0+ u(1) = 0.
(3.1)

Lemma 3.1 Let h ∈ C[0, 1] ∩ L[0, 1], 0 < β ≤ 1, and 2 < α < 2 + β . Then u ∈ C[0, 1] is a
solution of (3.1) if and only if

u(t) =
∫ 1

0
G(t, s)ϕq

(∫ s

0
h(τ ) dτ

)

ds, (3.2)

where G(t, s) is Green’s function given by

G(t, s) =
1

�(α)

⎧
⎨

⎩

(1–s)α–β–1tα–1

�(α) , 0 ≤ t ≤ s ≤ 1,
(1–s)α–β–1tα–1–(t–s)α–1

�(α) , 0 ≤ s ≤ t ≤ 1.
(3.3)
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Proof Integrating the first equation of (3.1) on [0, t], by the boundary condition Dα
0+ u(0) =

0 we have that

ϕp
(
Dα

0+ u(t)
)

= ϕp
(
Dα

0+ u(0)
)

–
∫ t

0
h(s) ds = –

∫ t

0
h(s) ds,

which implies that

Dα
0+ u(t) = –ϕq

(∫ t

0
h(s) ds

)

.

By Lemma 2.6 we have that

u(t) = –
1

�(α)

∫ t

0
(t – s)α–1ϕq

(∫ s

0
h(τ ) dτ

)

ds + c1tα–1 + c2tα–2 + c3tα–3. (3.4)

By the boundary value condition u(0) = 0 we have c3 = 0. Moreover, from Lemmas 2.4 and
2.5 we can easily obtain

cDβ

0+ u(t) = –
1

�(α – β)

∫ t

0
(t – s)α–β–1ϕq

(∫ s

0
h(τ ) dτ

)

ds

+ c1
�(α)

�(α – β)
tα–β–1 + c2

�(α – 1)
�(α – β – 1)

tα–β–2. (3.5)

By (3.5) and cDβ

0+ u(0) = 0 we have c2 = 0. On the other hand,

0 = cDβ

0+ u(1) = –
1

�(α – β)

∫ 1

0
(1 – s)α–β–1ϕq

(∫ s

0
h(τ ) dτ

)

ds + c1
�(α)

�(α – β)
,

which yields that

c1 =
1

�(α)

∫ 1

0
(1 – s)α–β–1ϕq

(∫ s

0
h(τ ) dτ

)

ds. (3.6)

Substituting c2 = c3 = 0 and (3.6) into (3.4), we can obtain that the solution of (3.1) is

u(t) =
∫ 1

0
G(t, s)ϕq

(∫ s

0
h(τ ) dτ

)

ds, (3.7)

where Green’s function G(t, s) is as in (3.3). The proof is completed. �

Lemma 3.2 The function G(t, s) has the following properties:
(1) G(t, s) > 0 for t, s ∈ (0, 1),
(2) βtα–1s(1 – s)α–β–1 ≤ �(α)G(t, s) ≤ (α – 1)tα–2s(1 – s)α–β–1 for t, s ∈ [0, 1].

Proof First, we prove that (1) holds. Since

(1 – s)α–β–1 ≥
(

1 –
s
t

)α–β–1

≥
(

1 –
s
t

)α–1

, 0 ≤ s ≤ t ≤ 1,



Bai Advances in Difference Equations  (2018) 2018:4 Page 5 of 12

we have that

(1 – s)α–β–1tα–1 ≥ (t – s)α–1.

Thus, we easily obtain that G(t, s) > 0 for s, t ∈ (0, 1).
We now will prove that (2) holds. If 0 ≤ s ≤ t ≤ 1, then

�(α)G(t, s) = (1 – s)α–β–1tα–1 – (t – s)α–1 ≤ (1 – s)α–β–1[tα–1 – (t – s)α–1]

= (1 – s)α–β–1(α – 1)
∫ t

t–s
xα–2 dx

≤ (α – 1)(1 – s)α–β–1tα–2[t – (t – s)
]

= (α – 1)s(1 – s)α–β–1tα–2.

On the other hand, we have

�(α)G(t, s) ≥ βtα–1s(1 – s)α–β–1. (3.8)

The proof of (3.8) is the same as that of (2.6) of Lemma 2.7 in [22], and here we omit it.
When 0 ≤ t ≤ s ≤ 1, we get

�(α)G(t, s) = (1 – s)α–β–1tα–1 ≤ (1 – s)α–β–1stα–2

≤ (α – 1)tα–2s(1 – s)α–β–1.

On the other hand, we have

�(α)G(t, s) = (1 – s)α–β–1tα–1 ≥ βtα–1s(1 – s)α–β–1.

The proof is completed. �

Define the cone P ⊂ E = C[0, 1] by

P =
{

x ∈ E : x(t) ≥ β

α – 1
tα–1‖x‖, for all t ∈ [0, 1]

}

.

Theorem 3.3 Let 0 < β ≤ 1, 2 < α < 2 + β , and f : [0, 1] × R+ → R+ = [0, +∞) be a con-
tinuous function. Suppose that there exist two positive constants r2 > r1 > 0 such that the
following assumptions are satisfied:

(H1) f (t, x) ≥ ρϕp(r1) for (t, x) ∈ [0, 1] × [0, r1],
(H2) f (t, x) ≤ ωϕp(r2) for x ∈ [0, 1] × [0, r2],

where

ρ = ϕp

(
�(α)2α–1

βB(q + 1,α – β)

)

and

ω = ϕp

(
�(α)

(α – 1)B(q + 1,α – β)

)

.
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Then FBVP (1.4) has at least one nontrivial positive solution u belonging to E such that
r1 ≤ ‖u‖ ≤ r2.

Proof From Lemma 3.1 we know that u ∈ C[0, 1] is a solution of (1.4) if and only if u is a
solution of the integral equation

u(t) =
∫ 1

0
G(t, s)ϕq

(∫ s

0
f
(
τ , u(τ )

)
dτ

)

ds.

Let T : P → E be the operator defined by

Tu(t) =
∫ 1

0
G(t, s)ϕq

(∫ s

0
f
(
τ , u(τ )

)
dτ

)

ds.

For any u ∈ P, we have by Lemma 3.2 that

Tu(t) ≥ 1
�(α)

β

∫ 1

0
tα–1s(1 – s)α–β–1ϕq

(∫ s

0
f
(
τ , u(τ )

)
dτ

)

ds

=
β

α – 1
tα–1

∫ 1

0

1
�(α)

(α – 1)s(1 – s)α–β–1ϕq

(∫ s

0
f
(
τ , u(τ )

)
dτ

)

ds

≥ β

α – 1
tα–1

∫ 1

0
max
t∈[0,1]

G(t, s)ϕq

(∫ s

0
f
(
τ , u(τ )

)
dτ

)

ds

≥ β

α – 1
tα–1 max

t∈[0,1]

∫ 1

0
G(t, s)ϕq

(∫ s

0
f
(
τ , u(τ )

)
dτ

)

ds

=
β

α – 1
tα–1‖Tu‖,

which implies that T : P → P. Using the Arzelà-Ascoli theorem, we can prove that T : P →
P is completely continuous. Let �i = {u ∈ P : ‖u‖ ≤ ri}, i = 1, 2. From (H1) and Lemmas
3.1 and 3.2 we obtain for t ∈ [ 1

2 , 1] and u ∈ P ∩ ∂�1 that

(Tu)(t) ≥
∫ 1

0
min

t∈[ 1
2 ,1]

G(t, s)ϕq

(∫ s

0
f
(
τ , u(τ )

)
dτ

)

ds

≥ 1
�(α)

∫ 1

0
min

t∈[ 1
2 ,1]

βtα–1s(1 – s)α–β–1ϕq

(∫ s

0
f
(
τ , u(τ )

)
dτ

)

ds

=
β

2α–1�(α)

∫ 1

0
s(1 – s)α–β–1ϕq

(∫ s

0
f
(
τ , u(τ )

)
dτ

)

ds

≥ β

2α–1�(α)

∫ 1

0
s(1 – s)α–β–1ϕq

(∫ s

0
ρϕp(r1) dτ

)

ds

=
β

2α–1�(α)

∫ 1

0
s(1 – s)α–β–1ϕq(s) ds · ϕq(ρ)r1

=
β

2α–1�(α)

∫ 1

0
sq(1 – s)α–β–1 ds · ϕq(ρ)r1

=
β

2α–1�(α)
B(q + 1,α – β) · ϕq(ρ)r1 = ‖u‖.
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Hence, ‖Tu‖ ≥ ‖u‖ for u ∈ P ∩ ∂�1. On the other hand, from (H2) and Lemmas 3.1 and
3.2 we have

‖Tu‖ = max
t∈[0,1]

∫ 1

0
G(t, s)ϕq

(∫ s

0
f
(
τ , u(τ )

)
dτ

)

ds

≤ max
t∈[0,1]

∫ 1

0

α – 1
�(α)

tα–2s(1 – s)α–β–1ϕq

(∫ s

0
f
(
τ , u(τ )

)
dτ

)

ds

=
α – 1
�(α)

∫ 1

0
s(1 – s)α–β–1ϕq

(∫ s

0
f
(
τ , u(τ )

)
dτ

)

ds

≤ α – 1
�(α)

∫ 1

0
s(1 – s)α–β–1ϕq

(∫ s

0
ωϕp(r2) dτ

)

ds

=
α – 1
�(α)

∫ 1

0
s(1 – s)α–β–1ϕq(s) ds · ϕq(ω)r2

=
α – 1
�(α)

B(q + 1,α – β) · ϕq(ω)r2 = ‖u‖

for u ∈ P ∩ ∂�2. Thus, by Lemma 2.7 we have that the operator T has a fixed point in
u ∈ P ∩ (�̄2 \ �1) with r1 ≤ ‖u‖ ≤ r2, and clearly u is a positive solution for FBVP (1.4).
The proof is completed. �

Lemma 3.4 ([12]) The p-Laplacian operator has the following properties:
(i) If 1 < p < 2, xy > 0 and |x|, |y| ≥ m > 0, then

∣
∣ϕp(x) – ϕp(y)

∣
∣ ≤ (p – 1)mp–2|x – y|.

(ii) If p > 2 and |x|, |y| ≤ M, then

∣
∣ϕp(x) – ϕp(y)

∣
∣ ≤ (p – 1)Mp–2|x – y|.

Now we are in position to prove the uniqueness of a solution for FBVP (1.4).

Theorem 3.5 Assume that 0 < β ≤ 1, 2 < α < 2 + β , 1 < p < 2, and the following conditions
are satisfied:

(H3) For all r > 0, there exists a nonnegative function hr ∈ L[0, 1] with 0 <
∫ 1

0 hr(t) dt ≤ M
(a positive constant) such that

∣
∣f (t, u)

∣
∣ ≤ hr(t), ∀(t, u) ∈ (0, 1] × [–r, r];

(H4) There exists a constant k > 0 such that

∣
∣f (t, u) – f (t, v)

∣
∣ ≤ k|u – v|, ∀t ∈ [0, 1], u, v ∈ R.

If

0 < k <
1

(α – 1)(q – 1)Mq–2B(3,α – β)
, (3.9)

then FBVP (1.4) has a unique solution in C[0, 1].
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Proof By (H3) we have that

∣
∣
∣
∣

∫ t

0
f
(
s, u(s)

)
ds

∣
∣
∣
∣ ≤

∫ 1

0

∣
∣f

(
s, u(s)

)∣
∣ds ≤

∫ 1

0
hr(s) ds ≤ M, t ∈ [0, 1]. (3.10)

By Lemmas 3.1 and 3.4(i) and by (3.10) we obtain

∣
∣(Tu)(t) – (Tv)(t)

∣
∣

=
∣
∣
∣
∣

∫ 1

0
G(t, s)ϕq

(∫ s

0
f
(
τ , u(τ )

)
)

dτ –
∫ 1

0
G(t, s)ϕq

(∫ s

0
f
(
τ , v(τ )

)
)

ds
∣
∣
∣
∣

≤
∫ 1

0
G(t, s)

∣
∣
∣
∣ϕq

(∫ s

0
f
(
τ , u(τ )

)
dτ

)

– ϕq

(∫ s

0
f
(
τ , v(τ )

)
dτ

)∣
∣
∣
∣ds

≤ (q – 1)Mq–2
∫ 1

0
G(t, s)

∣
∣
∣
∣

∫ s

0
f
(
τ , u(τ )

)
dτ –

∫ s

0
f
(
τ , v(τ )

)
dτ

∣
∣
∣
∣ds

≤ (q – 1)Mq–2
∫ 1

0
G(t, s)

∫ s

0

∣
∣f

(
τ , u(τ )

)
– f

(
τ , v(τ )

)∣
∣dτ ds

≤ (q – 1)Mq–2
∫ 1

0
G(t, s)

∫ s

0
k‖u – v‖dτ ds

≤ (q – 1)kMq–2‖u – v‖
∫ 1

0
(α – 1)tα–2s2(1 – s)α–β–1 ds

= (α – 1)(q – 1)kMq–2tα–2B(3,α – β)‖u – v‖
≤ (α – 1)(q – 1)kMq–2B(3,α – β)‖u – v‖
= L1‖u – v‖,

where L1 = (α – 1)(q – 1)kMq–2B(3,α – β). From condition (3.9) we know that 0 < L1 < 1.
Hence, by means of the Banach contraction mapping principle we obtain that T has a
unique fixed point in E, that is, that FBVP (1.4) has a unique solution. The proof is com-
pleted. �

Theorem 3.6 Assume that 0 < β ≤ 1, 2 < α < 2 + β , and p > 2 and that (H4) and the
following condition holds:

(H5) There exist constants λ > 0 and 0 < δ < α–2
2–q such that

f (t, u) ≥ λδtδ–1, ∀(t, u) ∈ (0, 1] ×R.

If

0 < k <
1

(α – 1)(q – 1)λq–2B(3,α – β)
, (3.11)

then FBVP (1.4) has a unique solution in C[0, 1].

Proof By (H5) we have

∫ t

0
f (s, u) ds ≥

∫ t

0
λδsδ–1 ds = λtδ , ∀(t, u) ∈ [0, 1] ×R. (3.12)
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Obviously, for any u, v ∈ E, we have |(Tu)(0) – (Tv)(0)| = 0. For any t ∈ (0, 1], by Lemmas
3.2 and 3.4(ii) and by (3.12) we get

∣
∣(Tu)(t) – (Tv)(t)

∣
∣ ≤

∫ 1

0
G(t, s)

∣
∣
∣
∣ϕq

(∫ s

0
f
(
τ , u(τ )

)
dτ

)

– ϕq

(∫ s

0
f
(
τ , v(τ )

)
dτ

)∣
∣
∣
∣ds

≤ (q – 1)
(
λtδ

)q–2
∫ 1

0
G(t, s)

∣
∣
∣
∣

∫ s

0
f
(
τ , u(τ )

)
dτ –

∫ s

0
f
(
τ , v(τ )

)
dτ

∣
∣
∣
∣ds

≤ (q – 1)
(
λtδ

)q–2
∫ 1

0
G(t, s)

∫ s

0
k
∣
∣u(τ )) – v(τ ))

∣
∣dτ ds

≤ (q – 1)k
(
λtδ

)q–2‖u – v‖
∫ 1

0
(α – 1)tα–2s2(1 – s)α–β–1 ds

≤ (α – 1)(q – 1)k
(
λtδ

)q–2tα–2‖u – v‖
∫ 1

0
s2(1 – s)α–β–1 ds

= (α – 1)(q – 1)kλq–2t(q–2)δ+α–2B(3,α – β)‖u – v‖
≤ (α – 1)(q – 1)kλq–2B(3,α – β)‖u – v‖,

which implies that

‖Tu – Tv‖ ≤ L2‖u – v‖,

where L2 = (α – 1)(q – 1)kλq–2B(3,α – β). By condition (3.11) we obtain that 0 < L2 < 1.
Thus, T : E → E is a contraction mapping. Using the Banach contraction mapping prin-
ciple, we obtain that T has a unique fixed point in E. Hence, FBVP (1.4) has a unique
solution. The proof is completed. �

Similarly, we have the following:

Theorem 3.7 Assume that 0 < β ≤ 1, 2 < α < 2 + β , and p > 2 and that (H4) and the
following condition holds:

(H6) There exist constants λ > 0 and 0 < δ < α–2
2–q such that

f (t, u) ≤ –λδtδ–1, ∀(t, u) ∈ (0, 1] ×R.

If k satisfies (3.11), then FBVP (1.4) has a unique solution in C[0, 1].

4 Examples
In this section, we present some examples to illustrate our main results obtained in the
previous section.

Example 4.1 We consider the fractional boundary value problem

⎧
⎨

⎩

|D 7
3
0+ u(t)| 1

2 D
7
3
0+ u(t) + (t2 + 2)eu = 0, 0 < t < 1,

u(0) = D
7
3
0+ u(0) = 0, cD0.7

0+ u(0) = cD0.7
0+ u(1) = 0.

(4.1)
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Obviously, FBVP (4.1) can be regarded as FBVP (1.4) with p = 5
2 , α = 7

3 , β = 0.7, and

f (t, u) =
(
t2 + 2

)
eu, ∀(t, u) ∈ [0, 1] ×R.

By a simple computation we obtain q = 5
3 ,

ρ = ϕ 5
2

(
�( 7

3 )2 4
3

0.7 · B( 8
3 , 49

30 )

)

= 148.986, and ω = ϕ 5
2

(
�( 7

3 )
4
3 · B( 8

3 , 49
30 )

)

= 14.169.

We choose r1 = 1
20 and r2 = 2

3 . Then we can obtain

f (t, u) =
(
t2 + 2

)
eu ≥ 2 > ρϕ 5

2
(r1) = 1.669 for (t, u) ∈ [0, 1] × [0, r1];

f (t, u) =
(
t2 + 2

)
eu ≤ 3e

2
3 < ωϕ 5

2
(r2) = 7.713 for (t, u) ∈ [0, 1] × [0, r2].

Hence, by Theorem 3.3, FBVP (4.1) has at least one nontrivial positive solution u in E such
that 1

20 ≤ ‖u‖ ≤ 2
3 .

Example 4.2 Consider the following fractional boundary value problem:

⎧
⎨

⎩

|D 5
2
0+ u(t)|– 1

3 D
5
2
0+ u(t) + (1 + 2t2) arctan( 2

3 (u + 1)) = 0, 0 < t < 1,

u(0) = D
5
2
0+ u(0) = 0, cD0.8

0+ u(0) = cD0.8
0+ u(1) = 0.

(4.2)

FBVP (4.2) can be regarded as FBVP (1.4) with p = 5
3 , α = 5

2 , β = 0.8, and

f (t, u) =
(
1 + 2t2) arctan

(
2
3

(u + 1)
)

, ∀(t, u) ∈ [0, 1] ×R.

It is easy to see that, for any r > 0,

∣
∣f (t, u)

∣
∣ ≤ hr(t) for (t, u) ∈ [0, 1] × [–r, r],

where hr(t) = (1 + 2t2) arctan( 2
3 (r + 1)). Obviously, hr ∈ L[0, 1] and

∫ 1
0 hr(s) ds ≤ ∫ 1

0
π
2 (1 +

2s2) ds = 5π
6 := M. Moreover, we have

∣
∣f (t, u) – f (t, v)

∣
∣ =

(
1 + 2t2)

∣
∣
∣
∣arctan

(
2
3

(u + 1)
)

– arctan

(
2
3

(v + 1)
)∣

∣
∣
∣

≤ 2
3
(
1 + 2t2)|u – v| ≤ 2|u – v| for t ∈ [0, 1], u, v ∈R.

Let k = 2. We have

0 < k <
1

(α – 1)(q – 1)Mq–2B(3,α – β)
= 2.332,

where q = 5
2 > 2. Thus, by Theorem 3.5, FBVP (4.2) has a unique nontrivial solution.
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5 Conclusion
In this paper, we obtain an equivalent integral equation for a class of fractional bound-
ary value problem with p-Laplacian operator. Using the properties of the corresponding
Green function and Guo-Krasnosel’skii fixed point theorem on cones, we obtain the ex-
istence of positive solutions to problem (1.4). Moreover, applying the properties of the
p-Laplacian operator and the Banach contraction mapping principle, we get some unique-
ness results of solutions. Finally, we provide two examples to illustrate the main results.
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