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Abstract

In this paper, we aim to solve the stabilization problem for a large class of
fractional-order nonautonomous systems via linear state feedback control and
adaptive control. By constructing quadratic Lyapunov functions and utilizing a new
property for Caputo fractional derivative we derive some sufficient conditions for the
global asymptotical stabilization of a class of fractional-order nonautonomous
systems. We give two illustrative examples to validate the effectiveness of the
theoretical results.
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1 Introduction

Fractional calculus, as a mathematical tool dealing with derivatives and integrals of arbi-
trary orders, has played a central role in physics [1], differential and integral equations [2],
signal processing [3], human relationships [4], image encryption [5], thermal conductivity
[6], electrical circuits [7], dynamical models [8], nonlinear control systems [9], complex
networks [10], and so on. One of very important areas of application is nonlinear con-
trol systems. In particular, stability analysis and stabilization are of theoretical and prac-
tical importance for control systems, certainly including fractional-order systems. The
early studies on the stability of fractional-order systems mainly concentrated on the linear
cases, and many well-known results have been obtained. However, the stability analysis of
fractional-order nonlinear systems remains an open problem. More details on the devel-
opment of stability of fractional-order systems can be found in [11-15].

Recently, the stability and stabilization problem of a class of fractional-order nonlinear
systems has attracted increasing interest of scholars [16—20]. In these literatures, it has
been shown that most of the well-known chaotic systems can be modeled as this kind
of fractional-order nonlinear systems (so-called semilinear systems), where the nonlinear
vector field can be separated into linear and nonlinear parts. Moreover, the Mittag-Leffler
function, the Laplace transform, and the Gronwall lemma are the main techniques used
to prove the stability. It was shown that these techniques are neither simple nor straight-
forward and the proofs of the corresponding theorems are very complex. It should be also
noted that the stability results in [16—19] are local, and all of the stability results in [16—20]
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are valid only for fractional-order autonomous systems. However, as we know, the stabil-
ity results for fractional-order nonautonomous systems, including chaotic and nonchaotic
systems, are still relatively few.

In integer-order nonautonomous systems, the Lyapunov direct method is an effective
way to analyze the stability of a system. Motivated by the application of fractional calcu-
lus in nonlinear systems, the Lyapunov direct method has been extended to fractional-
order systems by Li et al. [21, 22]. Similarly, Baleanu et al. [23] and Wu et al. [24] extended
the theorem to fractional-order functional systems and fractional-order discrete systems.
The fractional Lyapunov method generalizes the idea that the stability condition is de-
rived by constructing a suitable Lyapunov function and calculating its fractional deriva-
tive. However, it is not an easy task to apply this method in the stability analysis of a general
fractional-order nonlinear system. In [25], it has been demonstrated that fractional deriva-
tives of noninteger orders cannot satisfy the Leibniz rule. So far, there are no techniques
available to calculate the fractional derivative of a general composite Lyapunov function.

Recently, some efforts have been devoted to application of the fractional Lyapunov di-
rect method in stability analysis of fractional-order systems. Especially, in [26], a simple
Lyapunov function V = ATx, A > 0 has been proposed to solve the stabilization problem
for fractional-order linear positive systems. By constructing some suitable stochastic Lya-
punov functions Agarwal et al. [27] established some sufficient conditions for two types
of stability of stochastic differential equations. In [28], based on the frequency distributed
fractional integrator model, a fractional-order system is transformed into an equivalent
integer-order system, and then similar stability results as those for integer-order systems
are obtained by using quadratic Lyapunov functions. Hu et al. [29] considered an integer-
order derivative instead of the fractional-order derivative of a Lyapunov function to prove
the revised Lyapunov stability theorems. Nevertheless, the proposed Lyapunov functions
[21-24, 26-29] are valid only for some fractional-order systems with special characteris-
tics.

In classic Lyapunov theory, the quadratic form is one of the most commonly used
Lyapunov functions for general integer-order nonlinear systems. Motivated by this,
Aguila-Camacho et al. [30] and Duarte-Mermoud et al. [31] introduced two new in-
equalities for estimating the Caputo fractional derivative of a quadratic function and a
common quadratic function, respectively. Thus, wecan try to prove the stability for gen-
eral fractional-order nonlinear systems by using common quadratic Lyapunov functions.

Quite recently, Liu et al. [32] studied the stability of a class of fractional nonlinear sys-
tems using the fractional Lyapunov direct method and a new lemma proposed in [30, 31].
In this paper, we aim to solve the stabilization problem for such fractional-order systems
via linear state feedback control and adaptive control.

The main contributions of this paper are as follows. First, constructing quadratic Lya-
punov functions and using a new property for the Caputo derivative, we respectively in-
vestigate the stabilization of a class of fractional-order nonautonomous systems via state
feedback control and adaptive control. Then, we derive some sufficient conditions for the
global asymptotical stabilization. Note that using the existing results in [16—20], we may
draw a wrong conclusion about asymptotic stability for our nonautonomous model. More-
over, asymptotic stability analysis of fractional-order nonautonomous systems is more dif-
ficult. This technical difficulty can be overcome by the fractional Lyapunov direct method

[21, 22] and a new property for the Caputo derivative. Further, we also prove that quadratic
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Lyapunov functions are always valid for our model. Differing from [16—20], our results can
only be applied not only to fractional-order autonomous systems, but also to fractional-
order nonautonomous systems. In practice, we can easily realize the stabilization of this
kind of fractional-order systems based on our criteria.

The remainder of this paper is organized as follows. In Section 2, we introduce some use-
ful definitions, properties, and preliminaries for fractional calculus and fractional-order
systems. In Section 3, we give three stabilization criteria for a class of fractional-order
nonautonomous systems. In Section 4, we provide three numerical examples to illustrate
the effectiveness of the theoretical results. Finally, we give some conclusions and further
work in Section 5.

Notions Let R = (-o0,+00), R” be the n-dimensional Euclidean space, and let R"*"
be the space of m x n real matrices; ||| = v/27x is the two-norm of a vector x, | P|| =
\/m is the two-norm of a matrix P, and Apin(-) (Amax(-)) denotes the minimum
(maximum) eigenvalue of the corresponding matrix.

2 Preliminaries
In this paper, we consider the Caputo definition of fractional derivative, which is most

popular in engineering applications.

Definition 2.1 ([33]) The uniform formula of a fractional integral with 0 < « < 1 is given
by

1

If(t) = )

/ (=T, @.1)

where ¢ > £y, f(t) is an arbitrary integrable function, I is the fractional integral operator,
o) = fooo t*Lexp(—t) dt is the gamma function, and exp(-) is the exponential function.

Definition 2.2 ([33]) The Caputo fractional derivative with fractional order « can be ex-

pressed as
C no _ 1 ! fn(t)
SDH0) = o / o e 22)

where [«] denotes the integer part of «. Throughout this paper, we choose the notion DY as
the Caputo fractional derivative operator gD‘;‘ In the following, unless otherwise stated,

we consider « € (0,1).

The Laplace transform of the Caputo fractional derivative of a function can be written

as
L{Df ()} = s*E(s) - s*f (o), (2.3)

where « € (0, 1), s is the variable in the Laplace domain, £{-} denotes the Laplace trans-
form, f(t) is the initial value, and F(s) is the Laplace transform of f(¢).

Property 2.1 ([33]) Iy Dif(t) = f(¢) - f (%), Vt = to.
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According to the definition of the Caputo derivative, a general fractional-order nonlinear

and nonautonomous system can be characterized by
DYx(t) = f(¢, %), (2.4)

where o € (0,1), and ¢ denotes the time.
For the stability analysis of system (2.4), the fractional Lyapunov direct method has been
proposed [21, 22], which is stated in Lemma 2.1.

Remark 2.1 From [22] we know that system (2.4) has the same equilibrium points as the

integer-order system x(¢) = f (¢, x).

Definition 2.3 A continuous function y : [0, £] — [0, +0o0] is said to belong to class K if it

is strictly increasing and y (0) = 0.

Lemma 2.1 ([21, 22]) Let x = 0 be an equilibrium point for the fractional-order nonlinear
system (2.4). Let V(¢,x) be a Lyapunov function, and let y; (i = 1,2, 3) be functions of class
K such that

@ n(lxl) < Vex) < ra(lxl),

(2.5)
b) DIV(t,x) < -ys(llxl),

where B € (0,1). Then, the equilibrium point x = 0 is asymptotically stable.

Remark 2.2 Fora quadratic positive definite function V = x” Px, the following inequalities

are always true:
Danin(P)[%]1* < %7 Pt < Aamax (P) ] (2.6)

Obviously, condition (a) of Lemma 2.1 is naturally satisfied if we choose V = x7Px as a
Lyapunov function.

According to [31], calculating the fractional derivative of the product of two functions
implies evaluating an infinite sum. Obviously, this is not an easy task. This is also the
main reason that fractional theory, especially fractional Lyapunov direct theory, is not
as popular as it should be. Recently, a new property for the Caputo derivative is stated
in Lemma 2.2 [31], which can facilitate estimating the fractional derivative of a common

quadratic Lyapunov function.

Lemma 2.2 ([31]) Let x(t) € R” be a vector of differentiable functions. Then, the following
inequality holds:

DxT()Px(t) < 2xT ())PD?x(t) Vo € (0,1],Vt > &, (2.7)

where P € R"™" s a constant symmetric positive definite matrix.
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Definition 2.4 ([22]) The Mittag-Leffler functions in one parameter and two parameters
are defined as

o0
Ea(z)zz na+1
S 2"

ZFnoz+,3

n=|

whereze C,a >0, 8 >0, Ey1(2) = E4(2), and E11(2) = €°.

The Laplace transform for the Mittag-Leftler function with two parameters is written as
follows:

s* B

s+ k

L{tP Eqp(-ke*)) = R(s) > k|7,

where ¢ > 0, R(s) is the real part of s, and k € R.

3 Main results
In this section, by constructing quadratic Lyapunov functions we derive some stabilization
criteria for a class of fractional-order nonautonomous systems based on the fractional
Lyapunov direct method and other inequality techniques.

Consider the following fractional-order nonautonomous system:

Dix(t) =f(t,x) = Ax + g(¢, %), (3.1)

where a € (0,1), x = (x1,%,...,%,)7 € R” represents the state vector of the system, A €

R™*" is a constant matrix, and g : [¢y, +00] x R” — R” is a nonlinear vector function.

Remark 3.1 In general, a differential equation is called semilinear if it consists of the sum
of a well-understood linear part plus a lower-order nonlinear part. It is well known that
many real systems in engineering and science can be modeled as semilinear systems [34].
Therefore, our model can describe a large class of fractional-order physical systems, in-
cluding linear systems with nonlinear perturbation, chaotic systems, and so on. Our major
aim is to show how a simple state feedback controller can be designed to stabilize this type
of systems if the nonlinear part satisfies a constraint.

Assumption 3.1 For a nonlinear function g, g(¢,0) = 0 and there exists a constant ¢ >0
such that ||g(z,x)|| < e]|x|| for x € R” and t € [tp, +00].

Remark 3.2 In fact, Assumption 3.1 is the so-called global Lipschitz condition. It seems
that this assumption is not easy to satisfy in general nonlinear systems. However, as
stated in Remark 3.1, our model has potential applications in robust stabilization of lin-
ear systems with nonlinear perturbation and chaotic control and synchronization. Ac-
cording to Remark 3 in [35], if a system is Lipschitz, then it can be made contracting by
means of a simple (static) state feedback, implying the possibility of designing simple ob-
servers/controllers. Fortunately, since the chaotic is bounded, we can easily verify that
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many well-known chaotic systems, such as Chua’s circuit, Arneodo’s system, Lorenz’s sys-

tem, Duffing’s oscillator, Chen’s system, etc., all satisfy this assumption.

Quite recently, in [32], conditions for the asymptotical stability of system (3.1) have been

derived by using the fractional Lyapunov direct method and Lemma 2.2.

Lemma 3.1 ([32]) Suppose that Assumption 3.1 holds. System (3.1) is globally asymptoti-
cally stable about its equilibrium point if there exists a symmetric matrix P > 0, P € R"*",
such that

2 3.2
P —rl (32)

<PA +ATP+re2l P )
<0

where € >0, r >0, and I denotes identity matrix.

In this paper, we further study the stabilization of system (3.1) via linear state feedback
control and adaptive control.

A controlled system with state feedback is characterized by
Dix(t) =Ax+g(t,x) +u=(A-K)x +g(t,x) = Ax +g(t,x), (3.3)

where « € (0,1), K € R”*" is a feedback gain matrix, and A = A - K. Thus, our aim is to
select a suitable matrix K such that the controlled system (3.3) is asymptotically stable.

Theorem 3.1 Suppose that Assumption 3.1 holds. The controlled system (3.3) with the
feedback gain K = ZY ™ is globally asymptotically stable if there are suitable matrices Y
and Z such that the following LMI condition holds:

<0, (3.4)

AY + YAT -7 -ZT —2¢eY I+erY
I +erY —rl

where Y =P >0, >0,r>0, and I is the identity matrix.

Proof Substituting A = A — BK for A in (3.2), we easily obtain

PA+ATP-PK-K'P+re*l P
<0. (3.5)
p —rl
By using Schur complements, (3.5) can be rewritten as
PA+ATP-PK -K"P-2¢P P+erl
<0 (3.6)
P+erl —rl

Let Y = P! and Z = KP~!. Multiplying (3.6) by (g?) from the both sides, we can further
transform the condition (3.6) into the LMI form (3.4). The proof is completed. O
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Remark 3.3 It should be noted that the feasible set Y and Z satisfying (3.4) can be solved
by using the LMI Toolbox in Matlab software. Thus, a feedback gain matrix K can be fur-
ther obtained by K = ZY 1. However, without any constraint on K, the feedback controller
to stabilize a huge dimension system may be relatively complex and difficult to apply in
practice.

Theorem 3.2 Suppose that Assumption 3.1 holds. If the feedback gain matrix K is se-
lected such that all eigenvalues of A satisfy Re MA) < 0 and the solution P of the equation
PA+ATP = —[ satisfies 1 — 2 hmax (P) > O, then the controlled system (3.3) is globally asymp-

totically stable about its equilibrium point, where I denotes the identity matrix.

Proof Consider the Lyapunov function candidate
V(x)=x"Px, P>0,PeR"™". (3.7)

Applying Lemma 2.2, the fractional derivative of Lyapunov function (3.7) along the trajec-

tories of system (3.3) gives

DYV < 2x"PD%x = x"[PA + (PA)T x + 24" Pg(t, x). (3.8)
From trivial algebra, using the Cauchy-Schwarz inequality, we have

x" Pg(t,x) < x| I1PIl]|g(t %) | < 1% Amax (P) | g(£,%) | (3.9)
From Assumption 3.1 it follows that

x" Py(t,%) < 1] Amax (P)e|]] = &Amax (P)x" . (3.10)
Therefore, combing (3.8) and (3.10), we have

DYV <x”[PA + (PA)" ]x + 26 hmax (P)a” . (3.11)

Since all eigenvalues of A satisfy Re (A) < 0, there exists a unique positive definite solution
P of the equation PA + ATP = —I. Next, from (3.11) we obtain

DYV < —x"x + 26 hmax (P)x" % = —(1 = 2 A pmax (P)) |11, (3.12)

Therefore, if 1 — 28 na(P) > 0 and the K functions y;([|x]]) = Amin(P)[|%]1? and y»(||lx|) =
Amax(P) %112, v3([I%]) = (1 — 26 Amax (P))|l%]|? are used, then all the conditions of Lemma 2.1
are satisfied. As a result, the equilibrium point of the system (3.3) is globally asymptotically
stable. The proof is completed. g

Next, the fractional adaptive law is designed to tune the feedback gain matrix K
of system (3.3). For simplification and without loss of generality, we assume that K =
diag(ky1(£), ka(2), ..., ku(£)).
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Theorem 3.3 Suppose that Assumption 3.1 holds. Then, the controlled system (3.3) is glob-
ally asymptotically stable about its equilibrium point under the following adaptive updat-
ing law:

Deki(t) = px?, i=1,2,...,m, (3.13)
where [1; are positive constants.
Proof Consider a Lyapunov function for system (3.3) as follows:

1

30 (ki) - k)’ (3.14)

l n
V()= ~x”
(¥) 2x x+;

where & (i =1,2,..., n) are positive constants to be determined later.
Applying Lemma 2.2, the fractional derivative of Lyapunov function (3.14) along the
trajectories of system (3.3) and the adaptive law (3.13) gives

n
1
DyV <x"Dix+ Y —(ki - k7)Dik;
— Mi
i=1

n
=x"[Ax +g(t,x) - Kx] + Z(k,» - k)7

i=1
= xT[Ax +g(tx) - Kx] + KT - KxTx
=xTAx+xTg(t,x) - K*xTx

AT+ A
:xT *

x+xTg(t,x) - K*x"x, (3.15)

where K* = diag(k}, k3, ..., k).
By the Cauchy-Schwarz inequality from Assumption 3.1 it follows that

x"g(t,x) < |lxll gt )| < ex"x. (3.16)

Combing (3.15) and (3.16), we obtain

T

AT+ A
DYV < xT( +el - I(*)x. (3.17)

Choosing &} sufficiently large such that

AT+ A
Amax< 2+ ) +e— min{k;“} +1<0, (3.18)
where min{k}} denotes the minimum value of k}, &}, ..., k};, we obtain
DYV < —x"x. (3.19)
Obviously, there exists p(t) > 0 satisfying

DEV(¢t) + p(t) = —x(t) x(2). (3.20)
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Calculating the Laplace transform of (3.20), we obtain
AV (s) = s* LV (0) + P(s) = —X(s), (3.21)
where V(0) > 0 is the initial value of V(¢), and V(s), P(s), and X(s) denote the Laplace

transforms of V (t), p(t), and x(¢)Tx(¢), respectively.
Since V(t) > %x(t)Tx(t), there exists a function g(£) > 0 such that

1
V(t) = Sx(0) () + 4(0). (3.22)
Calculating the Laplace transform of (3.22), we get

V) = SX(9) + Q) (3.23)

where Q(s) is the Laplace transform of ¢g(t).
Substituting (3.21) into (3.23), we have

2 o—1 25%
X() = S5 VO - Q) - 5P
250‘_1 Sa_l
“as 2V(O) _2[(53‘1 i I)Q(s) + Q(s)i| - 21)(5)
Zsoz—l 4 9
=0 V(0) + a3 2Q(s) -2Q(s) - mp(s), (3.24)

Calculating the inverse Laplace transform of (3.24), we obtain

x(8)Tx(t) = 2V(0)Eq (—26%) — 2q(£) + 4q(£) * t° 7 Eg o (—26%)

—2p(t) * t* ' Ey o (-2£%), (3.25)

where * is the convolution operator.

Since %71, p(2), q(¢), and E, o (—2t*) are nonnegative, we can derive from (3.25) that
x() x(t) <2V(0)E, (-2£%) +4q(t) * t* " Eq o (-2%). (3.26)

By Definition 2.1 and Property 2.1, from (3.19) this yields

I*D*V(t) = V(t) - V(0) = ﬁ /0 t(t— 7)*'D*V(r)dr <0, (3.27)
that is, V(¢) < V(0), t > 0.

Combining the aforementioned situation, we arrive at
0<gq(t) <V(t) < V(). (3.28)

Thus, ¢(t) is bounded.
Recall now that, forO<a < B <1and 6 >0, E,(-0t%) and tﬁ‘lEa,ﬂ(—Qt“) are both com-
pletely monotonic (see [22]). As a result, from (3.26) we obtain lim,_, . x(£)Tx(¢) = 0,
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namely lim;_, ;o x(¢) = 0. Considering (3.13), this implies that lim,_, .o, D{k; = 0. Noting
now that the Caputo fractional derivative of a constant is always zero, we immediately
conclude that k; (i = 1,2,...,n) converges to a finite constant. Consequently, system (3.3)
is stabilized by the adaptive law (3.13). The proof is completed. O

Remark 3.4 It should be noted that the Lyapunov (3.14) is the function of two variables
x(¢) and k;(¢), and D?V < —«(t)Tx(t). To prove the convergence of x(¢), condition (2.5) of
Lemma 2.1 is not satisfied. In other words, the fractional Lyapunov direct method is not
sufficient for proving the asymptotical stability of system (3.3) with adaptive law (3.13). It is
well known that LaSalle’s invariance principle, Barbalat’s lemma, and other mathematical
techniques can be used to solve the adaptive stability problem of integer-order nonlin-
ear systems. However, these tools cannot be directly used in the fractional-order case. In
this paper, the adaptive stability problem of fractional-order systems has been settled by
utilizing the fractional Lyapunov function method combined with fractional inequality

techniques, the Mittag-Leffler function, and the Laplace transform.

4 lllustrative examples
In this section, we give three illustrative examples to validate the theoretical results and
use the predictor-corrector method [36] for numerical simulations.

Example 1 The fractional-order nonlinear nonautonomous parametrically excited Duff-

ing oscillators is described by

D‘t"xl =X,
(4.1)
Dixy = (1 + 1 sin(wt))x1 —YXy — xf

When the parameters are chosen as . = 0.5, w = 1, y = 0.2 and « = 0.975, system (4.1) has
a chaotic attractor shown in Figure 1.

0.8

0.6

0.4

0.2r

Figure 1 Chaotic attractor of system (4.1) with £ = 0.5, w =1, y =0.2, and o = 0.975.
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System (4.1) can be rewritten as system (3.3), where

0 1 0
A= (1 —0.2)’ §ltx) = (0.5 sin(£), —x§>‘

Then, we easily obtain

letx)| = \/(0.5 sin(t) — x%)zxf

< 10.5sin(t) — 27 |y/#? + 23 < (0.5 +7) [|x]. (4.2)

Since the chaotic system is bounded, we easily get that |x;| < 2. Therefore, Assumption 3.1
is satisfied, and ¢ = 4.5. Choosing r = 1 and using the LMI Toolbox in MATLAB, it follows
from condition (3.4) that

0.1233 0 —-0.2900 1.2887
Y= >0, Z= , (4.3)
0 0.1233 -1.5353 -0.2653

-2.3515  10.4492
K = . (4.4)
-12.4492 -2.1515

Therefore, all the conditions of Theorem 3.1 are satisfied, and we can conclude that the
controlled system is asymptotically stable. The simulation results shown in Figure 2 verify
the theoretical analysis.

In addition, according to Theorem 3.2, we choose the feedback gain K = diag(-6,-5).

By a simple calculation the eigenvalues of A, the unique solution P of PA + AP = —I, and

15 B
1 i
0.5 B
< 0
-0.5 b
71 L L L L L L L L L
0 0.5 1 1.5 2 25 3 3.5 4 45 5
4 T T T T T T T T T
3k i
2 i
1 i
<N O
1k B
_2 L L L L L L L L L
0 0.5 1 1.5 2 25 3 3.5 4 45 5

Time(s)

Figure 2 Asymptotic stabilization of system (4.1) with feedback gain (4.4).
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0 0.5 1 1.5 2 25 3 35 4 45 5
time(s)

Figure 3 Asymptotic stabilization of system (4.1) with feedback gain K = diag(-6, -5).

the maximum eigenvalue of P are given by

A =—-6.677 <0, Ay =-4.523 <0,

_ (0.0861 0.0166
~\0.0166 0.0993

) . Amax(P) =0.1105, (4.5)
1 — 26 Amax (P) = 0.0055 > 0.

Therefore, all the conditions of Theorem 3.2 are satisfied, and we can conclude that the
controlled system is asymptotically stable. The simulation results shown in Figure 3 verify

the theoretical analysis.
Example 2 The fractional-order Arneodo system [37] is described by

D(:xl =X,
D‘;‘xz = X3, (46)
D3 = Prxy — Paxa — Paxs + Puxy.

When the parameters are chosen as 8, = 5.5, 8, = 3.5, 83 = 0.8, B4 = -1, and « = 0.97,

system (4.6) displays the chaotic behavior shown in Figure 4. System (4.6) can be rewritten
as system (3.3), where

o 1 0 0
A=lo o 1|, gtx=|o0 [,
55 -35 -08 —x3 (4.7)

gt = /¢ < 2.

Since the chaotic system is bounded, Assumption 3.1 is satisfied. To suppress the chaos,
the adaptive law (3.13) is designed to tune the feedback gains k;. According to Theorem 3.3,
we arbitrarily take (141, t2, 3) = (3,4, 1). The initial conditions of the state vector x and the
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Figure 4 Chaotic behavior of fractional-order chaotic Arneodo’s system (4.6) with oc = 0.97.

L
0 0.5 1 1.5 2 25 3 35 4 45 5
time(s)

Figure 5 Asymptotic stabilization of system (4.6) with adaptive feedback gains.

feedback gains k; are chosen as x(0) = (-2,3,-5) and (k;1(0), k2(0), k3(0)) = (1,2,4). Thus,
all the conditions of Theorem 3.3 are satisfied, and we can conclude that the controlled
system is asymptotically stable. The simulation results shown in Figures 5 and 6 validate

the theoretical analysis.

5 Conclusions

In this paper, we propose some stabilization criteria for a large class of fractional-order
nonautonomous systems, for which quadratic Lyapunov functions are always valid. The
proposed stability criteria can be seen as an extension and improvement of the existing re-
sults in the literatures [16—20, 32]. It has been also shown that our proofs of the theorems
are simple and straightforward, and the stability conditions are more convenient for test-
ing. Our future work includes the applications of the fractional Lyapunov direct method
and fractional inequality techniques in the stabilization of more general fractional-order

nonlinear systems.
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Figure 6 The evolution of the adaptive feedback gains.
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