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Abstract
We study the burden of the HIV viremia and of treatment efficacy in the severity of
the patterns of the HIV/HCV coinfection. For this, we derive a simple
non-integer-order (fractional-order) model for the coinfection dynamics.
Fractional-order models have been proved in the literature to provide good fits to real
data from patients suffering from several diseases, such as HIV, dengue fever, and
others. We have computed the basic reproduction number and the stability of the
disease-free equilibrium of the model. The numerical results suggest that the HIV viral
load impacts impressively the severity of the HCV infection. The treatment efficacy is
also found to influence the natural progression of HCV on the HIV/HCV coinfection.
The latter is repeated for all values of the order of the fractional derivative. Moreover,
the fractional derivative may pave the way to better understanding the individuals’
patients’ adjustments to treatment and to viremia.
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1 Introduction
The human immunodeficiency virus (HIV) and the hepatitis C virus (HCV) infections are
major global public health issues. There are 37 million people infected with HIV world-
wide, and about 115 million people HCV antibody positive. One-third of HIV-infected
patients are infected with HCV [1]. People coinfected with HIV and HCV are prone to a
faster development of HCV infection [1], presenting higher HCV viral loads, and they are
more efficient in transmitting HCV [2]. Moreover, the spontaneous elimination of HCV is
also decreased in untreated HIV coinfected patients [2]. One of the leading causes of death
in HIV treated coinfected patients is chronic HCV infection [3], due to drug-related hep-
atoxicity. On the other hand, there is evidence that treatment of HIV can slow the natural
progression of HCV infection and reduce HCV mortality related to liver diseases [1].

The last few decades have been rewarding in terms of the appearance of a significant
diversity of useful mathematical models for the understanding of HIV and HCV coinfec-
tion. In 2012, Alexander et al. [4] proposed a model for drug resistance in patients with a
chronic viral disease, such as HIV or HCV. They derived dependencies between the pa-
rameters of the system that are important factors in driving drug resistance. In 2012, Rong
et al. [5] presented a mathematical model of two virus strains, one sensitive and one re-
sistant, to HCV drugs. They provided a theoretical framework to explore the prevalence
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of pre-existing mutant variants and the evolution of drug resistance during HCV treat-
ment. In 2015, Birger et al. [6] improved an existing model for HCV infection to include
the dynamics of the HIV and HCV coinfection, where an immune system component for
infection clearance is incorporated. They found that the progression of HCV infection is
more rapid when the immune response is compromised by HIV. A better understanding of
the mechanisms behind this immune impairment in coinfection may help to devise better
therapeutic regimens and to identify patients more compliant to certain drugs.

1.1 Fractional calculus: brief summary
Lagrange and Leibniz were the first mathematicians exchanging letters about the possi-
ble meaning of a 1/2-order derivative. They were the predecessors of non-integer-order
differentiation and integration, also known as fractional calculus (FC). FC has had a huge
development in the last few decades and notable work has been published in engineering,
namely electronics, viscoelasticity, biology, physics, epidemiology [7–16].

In 2012 [17], Yan et al. proposed a fractional-order (FO) model for HIV infection with
time delay. They compute the stability of the disease-free and of the endemic equilibria
and enumerate conditions on the value of the delay, to ensure the asymptotic stability of
the two equilibria. In [18] the role of treatment in a FO model was considered for HIV-
1 dynamics. In [19], numerical outcomes of a FO model for HIV epidemics were fitted
to data from 10 HIV patients. The FO model provides a better fit than the integer-order
model. Diethelm [20] introduced a FO model for the patterns of dengue fever. Simulations
of the model are fitted to real data of the 2009 dengue outbreak in Cape Verde, providing
good agreement. Rihan et al. [15] proposed a FO SIRC epidemic model for the infection by
Salmonella bacteria. The variation of the reproduction number was analyzed with respect
to contact rate, recovery rate, and other parameters relevant parameters. An uncondition-
ally stable numerical method to approximate the numerical solutions of the FO model was
proposed. In [16], a FO model of predator-prey with type-II Holling functional response
and time delay is introduced. The fractional derivative improves the stability of the solu-
tions and provides faster transients of the solutions. The authors concluded that the FO
models are more suitable to model biological systems with memory, than their integer-
order counterparts. Pinto et al. [21] proposed a fractional complex-order model of drug
resistance in HIV dynamics. The authors conclude that the complex-order derivative may
be interpreted as the delay in the integer-order systems.

Fractional-order systems have been applied in the literature with the purpose of obtain-
ing a deeper understanding of the complex behavioral patterns of biological systems. The
memory property of the fractional models allows the integration of more information from
the past, which translates in more accurate predictions for the model. With respect to the
epidemiological models, this memory property may be used to devise adequate therapeu-
tics directed to each individual, since distinct patients present different disease progres-
sion routes. The latter are associated with age, status of the immune system, and genetic
profile. Clinicians can, thus, use the information (in terms of behavior’s predictions) of
fractional-order systems to fit patients data with the most appropriate non-integer-order
index.

With the aforementioned ideas in mind, we derive a fractional-order model for HIV
and HCV coinfection, where treatment for HCV is included. The model is an adaptation
of two previous integer-order models for HCV mono-infection. In Section 2, we derive
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the model. In Section 3, we compute the basic reproduction number of the model and
the stability of the disease-free equilibrium. The simulations of the model are discussed
in Section 4. Finally, the study is concluded in Section 5.

2 Model
In this section, we describe the HIV and HCV coinfection model. The population of the
model is divided in six classes, namely the uninfected hepatocyte, x, the drug-sensitive
infected hepatocytes, ys, the drug-resistance infected hepatocytes, yr , the drug-sensitive
HCV virus, vs, the drug-resistance HCV virus, vr and the CD4+ T cells, H .

The uninfected hepatocytes are produced at a rate λα and die at a rate dα . These cells
reproduce at rate rα

1 . Parameter Tmax is the maximum capacity number of the hepatocytes.
The uninfected hepatocytes, x, are infected when in contact with drug-sensitive virus, vs,
and when in contact with drug-resistant virus, vr , at rates βα

s and βα
r , respectively. The

drug-sensitive and drug-resistance infected hepatocytes die, respectively, at rates aα
s and

aα
r . The HCV sensitive and resistant virus, vs and vr , are produced by the corresponding

infected hepatocytes classes, ys and yr , at rates kα
s and kα

r . They die at rates cα
s and cα

r ,
respectively. The CD4+ T cells are recruited at rate sα

H and die at rate dα
H . These cells are

infected when in contact with HIV virus, VH , at rate βα
H . The parameter α1 models the

dependence of the HCV clearance rate on the CD4+ T cells count. The dependence of the
CD4+ T cells activation rate on the HCV infected cell count is given by the parameter γ .
The mutation rates are modeled by parameters uI and uP , where uI is the mutation at the
infection step and uP at the virion production step.

Treatment is considered at two steps of the replication cycle. A first drug blocks the
infection of target cells, through reverse transcriptase or integrase inhibitors, which re-
duce the successful infection rate of the sensitive strain by a factor εI , called the efficacy. A
second drug, such as a protease inhibitor, prevents the production of viable virions, with
efficacy εP .

The nonlinear system of fractional-order differential equations describing the dynamics
of the model is

dαx
dtα

= λα – dαx – βα
s (1 – εI)xvs – βα

r xvr + rα
1 x

(
1 –

x + ys + yr

Tmax

)
,

dαys

dtα
= βα

s (1 – εI)(1 – uI)xvs – aα
s (1 + α1H)ys,

dαyr

dtα
= βα

s (1 – εI)uIxvs + βα
r xvr – aα

r (1 + α1H)yr ,

dαvs

dtα
= kα

s (1 – εP)(1 – uP)ys – cα
s vs,

dαvr

dtα
= kα

s (1 – εP)uPys + kα
r yr – cα

r vr ,

dαH
dtα

= sα
H
(
1 + γ (ys + yr)

)
– dα

HH – βα
HVHH ,

(1)

where α ∈ (0, 1] is the order of the fractional derivative. When α = 1, then the model is the
integer-order counterpart. The fractional derivative of the proposed model is used in the
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Caputo sense, i.e.,

dαy(t)
dtα

= Ip–αy(p)(t), t > 0,

where p = [α] is the value of α rounded up to the nearest integer, y(p) is the pth derivative
of y(r), Ip1 is the Riemann-Liouville fractional integral given by

Ip1 z(t) =
1

�(p1)

∫ t

0

(
t – t′)p1–1z

(
t′)dt′.

2.1 Non-negative solutions
In this section we prove the positivity of the solutions of model (1).

Let R6
+ = {w ∈ R6 | w ≥ 0} and w(t) = (x(t), ys(t), yr(t), vs(t), vr(t), H(t))T .

To prove the main theorem, we need the following generalized mean value theorem [22]
and corollary.

Lemma 1 ([22]) Suppose that f (w) ∈ C[a, b] and Dα
a f (w) ∈ C(a, b], for 0 < α ≤ 1, then we

have

f (w) = f (a) +
1

�(α)
(
Dα

a f
)
(ξ )(w – a)α (2)

with a ≤ ξ ≤ w, ∀w ∈ (a, b] and �(·) is the gamma function.

Corollary 2 Suppose that f (w) ∈ C[a, b] and Dα
a f (w) ∈ C(a, b], for 0 < α ≤ 1. If Dα

a f (w) ≥ 0,
∀w ∈ (a, b), then f (w) is non-decreasing for each w ∈ [a, b]. If Dα

a ≤ 0, ∀w ∈ (a, b), then f (w)
is non-increasing for each w ∈ [a, b].

We now prove the main theorem.

Theorem 3 There is a unique solution w(t) = (x(t), ys(t), yr(t), vs(t), vr(t), H(t))T to model
(1) on t ≥ 0 and the solution will remain in R6

+.

Proof From Theorem 3.1 and Remark 3.2 of [23], we know the solution on (0, +∞) of the
initial value problem exists and is unique. We now prove that the non-negative orthant
R6

+ is a positively invariant region. To do this, we need to show that on each hyperplane
bounding the non-negative orthant, the vector field points to R6

+. From model (1), we find

Dαx|x=0 = λα ≥ 0, Dαys|ys=0 = βα
s (1 – εI)(1 – uI)xvs ≥ 0,

Dαyr|yr=0 = βα
s (1 – εI)uIxvs + βα

r xvr ≥ 0,

Dαvs|vs=0 = kα
s (1 – εP)(1 – uP)ys ≥ 0,

Dαvr|vr=0 = kα
s (1 – εP)uPys + kα

r yr ≥ 0,

DαH|H=0 = sα
H
(
1 + γ (ys + yr)

) ≥ 0.

(3)

Thus, by Corollary 2, the solution of model (1) will remain in R6
+. �
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3 Reproduction numbers and local stability of the disease-free equilibrium
In this section, we compute the reproduction number of model (1), R0, and the local stabil-
ity of its disease-free equilibrium. The basic reproduction number is defined as the num-
ber of secondary infections due to a single infection in a completely susceptible popula-
tion.

We begin by considering two sub-models of model (1). Model (4) arises from model (1)
by setting the variables concerning resistance dynamics (yr and vr) to zero, and model (10)
follows from model (1) by setting the variables concerning sensitive dynamics (ys and vs)
to zero.

We start by computing the reproduction number of model (4), Rs, using the next gener-
ation method [24]), and the local stabilities of its disease-free and the endemic equilibria.
We have

dαx
dtα

= λα – dαx – βα
s (1 – εI)xvs + rα

1 x
(

1 –
x + ys

Tmax

)
,

dαys

dtα
= βα

s (1 – εI)(1 – uI)xvs – aα
s (1 + α1H)ys,

dαvs

dtα
= kα

s (1 – εP)(1 – uP)ys – cα
s vs,

dαH
dtα

= sα
H (1 + γ ys) – dα

H H – βα
HVHH .

(4)

The disease-free equilibrium of model (4) is given by

P1
0 = (x0, ys0 , vs0 , H0) =

(Tmax(rα
1 – dα +

√
(rα

1 – dα)2 + 4rα1 λα

Tmax
)

2rα
1

, 0, 0,
sα

H
dα

H + βα
HVH

)
. (5)

Using the notation in [24] for system (4), the matrices for the new infection terms, Fs,
and the other terms, Vs, are computed to be

Fs =

(
0 βα

s (1 – εI)(1 – uI)x0

0 0

)
,

Vs =

(
aα

s (1 + α1H0) 0
–kα

s (1 – εP)(1 – uP) cα
s

)
.

The associative basic reproduction number is thus

Rs = ρ
(
FsV –1

s
)

=
(1 – εI)(1 – uI)(1 – εP)(1 – uP)βα

s kα
s x0

cα
s aα

s (1 + α1H0)
, (6)

where ρ indicates the spectral radius of FsV –1
s .
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The linearization matrix of model (4) around the disease-free equilibrium, P1
0, is

M1 =

⎛
⎜⎜⎜⎝

–
√

(rα
1 – dα)2 + 4rα1 λα

Tmax
– –rα1

Tmax
x0 –βα

s (1 – εI )x0 0
0 –aα

s (1 + α1H0) βα
s (1 – εI)(1 – uI)x0 0

0 kα
s (1 – εP)(1 – uP) –cα

s 0
0 sα

Hγ 0 –dα
H – βα

H VH

⎞
⎟⎟⎟⎠ .

Stability of P1
0 can be determined using the following lemmas.

Lemma 4 (Theorem 2, [25]) Let α(= p
q ) where p, q ∈ Z+ and gdc(p, q) = 1. Define M = q,

then the disease-free equilibrium P1
0 of the system (4) is asymptotically stable if | arg(
)| >

π
2M for all roots 
 of the following equation:

det
(
diag

[

Mα
Mα
Mα
Mα

]
– M1

)
= 0.

Lemma 5 The disease-free equilibrium P1
0 of the system (4) is unstable if Rs > 1.

Proof Expanding det(diag[
Mα
Mα
Mα
Mα] – M1) = 0, we have the following equation
in terms of 
:

[

Mα +

√(
rα

1 – dα
)2 +

4rα
1 λα

Tmax

][

Mα + dα

H + βα
HVH

]

× [

2Mα +

(
aα

s (1 + α1H0) + cα
s
)

Mα + aα

s (1 + α1H0)cα
s (1 – Rs)

]
= 0. (7)

Now the arguments of the roots of the equation 
Mα +
√

(rα
1 – dα)2 + 4rα1 λα

Tmax
= 0 are given

by

arg(
k) =
π

Mα
+ k

2π

Mα
>

π

M
>

π

2M
,

where k = 0, 1, . . . , (Mα – 1).
Similarly arguments of the roots of the equation 
Mα + dα

H + βα
HVH = 0 are all greater

than π
2M .

Thus, using Lemma 4, we show that the disease-free equilibrium, P1
0, of system (4) is

unstable if there exists at least one root of the polynomial,


2Mα +
(
aα

s (1 + α1H0) + cα
s
)

Mα + aα

s (1 + α1H0)cα
s (1 – Rs) = 0 (8)

having an argument less than π
2M , for Rs > 1.
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Using Descartes’ rule of signs, we find that there is exactly one sign change of the equa-
tion:


2Mα +
(
aα

s (1 + α1H0) + cα
s
)

Mα + aα

s (1 + α1H0)cα
s (1 – Rs) = 0 (9)

for Rs > 1, thus there is exactly one positive real root of the aforesaid equation for which
the argument is less than π

2M . Thus, if Rs > 1, the disease-free equilibrium P1
0 of the system

(4) is unstable. �

We proceed with the computation of the reproduction number of model 10, Rr , below

dαx
dtα

= λα – dαx – βα
r xvr + rα

1 x
(

1 –
x + yr

Tmax

)
,

dαyr

dtα
= βα

r xvr – aα
r (1 + α1H)yr ,

dαvr

dtα
= kα

r yr – cα
r vr ,

dαH
dtα

= sα
H (1 + γ yr) – dα

HH – βα
HVH H .

(10)

The disease-free equilibrium of model (10) is given by

P2
0 = (x0, yr0 , vr0 , H0) = (x0, 0, 0, H0). (11)

Using the notation in [24] on system (10), matrices for the new infection terms, Fr , and
the other terms, Vr , are computed to be

Fr =

(
0 βα

r x0

0 0

)
,

Vr =

(
aα

r (1 + α1H0) 0
–kα

r cα
r

)
.

The associative basic reproduction number is thus

Rr = ρ
(
FrV –1

r
)

=
βα

r kα
r x0

cα
r aα

r (1 + α1H0)
, (12)

where ρ indicates the spectral radius of FrV –1
r .

The linearization matrix of model (10) around the disease-free equilibrium, P2
0, is

M2 =

⎛
⎜⎜⎜⎜⎝

–
√

(rα
1 – dα)2 + 4rα1 λα

Tmax
– –rα1

Tmax
x0 –βα

r x0 0
0 –aα

r (1 + α1H0) βα
r x0 0

0 kα
r –cα

r 0
0 sα

Hγ 0 –dα
H – βα

HVH

⎞
⎟⎟⎟⎟⎠ .

Stability of P2
0 can be determined using the following lemmas.
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Table 1 Parameters used in the numerical simulations of model (1)

Parameter Value (Units) Reference

λ 7.5× 105 (mL–1 day–1) [5]
d 1.06× 10–3 (day–1) [6]
βs 7.3× 10–5 (mL day–1) Estimated
εI 0.8 [6]
βr 9.3× 10–7 (mL day–1) [27]
r1 2.7 (day–1) [6]
Tmax 4.016× 106 (day–1) [6]
uI 1.2× 10–4 [4]
as 0.14 (day–1) [5]
α1 5× 10–3 [6]
ar 0.14 (day–1) [5]
ks 45 (day–1) [27]
εP 0.8 [6]
uP 1.2× 10–4 [4]
kr 45 (day–1) [27]
cs 6.2 (day–1) [5]
cr 6.2 (day–1) [5]
sH 104 (mL–1 day–1) [28]
γ 2× 10–8 [6]
dH 9× 10–3 (day–1) [6]
βH 4.1× 10–6 (mL day–1) [6]
VH 105 (mL day–1) [6]

Lemma 6 (Theorem 2, [25]) Let α(= p
q ) where p, q ∈ Z+ and gdc(p, q) = 1. Define M = q,

then the disease-free equilibrium P2
0 of the system (10) is asymptotically stable if | arg(
)| >

π
2M for all roots 
 of the following equation:

det
(
diag

[

Mα
Mα
Mα
Mα

]
– M2

)
= 0.

Lemma 7 The disease-free equilibrium P2
0 of the system (10) is unstable if Rr > 1.

Proof Expanding, det(diag[
Mα
Mα
Mα
Mα] – M2) = 0, we have the following equation
in terms of 
:

[

Mα +

√(
rα

1 – dα
)2 +

4rα
1 λα

Tmax

][

Mα + dα

H + βα
HVH

]

× [

2Mα +

(
aα

r (1 + α1H0) + cα
r
)

Mα + aα

r (1 + α1H0)cα
r (1 – Rr)

]
= 0. (13)

Now the arguments of the roots of the equation 
Mα +
√

(rα
1 – dα)2 + 4rα1 λα

Tmax
= 0 are given

by

arg(
k) =
π

Mα
+ k

2π

Mα
>

π

M
>

π

2M
,

where k = 0, 1, . . . , (Mα – 1).
Similarly the arguments of the roots of the equation 
Mα + dα

H +βα
HVH = 0 are all greater

than π
2M .
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Figure 1 Dynamics of the variables of system (1) for different values of VH , the HIV viral load, and
α = 1.0. Parameter values are in Table 1 and initial conditions are in the text.

Thus, using Lemma 6, we show that the disease-free equilibrium, P2
0, of system (10) is

unstable if there exists at least one root of the polynomial


2Mα +
(
aα

r (1 + α1H0) + cα
r
)

Mα + aα

r (1 + α1H0)cα
r (1 – Rr) = 0 (14)

having an argument less than π
2M , for Rr > 1.

Using Descartes’ rule of signs, we find that there is exactly one sign change of the equa-
tion:


2Mα +
(
aα

r (1 + α1H0) + cα
r
)

Mα + aα

r (1 + α1H0)cα
r (1 – Rr) = 0 (15)

for Rr > 1, thus there is exactly one positive real root of the aforesaid equation for which
the argument is less than π

2M . Thus, if Rr > 1, the disease-free equilibrium P2
0 of the system

(10) is unstable. �
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Figure 2 Dynamics of the variables of system (1) for different values of VH , the HIV viral load, and
α = 0.9. Parameter values are in Table 1 and initial conditions are in the text.

The reproduction number of the full model (1), R0 is calculated as follows. The disease-
free equilibrium state, P0, of model (1) is given by

P0 = (x0, ys0 , yr0 , vs0 , vr0 , H0) = (x0, 0, 0, 0, 0, H0). (16)

Using the notation in [24] on system (1), matrices for the new infection terms, F , and
the other terms, V , are computed to be

F =

⎛
⎜⎜⎜⎝

0 0 βα
s (1 – εI)(1 – uI)x0 0

0 0 βα
s (1 – εI)uIx0 βα

r x0

0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠ ,
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Figure 3 Dynamics of the variables of system (1) for different values of VH , the HIV viral load, and
α = 0.8. Parameter values are in Table 1 and initial conditions are in the text.

V =

⎛
⎜⎜⎜⎝

aα
s (1 + α1H0) 0 0 0

0 aα
r (1 + α1H0) 0 0

–kα
s (1 – εP)(1 – uP) 0 cα

s 0
–kα

s (1 – εP)uP –kα
r 0 cα

r

⎞
⎟⎟⎟⎠ .

The associative basic reproduction number is computed to be

R0 = ρ
(
FV –1) = max(Rs, Rr), (17)

where ρ indicates the spectral radius of FV –1.
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Figure 4 Dynamics of the variables of system (1) for different values of VH , the HIV viral load, and
α = 0.7. Parameter values are in Table 1 and initial conditions are in the text.

The linearization matrix of model (1) around the disease-free equilibrium, P0, is

M3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

–

√
(rα1 – dα )2 +

4rα1 λα

Tmax –
–rα1

Tmax x0 –
–rα1

Tmax x0 –βαs (1 – εI )x0 –βαr x0 0

0 –aαs (1 + α1H0) 0 βαs (1 – εI )(1 – uI )x0 0 0
0 0 –aαr (1 + α1H0) 0 βαr x0 0
0 kαs (1 – εP )(1 – uP ) 0 –cαs 0 0
0 kαs (1 – εP )uP kαr 0 –cαr 0
0 sαH γ sαH γ 0 0 –dα

H – βα
H VH

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The stability of P0 can be determined using the following lemmas.

Lemma 8 (Theorem 2, [25]) Let α(= p
q ) where p, q ∈ Z+ and gdc(p, q) = 1. Define M = q,

then the disease-free equilibrium P0 of the system (1) is asymptotically stable if | arg(
)| >
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Figure 5 Dynamics of the variables of system (1) for different values of εP , the protease inhibitor drug
efficacy, and α = 1.0. Parameter values are in Table 1 and initial conditions are given in the text.

π
2M for all roots 
 of the following equation:

det
(
diag

[

Mα
Mα
Mα
Mα
Mα
Mα

]
– M3

)
= 0.

Lemma 9 The disease-free equilibrium P0 of the system (1) is unstable if R0 > 1.

Proof Expanding det(diag[
Mα
Mα
Mα
Mα
Mα
Mα] – M3) = 0 we have the following
equation in terms of 
:

[

Mα +

√(
rα

1 – dα
)2 +

4rα
1 λα

Tmax

][

Mα + dα

H + βα
HVH

]

× [

2Mα +

(
aα

r (1 + α1H0) + cα
r
)

Mα + aα

r (1 + α1H0)cα
r (1 – Rr)

]
× [


2Mα +
(
aα

s (1 + α1H0) + cα
s
)

Mα + aα

s (1 + α1H0)cα
s (1 – Rs)

]
= 0. (18)
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Figure 6 Dynamics of the variables of system (1) for different values of εP , the protease inhibitor drug
efficacy, and α = 0.9. Parameter values are in Table 1 and initial conditions are given in the text.

Now the arguments of the roots of the equation 
Mα +
√

(rα
1 – dα)2 + 4rα1 λα

Tmax
= 0 are given

by

arg(
k) =
π

Mα
+ k

2π

Mα
>

π

M
>

π

2M
,

where k = 0, 1, . . . , (Mα – 1).
Similarly the arguments of the roots of the equation 
Mα + dα

H +βα
HVH = 0 are all greater

than π
2M .

Thus, using Lemma 8, we show that the disease-free equilibrium, P0, of system (1) is
unstable if there exists at least one root of the polynomial


2Mα +
(
aα

s (1 + α1H0) + cα
s
)

Mα + aα

s (1 + α1H0)cα
s (1 – Rs) = 0 (19)
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Figure 7 Dynamics of the variables of system (1) for different values of εP , the protease inhibitor drug
efficacy, and α = 0.8. Parameter values are in Table 1 and initial conditions are given in the text.

or


2Mα +
(
aα

r (1 + α1H0) + cα
r
)

Mα + aα

r (1 + α1H0)cα
r (1 – Rr) = 0 (20)

having an argument less than π
2M , for Rs > 1 or Rr > 1, respectively.

As shown previously, there is exactly one sign change for each polynomial when Rs >
1 and Rr > 1, respectively. Since R0 = max(Rs, Rr), the disease-free equilibrium P0 of the
system (1) is unstable for Rs > 1 or Rr > 1. �

4 Numerical simulations
In this section, we show the results of the numerical simulations of model (1). We ap-
ply the Grünwald-Letnikov scheme to an approximation of the solutions of the model,
where h = 0.0005 was the time step increment used [26]. The initial conditions are set



Carvalho et al. Advances in Difference Equations  (2018) 2018:2 Page 16 of 22

Figure 8 Dynamics of the variables of system (1) for different values of εP , the protease inhibitor drug
efficacy, and α = 0.7. Parameter values are in Table 1 and initial conditions are given in the text.

to x(0) = 1.5 × 106, ys(0) = 103, yr(0) = vr(0) = 102, vs(0) = 4 × 105 and H(0) = 106. The
parameter values of the model (1) can be found in Table 1. The simulations were done
for α ∈ (0, 1]. We illustrate the results of the model including the figures for three values
of α.

In Figures 1-4, we illustrate how HIV, VH , influences the progression of HCV in-
fection in the model (1), for four values of the order of the fractional derivative, α.
We observe that, as the HIV viral load increases, the model bifurcates from a disease-
free to an endemic equilibrium, for α = 1.0. Moreover, the CD4+ T cells count de-
creases, and the drug-sensitive and the drug-resistance infected hepatocytes and virus
increase. Thus, higher HIV loads are directly associated to severe HCV infection.
This is also observed for α = 0.9, 0.8, 0.7. We note that for α = 0.9 the model is al-
ready at the endemic state, which means that the progression of the coinfection is
faster for smaller values of α. In Figure 1, by Lemma 1, the eigenvalues of the sys-
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Figure 9 Dynamics of the variables of system (1) for different values of sH , the CD4+ T cells
recruitment rate, and α = 1.0. Parameter values are in Table 1 and initial conditions are given in the text.

tem around the disease-free equilibrium satisfy condition | arg(λ)| > π
2M , for α = 1.0.

This translates in a value of the reproduction number, R0, less than 1 (R0 = 0.2786).
This value is the maximum of the values of the reproduction numbers of the two sub-
models, the sensitive model (Rs = 0.2786), and the resistant model (Rr = 0.0889). For
smaller values of α (Figures 2-4), the eigenvalues of the system do not comply to the
previous condition, which translates in a value of R0 > 1. The latter means that the
disease-free equilibrium loses stability and an endemic equilibrium arises. The epidemic
spreads.

The dynamics of the variables of system (1) for different values of εP , the protease in-
hibitor drug efficacy, and four values of α are depicted in Figures 5-8. When εP increases,
the drug-sensitive HCV virus decrease, and the other variables increase, for the four val-
ues of α. We note that there is a slight increase in the number of HCV resistant virus, due
to larger amounts of the drug. The latter is biologically reasonable. The bottom line shows
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Figure 10 Dynamics of the variables of system (1) for different values of sH , the CD4+ T cells
recruitment rate, and α = 0.9. Parameter values are in Table 1 and initial conditions are given in the text.

that larger values of drugs diminish the severity of the HCV infection. In these figures, the
value of the reproduction number, R0, is always greater than 1. The disease propagates for
all values of the order of the fractional derivative.

Figures 9-12 show the effect of the variation of the CD4+ T cells recruitment rate in the
dynamics of the coinfection, for four values of α. We observe that as the recruitment rate
increases there is an overall increase in the patients’ quality of life, since the severity of the
disease, i.e., the number of infected hepatocytes, decreases. This is similar for all values of
α, though for α = 0.7 this effect is harder to see.

In Figure 13, we observe the variation of the value of R0 as a function of the HIV viral
load, VH , and of the drug-sensitive virus transmission rate, βs. Higher viral loads promote
the coinfection whenever the transmission rate is above a given threshold. This seems
reasonable. In the presence of high viral loads, but controlled conditions (e.g., the person
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Figure 11 Dynamics of the variables of system (1) for different values of sH , the CD4+ T cells
recruitment rate, and α = 0.8. Parameter values are in Table 1 and initial conditions are given in the text.

does not have risk behaviors, the person is hospitalized, etc.), there is no propagation of
the disease.

5 Conclusions
We derive a simple non-integer-order model for the coinfection of HIV and HCV, with
treatment for HCV. We compute the basic reproduction number and the stability of the
disease-free equilibrium. The simulations of the model reveal a strong dependency of the
HCV infection progression on the HIV viral load. Higher HIV viral loads are associated
with reduced immune response, which in turn translates in higher HCV viral loads. We
have also considered the influence of the protease drug efficacy on the dynamics of the
coinfection. We find that smaller values of this parameter are associated with a higher
number of infected hepatocytes. The results of the models suggest that specific mea-
sures should be implemented, by the policy makers, in order to reduce HIV viral load
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Figure 12 Dynamics of the variables of system (1) for different values of sH , the CD4+ T cells
recruitment rate, and α = 0.7. Parameter values are in Table 1 and initial conditions are given in the text.

Figure 13 Variation of the value of the
reproduction number R0 as a function of the VH ,
the HIV viral load and βs , the drug-sensitive
transmission rate, for α = 1.0.

(preventive measures and treatment), and to treat HCV infection. The order of the frac-
tional derivative seems to increase the severity of the disease, translated by higher HIV
viral loads and infected hepatocytes. The results of the model are biologically reason-
able.
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