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Abstract
The synchronization problem for a class of fractional-order complex dynamical
networks with and without time-varying delay is investigated in this paper. By
utilizing generalized Barbalat’s lemma, Razumikhin-type stability theory and matrix
inequality technique, some sufficient criteria ensuring synchronization under pinning
control and pinning adaptive feedback control are derived. Finally, three numerical
simulations are presented to demonstrate the effectiveness of the obtained results.
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1 Introduction
In the past decade, many researchers have drawn increasing attention to dynamical anal-
ysis of complex dynamical networks due to a variety of their application fields, such as bi-
ology, physics, mathematics, sociology and so on [1–6]. On the basis of complex network
models, the complex dynamical networks have been extensively investigated, especially
in the interaction between the overall structure and complexity, and the local dynami-
cal properties of the coupled nodes. A complex network is usually composed of a set of
coupled interconnected nodes, and each of node states is a dynamical system.

Note that fractional calculus, governed by fractional derivative and integral, has become
a focal research topic in many fields such as dielectric polarization, engineering optimiza-
tion, electromagnetic wave and so on [7, 8]. These research efforts have shown that, com-
pared with integer calculus, fractional calculus has a greater advantage in describing the
memory and hereditary properties of manifold material and processes, and fractional cal-
culus has plenty of freedom when we simulate real-world problems. In recent years, there
has been a great deal of work to study fractional-order systems in dynamics and con-
trol [9–11]. In the real world, the complex networks are composed of a large number of
interconnected fractional-order dynamical units; therefore, it is necessary to investigate
fractional-order complex dynamical networks.

Synchronization, as one of the most important collective behaviors in complex dynamic
networks, has been extensively studied [12–16]. Synchronization in complex networks
plays a significant role in the fields of signal generator, image processing, engineering, etc.
It is well known that synchronization of fractional-order complex dynamical networks has
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become an important research field [17–19]. Yang et al. [17] investigated the out synchro-
nization with two complex dynamical networks of fractional-order chaotic nodes. Wong
et al. [18] addressed the robust synchronization of coupled fractional-order complex dy-
namical networks with parametric uncertainties. The hybrid synchronization problem of
coupled fractional-order complex networks was investigated in [19].

As is well known, various control techniques, such as pinning control [20], impulsive
control [21], adaptive control [22], intermittent control [23] and observer-based control
[24], have been adopted to realize synchronization. But in the real world, it is too costly and
impractical if all of the nodes in the network are controlled. However, many existing works
show that we can synchronize the whole network by using pinning control [25–30]. Li et al.
[25] provided several low-dimensional criteria for the synchronization of fractional-order
complex dynamical networks with periodically intermittent pinning control. Wang et al.
[26] showed that pinning synchronization problem of fractional-order complex networks
can also deal with Lipschitz-type nonlinear nodes and directed communication topology.
The advantage of adaptive control is that the control parameter can be adaptively adjusted
according to the appropriate update law, and adaptive pinning control method has been
widely used to synchronize coupled fractional-order dynamical networks. For instance,
Chai et al. [27] investigated the synchronization of fractional-order complex networks via
adaptive pinning control. The problem about cluster synchronization of fractional-order
complex dynamical networks was studied via adaptive pinning control in [28]. However,
few people studied a synchronization problem of fractional-order complex dynamical net-
works with and without time-varying delay via pinning and adaptive control. Thus, it is
very significant to further study the synchronization of fractional-order complex dynam-
ical networks by utilizing pinning adaptive control strategy.

Motivated by the above discussions, this paper will investigate the synchronization of
fractional-order complex dynamical networks with and without time-varying delay via
pinning and adaptive control. We establish some sufficient conditions to guarantee the
synchronization of fractional-order complex dynamical networks with and without time-
varying delay by using the pinning state feedback controller. In addition, we design adap-
tive control to adjust coupling strength designed for fractional-order complex dynamical
networks with directed topologies. There are two adaptive plans for updating the feed-
back gains such that delayed fractional-order complex dynamical networks with directed
topologies under the designed pinning controllers are synchronized. Moreover, the ob-
tained results can be used to achieve anti-synchronization and complete synchronization.
Compared with [29], the results in the paper are less conservative and more general.

This paper is composed as follows. Section 2 describes some preliminaries. Main results
are presented in Sections 3 and 4. Three numerical examples are given in Section 5. Finally,
conclusions are drawn in Section 6.

2 Preliminaries and model description
2.1 Preliminaries about fractional-order calculus
In the following, we will introduce some notations and definitions.

The superscript T represents the transpose. Rn denotes the n-dimensional Euclidean
space.Rn×n is the set of n×n real matrices. The matrix 0 < P ∈R

n×n or 0 > P ∈R
n×n means

P is symmetric and positive definite or negative definite. A ⊗ B represents the Kronecker
product of matrices A and B. For any matrix A, λmax(A) and λmin(A) denote the largest
eigenvalue and the smallest one of the matrix, respectively.
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2.2 Definitions and lemmas
In this subsection, some useful definitions and lemmas are given.

Definition 2.1 ([7]) �(·) denotes the gamma function. The Caputo fractional derivative
of order α > 0 for a function F (t) is defined as

Dα
t0,tF (t) =

1
�(n – α)

∫ t

t0

(t – s)(n–α–1)F (n)(s) ds, t ≥ t0,

where n – 1 < α < n, n ∈ Z
+.

Definition 2.2 ([7]) The fractional integral of order α for a function F (t) is defined as

Iα
t0,t =

1
�(α)

∫ t

t0

(t – s)α–1F (s) ds, α > 0.

Definition 2.3 ([31]) The matrix A of order n is called reducible if there is a permutation
matrix B ∈R

n×n satisfying

BABT =
(

A1 0
A21 A2

)
,

where A1 and A2 are square matrices of order at least one. If A is not reducible, A is called
irreducible.

Lemma 2.1 ([31]) Suppose that L = (Lij)N×N (N > 2) is an irreducible matrix, where

Lij ≥ 0 (i �= j), Lii ≤ –
N∑

i=1,j �=i

Lij,

then there exists a diagonal matrix 0 < K = diag(K1, K2, . . . , KN ) ∈ PN×N such that

KL + LTK ≤ 0.

Lemma 2.2 ([32]) Suppose that A is an n order matrix, then there exist B ∈R
n×n and an

integer r ≥ 1 satisfying

BABT =

⎛
⎜⎜⎜⎜⎝

A1 A12 · · · A1r

0 A2 · · · A2r
...

...
. . .

...
0 0 · · · Ar

⎞
⎟⎟⎟⎟⎠ ,

where A1, A2, . . . , A are square irreducible matrices. The matrices A1, A2, . . . , Ar that
occur as diagonal blocks are uniquely determined within simultaneous permutation of their
lines, but their ordering is not necessarily unique.

This form is called the Frobenius normal form of the square matrix A.
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Lemma 2.3 ([33]) Suppose that the function g(t) is nondecreasing and differential on t ∈
[t0, +∞), and then, for any constant h and t ∈ [t0, +∞),

Dα
t0,t

(
g(t) – h

)2 ≤ 2
(
g(t) – h

)
Dα

t0,tg(t),

where 0 < α < 1.

Lemma 2.4 ([34]) Let x(t) ∈ R
n be a continuous and derivable vector-valued function.

Then, for any t ≥ t0,

1
2

Dα
t0,tx

T (t)Px(t) ≤ (
xT (t)P

)
Dα

t0,tx(t),

where P ∈R
n×n is a symmetric positive definite matrix, α ∈ (0, 1).

Lemma 2.5 ([35]) For any vector x, y ∈ R
n, scalar ε > 0 and positive definite matrix Q ∈

R
n×n, the following inequality holds:

2xT y ≤ εxT Qx + ε–1yT Q–1y.

3 Pinning synchronization of fractional-order complex dynamical networks
In this section, we consider coupled complex dynamical networks consisting of N identical
nodes, which is described as follows:

Dα
t0,txi(t) = –Axi(t) + Bf

(
xi(t)

)
+ c

N∑
j=1

Gij�xj(t) + J , i = 1, 2, . . . , N , (1)

where N ≥ 2 is the number of subnetworks. xi(t) = (xi1(t), xi2(t), . . . , xin(t))T ∈ R
n de-

notes the state vector of the ith nodes. A = diag{a1, a2, . . . , an} > 0. B = (bpq)n×n (p, q =
1, 2, . . . , n) is the connection weight matrix, respectively. fi(xi(t)) = (fi1(xi1(t)), fi2(xi1(t)), . . . ,
fin(xin(t)))T . c > 0 represents the overall coupling strength. G = (Gij)N×N is the coupling
matrix, which is defined as follows: if there is a link from node j to node i, then Gij > 0;
otherwise Gij = 0, the diagonal elements are defined as Gii = –

∑N
j=1,j �=i Gij. 0 < � ∈ R

n×n

stands for an inner coupling matrix. J = (J1, J2, . . . , JN ) is a constant external input vector.

Assumption 3.1 In this paper, the function fj(·) (j = 1, 2, . . . , n) is continuous, and there
exist �i > 0. For any vectors ε1, ε2 ∈R, we have

∣∣fj(ε1) – fj(ε2)
∣∣ ≤ �i|ε1 – ε2|.

The desired trajectory of s(t) satisfies

Dα
t0,ts(t) = –As(t) + Bf

(
s(t)

)
+ J . (2)

We design the proper controller ui(t) to make system (1) synchronized to s(t), that is,

lim
t→+∞

∥∥xi(t) – s(t)
∥∥

2 = 0, i = 1, 2, . . . , N .
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As we all know, coupled complex dynamical network (1) cannot achieve synchroniza-
tion by itself. In this section, some controllers should be used to control partial nodes for
realizing synchronization. Hence, the pinning control can be presented as follows:

ui(t) =

⎧⎨
⎩

–cki�(xi(t) – s(t)), i ∈ C,

0, i /∈ C,
(3)

where C = {l1, l2, . . . , lm} and li (i = 1, 2, . . . , m, 1 ≤ m < N ) are controlled nodes. ki > 0 rep-
resents feedback gains.

Under controller (3), system (1) can be rewritten as

Dα
t0,txi(t) = –Axi(t) + Bf

(
xi(t)

)
+ c

N∑
j=1

Gij�xj(t) + J – ck̂i�
(
xi(t) – s(t)

)
, (4)

where i = 1, 2, . . . , N , K = diag(k̂1, k̂2, . . . , k̂N ) = diag(0, . . . , 0, k1︸︷︷︸
l1

, 0, . . . , 0, k2︸︷︷︸
l2

, 0, . . . , 0,

kr︸︷︷︸
lm

, . . .).

Define the error signal ei(t) = xi(t) – s(t), i = 1, 2, . . . , N . Then we can obtain

Dα
t0,tei(t) = –Aei(t) + Bf

(
xi(t)

)
– Bf

(
s(t)

)
+ c

N∑
j=1

Ĝij�ej(t), (5)

where m = 1, 2, . . . , N , Ĝ = (Ĝij)N×N = G – K .
Suppose that Ĝ is in the Frobenius normal form, that is,

Ĝ =

⎛
⎜⎜⎜⎜⎝

Ḡ1 Ḡ12 · · · Ḡ1r

0 Ḡ2 · · · Ḡ2r
...

...
. . .

...
0 0 · · · Ḡr

⎞
⎟⎟⎟⎟⎠ ,

where Ḡ1 ∈R
p1×p1 , Ḡ2 ∈R

p2×p2 , . . . , Ḡr ∈R
pr×pr are square irreducible matrices.

Denote

ê1(t) =
(
eT

1 (t), eT
2 (t), . . . , eT

p1 (t)
)T ,

ê2(t) =
(
eT

p1+1(t), eT
p1+2(t), . . . , eT

p1+p2 (t)
)T ,

...

êr(t) =
(
eT

N–pr+1(t), eT
N–pr+2(t), . . . , eT

N (t)
)T ,

f̂i
(
x(t)

)
=

(
f T(

xp1+···+pi–1+1(t)
)
, f T(

xp1+···+pi–1+2(t)
)
,

. . . , f T(
xp1+···+pi–1+1(t)

))T ,

S(t) =
(
sT (t), sT (t), . . . , sT (t)

)T ,

e(t) =
(
eT

1 (t), eT
2 (t), . . . , eT

N (t)
)T ,

f̂i
(
S(t)

)
=

(
f T(

s(t)
)
, f T(

s(t)
)
, . . . , f T(

s(t)
))

.
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Then system (1) can be transformed as

Dα
t0,t êi(t) = –(Ipi ⊗ A)êi(t) + (Ipi ⊗ B)

(
f̂i
(
x(t)

)
– f̂i

(
s(t)

))

+ c
r∑

j=i+1

(Ḡij ⊗ �)êj(t) + c(Ḡi ⊗ �)êi(t), (6)

where i = 1, 2, . . . , r.

Lemma 3.1 ([36]) Let f be a nonnegative uniformly continuous function. If for all t ≥ 0,
Iα

0 f (t) < C with C a positive constant, then f converges to zero.

Lemma 3.2 ([10]) If the Caputo fractional derivative Dα
t0,tF (t) is integrable, then

Iα
t0,tD

α
t0,tF (t) = F (t) –

n–1∑
k=0

f (k)(t0)
k!

(t – t0)k .

When 0 < α < 1, one can obtain

Iα
t0,tD

α
t0,tF (t) = F (t) – F (0).

3.1 Fixed coupled strength
Theorem 3.1 If there exist matrices 0 < Pi = diag(Pi1, Pi2, . . . , Pipi ) ∈ R

pi×pi and a positive
scalar λ1 > 0 such that

� = P ⊗ (
–2A + BBT + 	

)
+ c

(
PĜ + ĜT P

) ⊗ � – λ1P < 0, (7)

where P = diag(P1, P2, . . . , Pr), 	 = diag(�2
1,�2

2, . . . ,�2
n), then system (1) can achieve syn-

chronization.

Proof Let us consider the function V1(t) =
∑r

i=1 êT
i (t)(Pi ⊗ In)êi(t).

From Lemmas 2.3 and 2.4, we can obtain

Dα
t0,tV1(t) ≤ 2

r∑
i=1

êT
i (t)(Pi ⊗ In)Dα

0,t êi(t)

= 2
r∑

i=1

êT
i (t)(Pi ⊗ In)

[
–(Ipi ⊗ A)êi(t) + c

r∑
j=i+1

(Ḡij ⊗ �)êj(t)

+ c(Ḡi ⊗ �)êi(t) + (Ipi ⊗ B)
(
f̂i
(
x(t)

)
– f̂i

(
S(t)

))]

= 2
r∑

i=1

êT
i (t)(Pi ⊗ In)(–Ipi ⊗ A)êi(t)

+ 2c
r∑

i=1

êT
i (t)(Pi ⊗ In)

r∑
j=i+1

(Ḡij ⊗ �)êj(t)

+ 2c
r∑

i=1

êT
i (t)(Pi ⊗ In)(Ḡi ⊗ �)êi(t)
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+ 2
r∑

i=1

êT
i (t)(
i ⊗ In)(Ipi ⊗ B)

(
f̂i
(
x(t)

)
– f̂i

(
S(t)

))

= –2
r∑

i=1

êT
i (t)(Pi ⊗ A) + 2c

r∑
i=1

r∑
j=i+1

êT
i (t)

[
(PiḠij) ⊗ �

]
êj(t)

+ 2c
r∑

i=1

êT
i (t)(PiḠi) ⊗ �)êT

i (t)

+ 2
r∑

i=1

pi∑
j=1

PijeT
p1+···+pi–1+j(t)

(
BBT + 	

)
ep1+···+pi–1+j(t)

= eT (t)
[
P ⊗ (

–2A + BBT + 	
)

+ c
(
PĜ + ĜT P

) ⊗ �
]
e(t)

≤ eT (t)�e(t) – λ1V1(t)

≤ –λ1V1(t). (8)

That is,

Dα
t0,tV1(t) ≤ –λ1V1(t) < 0. (9)

Let Q(t) = λ1V1(t), we divide [t0, t) into ι intervals [t0, t) = [t0, t1) ∪ [t1, t2) ∪ · · · ∪ [tι, t).
From Definition 2.1, Definition 2.2 and Lemma 3.2, we have

Iα
t0,tQ(t) =

1
�(α)

∫ t

t0

(t – s)(α–1)Q(s) ds

=
1

�(α)

∫ t1

t0

(t – s)(α–1)Q(s) ds

+
1

�(α)

∫ t2

t1

(t – s)(α–1)Q(s) ds

+ · · · +
1

�(α)

∫ t

tι
(t – s)(α–1)Q(s) ds

= Iα
t0,t1 Q(t1) + Iα

t1,t2 Q(t2) + · · · + Iα
tι ,tQ(t)

≤ –
(
Iα

t0,t1 Dα
t0,t1 V1(t1) + Iα

t1,t2 Dα
t1,t2 V1(t2)

)

+ · · · + Iα
tι ,tD

α
tι ,tV1(t))

= V1(t0) – V1(t1) + V1(t1) – V1(t2) + V1(t2)

– V1(t3) + · · · + V1(tι) – V1(t)

= V1(t0) – V1(t)

≤ V1(t0). (10)

From Lemma 3.1 and Lemma 7 in [37], we have limt→∞ Iα
t0,tQ(t) is bounded, that is,

limt→∞ ‖e(t)‖ = 0, then system (4) can achieve synchronization. The proof is completed. �
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3.2 Adaptive coupled strength
In this part, the main work is to solve the synchronization problem of system (4) by up-
dating the coupled strength. Now, we design a suitable adaptive controller:

Dα
t0,tc(t) = β1

r∑
i=1

êT
i (t)(Pi ⊗ �)êi(t), (11)

where 0 < β1 ∈R.
Combining system (6) with adaptive law (11), we have

Dα
t0,t êi(t) = –(Ipi ⊗ A)êi(t) + c(t)(Ḡi ⊗ �)êi(t)

+ c(t)
r∑

j=i+1

(Ḡij ⊗ �)êj(t) + (Ipi ⊗ B)
(
f̂i
(
x(t)

)
– f̂i

(
S(t)

))
. (12)

Theorem 3.2 If there exist matrices 0 < Pi = diag(Pi1, Pi2, . . . , Pipi ) ∈ R
pi⊗pi and positive

scalars δ1 > 0 such that

PĜ + ĜT P + δ1P < 0, (13)

where P = diag(P1, P2, . . . , Pr), then (12) can achieve synchronization under adaptive law
(11).

Proof Define the following function: V2(t) =
∑r

i=1 êT
i (t)(Pi ⊗ In)êi(t) + δ1

2β1
(c(t) – c∗)2.

From Lemmas 2.3 and 2.4, we can get

Dα
t0,tV2(t) ≤ 2

r∑
i=1

êT
i (t)(Pi ⊗ In)Dα

t0,t êi(t) + Dα
t0,t

δ1

2β1

(
c(t) – c∗)2

=
r∑

i=1

êT
i (t)(Pi ⊗ In)

(
–(Ipi ⊗ A)êi(t)

+ c(t)(Ḡi ⊗ �)êi(t) + c(t)
r∑

j=i+1

(Ḡij ⊗ �)êj(t)

+ (Ipi ⊗ B)
(
f̂i
(
x(t)

)
– f̂i

(
S(t)

)))
+

δ1

β1

(
c(t) – c∗)Dα

t0,tc(t)

= eT (t)
[
P ⊗ (

–2A + BBT + 	
)

+ c(t)
(
PĜ + ĜT P

+ δ1P
) ⊗ � – δ1c∗(P ⊗ �)

]
e(t). (14)

We know that c(t0) > 0 and c(t) is monotonically increasing, then we can obtain c(t) > 0.
According to (13), we have

c(t)
(
PĜ + ĜT P + δ1P

)
< 0.

By setting c∗ large enough such that

P ⊗ (
–2A + BBT + 	 – δ1c∗�

)
< –INn,
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we have

Dα
t0,tV2(t) ≤ –eT (t)e(t), t ≥ t0. (15)

From Definition 2.2 and (15), we can get

V2(t) – V2(t0) ≤ 1
�(α)

∫ t

t0

(t – s)α–1(–eT (t)e(t)
)

ds ≤ 0. (16)

Hence V2(t) ≤ V2(t0), we can conclude that ‖êi(t)‖ (i = 1, 2, . . . , r) and c(t) are bounded
on t ≥ t0. Let U(t) = xT (t)x(t). From the definition of V2(t), we can conclude that ‖x(t)‖
and c(t) are bounded on t ≥ t0. Therefore, there exists a positive constant M satisfying

∣∣Dα
t0,tU(t)

∣∣ ≤ M, t ≥ t0.

Next, we will prove U(t) is uniformly continuous. For 0 ≤ T1 < T2, we have

∣∣U(T1) – U(T2)
∣∣ =

∣∣Iα
t0,tD

α
t0,tU(T1) – Iα

t0,tD
α
t0,tU(T2)

∣∣

=
1

�(α)

∣∣∣∣
∫ T1

t0

(T1 – s)α–1Dα
t0,tU(s) ds

–
∫ T2

t0

(T2 – s)α–1Dα
t0,tU(s) ds

∣∣∣∣

=
1

�(α)

∣∣∣∣
∫ T1

t0

(
(T1 – s)α–1 – (T2 – s)α–1)Dα

t0,tU(s) ds

–
∫ T2

T1

(T2 – s)α–1Dα
t0,tU(s) ds

∣∣∣∣

≤ 1
�(α)

(∣∣∣∣
∫ T1

t0

(
(T1 – s)α–1 – (T2 – s)α–1)Dα

t0,tU(s) ds
∣∣∣∣

+
∣∣∣∣
∫ T2

T1

(T2 – s)α–1Dα
t0,tU(s) ds

∣∣∣∣
)

≤ M
�(α)

(∫ T1

t0

[
(T1 – s)α–1 – (T2 – s)α–1]ds

+
∫ T2

T1

(T2 – s)α–1 ds
)

≤ M
�(α + 1)

[
T α

1 – T α
2 + 2(T2 – T1)α

]

≤ 2
M

�(α + 1)
(T2 – T1)α < ε̂,

where |T2 – T1| < �(ε̂) = ( ε̂�(α+1)
2M ) 1

α . Then U(t) is uniformly continuous by the defi-
nition of uniform continuity. From Lemma 3.1, we obtain limt→∞ U(t) = 0; obviously,
limt→∞ ‖e(t)‖ = 0, that is, system (12) can achieve synchronization under adaptive law
(11). The proof is completed. �
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4 Pinning synchronization of complex dynamical networks with time-varying
delay

In this section, we will consider the following complex dynamical networks with time-
varying delay:

Dα
t0,txi(t) = –Axi(t) + Bf

(
xi(t)

)
+ c

N∑
j=1

Gij�xj
(
t – τ (t)

)
+ J , (17)

where i = 1, 2, . . . , N , N ≥ 2, xi(t) = (xi1(t), xi2(t), . . . , xin(t))T ∈R
n denotes the state vector of

the ith nodes. A = diag{a1, a2, . . . , an} > 0. B = (bpq)n×n (p, q = 1, 2, . . . , n) is the connection
weight matrix, respectively. fi(xi(t)) = (fi1(xi1(t)), fi2(xi1(t)), . . . , fin(xin(t)))T . c > 0 represents
the overall coupling strength. G = (Gij)N×N is the coupling matrix, which is defined as fol-
lows: if there is a link from node j to node i, then Gij > 0; otherwise Gij = 0, the diagonal
elements are defined as Gii = –

∑N
j=1,j �=i Gij. 0 < � ∈ R

n×n stands for an inner coupling ma-
trix. J = (J1, J2, . . . , JN ) is a constant external input vector. τ (t) stands for the transmission
delay with 0 ≤ τ (t) ≤ τ .

In the following, some controllers should be used to control partial nodes for realizing
synchronization. Hence, the pinning control can be presented as follows:

ui(t) =

⎧⎨
⎩

–cki�(xi(t) – s(t)), i ∈ C,

0, i /∈ C,
(18)

where C = {l1, l2, . . . , lm} and li (i = 1, 2, . . . , m, 1 ≤ m < N ) are controlled nodes. ki > 0 rep-
resents feedback gains.

Under controller (18), system (17) can be rewritten as

Dα
t0,txi(t) = –Axi(t) + Bf

(
xi(t)

)
+ c

N∑
j=1

Gij�xi
(
t – τ (t)

)
– ck̂i�

(
xi(t) – s(t)

)
+ J , (19)

where i = 1, 2, . . . , N , N ≥ 2, K = diag(k̂1, k̂2, . . . , k̂N ) = diag(0, . . . , 0, k1︸︷︷︸
l1

, 0, . . . , 0, k2︸︷︷︸
l2

, 0, . . . ,

0, km︸︷︷︸
lm

, . . .).

Let ei(t) = xi(t) – s(t), we have

⎧⎪⎪⎨
⎪⎪⎩

Dα
t0,tei(t) = –Aei(t) + Bf (xi(t)) – Bf (s(t)) – ck̂i�ei(t)

+ c
∑N

j=1 Gij�ei(t – τ (t)),

ei(s) = 
i(s), –τ ≤ s ≤ 0,

(20)

where i = 1, 2, . . . , N .

Lemma 4.1 ([38]) The Caputo fractional-order differential system

Dα
t0,tx(t) = f

(
t, x(t), x

(
t – τ (t)

))
,

where x ∈R
n, 0 < α < 1. Suppose that w1(s), w2(s) are continuous nondecreasing functions,

w1(s) and w2(s) are positive for s > 0 and w1(0) = w2(0), w2 is strictly increasing. If there
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exists a continuously differentiable function V : R×R
n →R such that w1(‖x‖) ≤ V (t, x) ≤

w2(‖x‖) for t ∈R, x ∈ R
n. Besides this, there exist two constants p, q > 0 with p < q, so that

Dα
t0,tV

(
t, x(t)

) ≤ –qV
(
t, x(t)

)
+ p sup

–τ≤θ≤0
V

(
t + θ , x(t + θ )

)

for t ≥ 0. Then system Dα
t0,tx(t) = f (t, x(t), x(t – τ (t))) is globally uniformly asymptotically

stable.

Assume

G =

⎛
⎜⎜⎜⎜⎝

G̃1 G̃12 · · · G̃1r

0 G̃2 · · · G̃2r
...

...
. . .

...
0 0 · · · G̃r

⎞
⎟⎟⎟⎟⎠ ,

where G̃1 ∈ R
p1×p1 , G̃2 ∈ R

p2×p2 , . . . , G̃r ∈ R
pr×pr are square irreducible matrices, then

system (20) can be rewritten as

Dα
t0,t êi(t) = –(Ipi ⊗ A)êi(t) + (Ipi ⊗ B)

(
f̂i
(
x(t)

)
– f̂i

(
S(t)

))

+ c
r∑

j=i+1

(G̃ij ⊗ �)êj
(
t – τ (t)

)
– c(Ki ⊗ �)êi(t)

+ c(G̃i ⊗ �)êi
(
t – τ (t)

)
, (21)

where i = 1, 2, . . . , m, the initial value of (21) is given by êi(s) = 
̂i(s),


̂i(s) =
(

1(s),
2(s), . . . ,
pi (s)

)
,

Ki = diag(Ki1, Ki2, . . . , Kipi ) ∈R
pi×pi ,

K = diag(K1, K2, . . . , Kr),

e(t) =
(
ê1(t), ê2(t), . . . , êr

)T ,

ê1(t) =
(
eT

1 (t), eT
2 (t), . . . , eT

p1 (t)
)
,

ê2(t) =
(
eT

p1+1(t), eT
p1+2(t), . . . , eT

p1+p2 (t)
)
,

...

êr(t) =
(
eT

N–pr+1(t), eT
N–pr+2(t), . . . , eT

N (t)
)
,

e
(
t – τ (t)

)
=

(
ê1

(
t – τ (t)

)
, ê2

(
t – τ (t)

)
, . . . , êr

(
t – τ (t)

))T ,

ê1
(
t – τ (t)

)
=

(
eT

1
(
t – τ (t)

)
, eT

2
(
t – τ (t)

)
, . . . , eT

p1

(
t – τ (t)

))T ,

ê2
(
t – τ (t)

)
=

(
eT

p1+1
(
t – τ (t)

)
, eT

p1+2
(
t – τ (t)

)
, . . . , eT

p1+p2

(
t – τ (t)

))T ,

...

êr
(
t – τ (t)

)
=

(
eT

N–pr+1
(
t – τ (t)

)
, eT

N–pr+2
(
t – τ (t)

)
, . . . , eT

N
(
t – τ (t)

))T ,
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S(t) =
(
sT (t), sT (t), . . . , sT (s)

)T ,

f̂i
(
S(t)

)
=

(
f T(

s(t)
)
, f T(

s(t)
)
, . . . , f T(

s(t)
))T

︸ ︷︷ ︸
pi

,

x(t) =
(
xT

1 (t), x2(t), . . . , xT
N (t)

)T ,

f̂i
(
x(t)

)
=

(
f T(

xp1+···+pi–1+1(t)
)
, f T(

xp1+···+pi–1+2(t)
)
,

· · · , f T(
xp1+···+pi–1+pi (t)

))T .

4.1 Fixed feedback gains
Theorem 4.1 If there exist matrices 0 < �1 ∈ R

n×n, 0 < Pi ∈R
n×n satisfying

H =
(
P ⊗ (

2A – BBT – 	
)

+ c(PK + KP) ⊗ �

– c2(PG) ⊗ �
)(

IN ⊗ �–1
1

)(
GT P

) ⊗ �

> 0, (22)

T = IN ⊗ �1 > 0, (23)

where P = diag(P1, P2, . . . , Pr), σ1 = λmin(H)
ξ2

, σ2 = λmax(T)
ξ1

, σ1σ2 > 0, then system (19) can
achieve synchronization.

Proof Define the following function for system (21):

V3(t) =
r∑

i=1

êT
i (t)(Pi ⊗ In)êi(t).

From Lemmas 2.3 and 2.4, we can get

Dα
t0,tV3(t) ≤ 2

r∑
i=1

êT
i (t)(Pi ⊗ In)Dα

t0,t êi(t)

= 2
r∑

i=1

êT
i (t)(Pi ⊗ In)

(
–(Ipi ⊗ A)êi(t)

+ (Ipi ⊗ B)
(
f̂i
(
x(t)

)
– f̂i

(
S(t)

))

+ c
r∑

j=i+1

(G̃ij ⊗ �)êj
(
t – τ (t)

)

– c(Ki ⊗ �)êi(t) + c(G̃i ⊗ �)êi
(
t – τ (t)

))

=
r∑

i=1

êT
i (t)

[
–2(Pi ⊗ A) +

(
Pi ⊗

(
BBT + 	

))

– c(PiKi + KiPi) ⊗ �
]
êi(t)

+ 2

( r∑
i=1

r∑
j=i+1

êi(t)G̃ij ⊗ �

)
êj
(
t – τ (t)

)
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+ 2c
r∑

i=1

êi(t)
(
(PiG̃i) ⊗ �

)
êj
(
t – τ (t)

)

= eT (t)
(
–2(P ⊗ A) +

(
P ⊗ (

BBT + 	
))

– c(PK + KP) ⊗ �
)
e(t)

+ 2ceT (t)
(
(PG) ⊗ �

)
e
(
t – τ (t)

)
.

From Lemma 2.5, we can obtain

2ceT (t)
[
(PG) ⊗ �

]
e
(
t – τ (t)

)

≤ c
[
eT (t)

(
(PG) ⊗ �

)]
e
(
t – τ (t)

)
+ ceT(

t – τ (t)
)[(

GT P
) ⊗ �

]
e(t)

≤ c2eT (t)
((

(PG) ⊗ �
)(

IN ⊗ �–1
1

)(
GT P

) ⊗ �
)
e(t)

+ eT(
t – τ (t)

)
(IN ⊗ �1)e

(
t – τ (t)

)
.

Therefore

Dα
t0,tV3(t) ≤ eT (t)

[
–2(P ⊗ A) +

(
P ⊗ (

BBT + 	
))

– c(PK + KP) ⊗ �

+ c2((PG) ⊗ �
)(

IN ⊗ �–1
1

)(
GT P

)
�

]
e(t)

+ eT(
t – τ (t)

)
(IN ⊗ �1)e

(
t – τ (t)

)

≤ –λmin(H)eT (t)e(t) + λmax(T)eT(
t – τ (t)

)
e
(
t – τ (t)

)
,

where

H = (P ⊗ (
2A – BBT – 	

)
+ c(PK + KP) ⊗ �

– c2((PG) ⊗ �
)(

IN ⊗ �–1
1

)(
GT P

)
�

> 0,

T = IN ⊗ �1 > 0.

From the definition of V (t), we get

ξ1
∥∥x(t)

∥∥2 ≤ V1(t) ≤ ξ2
∥∥x(t)

∥∥2,

where ξ1 = mini=1,2,...,r{λmin(Pi)}, ξ2 = mini=1,2,...,r{λmax(Pi)}, then

Dα
t0,tV3(t) ≤ –λmin(H)

ξ2
V3(t) +

λmax(T)
ξ1

V3
(
t – τ (t)

)
. (24)

Let σ1 = λmin(H)
ξ2

, σ2 = λmax(T)
ξ1

, then

Dα
t0,tV3(t) ≤ σ1V3(t) + σ2V3

(
t – τ (t)

)
.

Thus, we can obtain

Dα
t0,tV3(t) ≤ σ1V3(t) + σ2 sup

–τ≤θ≤0
V3(t + θ ). (25)
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From Lemma 4.1, error system (20) will be globally uniformly asymptotically stable.
Thus, the error e(t) will converge to zero asymptotically, which means that (19) can achieve
synchronization. �

4.2 Adaptive feedback gains
In the following, we will turn the feedback gains and propose a new synchronization cri-
terion to realize the synchronization of system (19).

Design the following pinning controllers:

ui(t) =

{
–cki�(xi(t) – s(t)), i ∈ C,
0, i /∈ C,

(26)

where C = {l1, l2, . . . , lm}, and li(i = 1, 2, . . . , m) (1 ≤ m < N ) are controlled nodes. Then we
can get

⎧⎪⎪⎨
⎪⎪⎩

Dα
t0,txi(t) = –Axi(t) + Bf (xi(t)) + c

∑N
j=1 Gij�xi(t – τ (t))

+ J – ck̂i(t)�(xi(t) – s(t)),
xi(s) = φi(s), –τ ≤ s ≤ 0,

(27)

where i = 1, 2, . . . , N .
From (26) and (27), we have

Dα
t0,t êi(t) = –(Ipi ⊗ A)êi(t) + (Ipi ⊗ B)

(
f̂i
(
x(t)

)
– f̂i

(
S(t)

))

+ c
r∑

j=i+1

(G̃ij ⊗ �)êj
(
t – τ (t)

)

– c
(
Ki(t) ⊗ �

)
êi(t) + c(G̃i ⊗ �)êi

(
t – τ (t)

)
, (28)

where i = 1, 2, . . . , m, the initial value of (28) is given by êi(s) = φ̂i(s),

φ̂i(s) =
(
φT

1 (s),φT
2 (s), . . . ,φpi (s)

)
,

K(t) = diag
(
K1(t), K2(t), . . . , Kr(t)

)
= diag

(
k̂1(t), k̂2(t), . . . , k̂N (t)

)
= diag

(
0, . . . , 0, k1(t)︸︷︷︸

l1

, 0, . . . , 0, k2(t)︸︷︷︸
l2

, 0, . . . , 0, km(t)︸ ︷︷ ︸
lm

, . . .
)
,

Ki(t) = diag
(
Ki1(t), Ki2(t), . . . , Kipi (t)

) ∈R
pi×pi .

Theorem 4.2 If there exist matrices 0 < Pi = diag(Pi1, Pi2, . . . , Pipi ) ∈ R
pi×pi , 0 < �2 ∈R

n×n,
0 < �3 ∈R

n×n k∗
i = diag(k∗

i1, k∗
i2, . . . , k∗

ipi
) ≥ 0, i = 1, 2, . . . , r, satisfying

L = P ⊗ (
2A – BBT – 	

)
) + 2k∗ ⊗ �,

M = –c2(PG ⊗ �)
(
IN ⊗ �–1

2
)(

GT P
) ⊗ �,

I = (IN ⊗ �)�–1
3 (IN ⊗ �),

H = L + M + I > 0, (29)

λmax(�2) < λmax(�3), (30)
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where P = diag(P1, P2, . . . , Pr), k∗ = diag(k∗
1 , k∗

2 , . . . , k∗
r ), k∗

ij = 0 (j = 1, 2, . . . , pi) if and only if
Kij(t) = 0. Then the pinning controlled network (27) can achieve synchronization under the
following adaptive law:

Dα
t0,tK(t) =

–β2k∗eT (t)e(t) – β2k∗eT (t)e(t – τ (t))
K(t)

+ ceT (t)e(t),

where β2 > 0.

Proof Define the following function for system (27):

V4(t) =
r∑

i=1

êT
i (t)(Pi ⊗ In)êi(t) +

r∑
i=1

K̂i(t)(Ipi ⊗ �)K̂i(t)
β2

. (31)

From Lemmas 2.3 and 2.4, we can get

Dα
t0,tV4(t) ≤ 2

r∑
i=1

êT
i (t)(Pi ⊗ In)Dα

t0,t êi(t) + Dα
t0,t

r∑
i=1

K̂i(t)(Ipi ⊗ �)K̂i(t)
β2

= 2
r∑

i=1

êT
i (t)(Pi ⊗ In)

(
–(Ipi ⊗ A)êi(t) + (Ipi ⊗ B)

(
f̂i
(
x(t)

)

– f̂i
(
S(t)

))
+ c

r∑
i=1

(G̃ij ⊗ �)êj
(
t – τ (t)

)
– c

(
Ki(t) ⊗ �

)
êi(t)

+ c(G̃i ⊗ �)êi
(
t – τ (t)

))
– 2

r∑
i=1

k∗êT
i (t)(Pi ⊗ In)êi(t)

– 2
r∑

i=1

k∗êT
i (t)(Pi ⊗ In)êi

(
t – τ (t)

)
+ 2cêT

i (t)
(
Ki(t) ⊗ �

)
êi(t)

≤ eT (t)
(
P ⊗ (

–2A + BBT + 	 – 2k∗�
))

e(t)

+ 2ceT (t)(PG ⊗ �)e
(
t – τ (t)

)
– 2eT (t)

(
IN ⊗ k∗�

)
e
(
t – τ (t)

)
≤ eT (t)

(
P ⊗ (

–2A + BBT + 	
)

– 2k∗ ⊗ �
)
e(t)

+ c2eT (t)(PG ⊗ �)
(
IN ⊗ �–1

2
)(

GT P
) ⊗ �)e(t)

+ eT(
t – τ (t)

)
(IN ⊗ �2)e

(
t – τ (t)

)
– eT (t)(IN ⊗ �)�–1

3 (IN ⊗ �)e(t)

– eT(
t – τ (t)

)
(IN ⊗ �3)e

(
t – τ (t)

)
.

From (29) and (30) we know

λmax(IN ⊗ �2) < λmax(IN ⊗ �3),

λmin(H) > 0.

That is,

Dα
t0,tV4(t) ≤ –λmin(H)eT (t)e(t).

Then, similar to the proof of Theorem 3.2, we can conclude that system (27) can achieve
synchronization. The proof is completed. �



Li et al. Advances in Difference Equations  (2018) 2018:6 Page 16 of 23

Remark 4.1 In recent years, the synchronization of coupled fractional-order complex dy-
namical networks has been regarded as a popular topic in the scientific research because
of its wide application in different fields. But very few authors have discussed adjusting
the feedback gains and coupling strength. In [30], by the comparison principle, the syn-
chronization of fractional-order complex dynamical networks with delay is realized via
adaptive control. In this paper, we mainly use Razumikhin-type stability theory and the
matrix inequality technique to realize synchronization.

Remark 4.2 In this paper, we mainly discuss 0 < α < 1; evidently, it is still true for α = 1.
However, when α > 1, it is not suitable for this paper since Lemmas 2.2 and 2.3 are not
solved for α > 1. This is worth our deep study.

Remark 4.3 The proposed methods in this paper can be used to study the synchro-
nization of chaotic and hyperchaotic systems or multi-synchronization systems with
fractional-order derivative.

5 Numerical examples
Three examples are provided to substantiate the theoretical results.

Example 5.1 Consider the following complex dynamical networks:

Dα
t0,txi(t) = –Axi(t) + Bf

(
xi(t)

)
+ c

6∑
j=1

Gij�xj(t) + J , (32)

where α = 0.98, i = 1, 2, . . . , 6, fj(�) = tanh(�), J = (0, 0, 0)T , A = diag(0.2, 0.2, 0.3), � =
diag(0.5, 0.6, 0.4), c = 2, k1 = k2 = 0.2, k3 = k4 = k5 = k6 = 0.

B =

⎛
⎜⎝

0.02 –0.3 –0.1
–0.2 0.1 –0.1
–0.2 –0.1 0.1

⎞
⎟⎠ ,

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

–0.1 0.3 0.1 0.3 0 0
0.4 –0.5 0.5 0.1 0 0
0.1 0.1 –0.4 0 0 0
0 0 0 –0.6 0.4 0.2
0 0 0 0.1 –0.4 0.3
0 0 0 0.5 –0.2 –0.7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Obviously, fj(·) (j = 1, 2, 3) satisfies the Lipschitz condition with �j = 0.6.
We select nodes 1 and 2 as pinned nodes. Take S(t) = (0, 0, 0) ∈R

3.
Case 1 By exploiting the MATLAB LMI Toolbox, we can get the matrices P1 and P2

satisfying (7), P1 = diag(1.2872, 0.4371, 1.4351), P2 = diag(1.8363, 1.0765, 0.7430).
According to Theorem 3.1, system (32) is synchronized. The simulation results are given

in Figures 1 and 2.
Case 2 Let β1 = 0.05, we can easily find matrices P1 and P2 satisfying (13), P1 =

diag(1.3145, 0.9764, 1.1610), P2 = diag(0.6771, 1.0711, 0.5121).
According to Theorem 3.2, system (32) under pinning adaptive law (11) is synchronized.

The simulation results are given in Figures 3 and 4.
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Figure 1 The synchronized error ‖ei(t)‖2, i = 1, 2, 3, 4, 5, 6, of system (32).

Figure 2 The synchronized error ‖ei(t)‖2, i = 1, 2, 3, 4, 5, 6, of system (32) under pinning control (3).

Example 5.2 Consider the following complex dynamical network with time-varying de-
lay:

Dα
t0,txi(t) = –Axi(t) + Bf

(
xi(t)

)
+ c

6∑
j=1

Gij�xj
(
t – τ (t)

)
+ J , (33)

where α = 0.98, i = 1, 2, 3, 4, 5, 6 τ (t) = 1, fj(�) = tanh(�), J = (0, 0, 0)T , A = diag(0.5, 0.4, 0.4),
� = diag(0.5, 0.6, 0.5), c = 0.2,

B =

⎛
⎜⎝

0.02 –0.1 0.2
–0.1 0.1 –0.2
0.3 –0.1 0.1

⎞
⎟⎠ ,
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Figure 3 The synchronized error ‖ei(t)‖2, i = 1, 2, 3, 4, 5, 6, of system (32) under adaptive control (11).

Figure 4 Adaptive coupling strength c(0) = 0.05.

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

–0.7 0.1 0.2 0 0 0
0.4 –0.1 0.6 0 0 0
0.5 0.6 –0.8 0.2 0 0
0 0 0 –0.3 0.4 0.3
0 0 0 –0.6 0.4 0
0 0 0 –0.1 0.6 –0.6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Obviously, fj(·) (j = 1, 2, 3) satisfies the Lipschitz condition with �j = 0.6.
We choose nodes 1, 2 and 3 as pinned nodes. Take S(t) = (0, 0, 0) ∈R

3. k1 = 0.2, k2 = 0.2,
k3 = 0.2, k4 = k5 = k6 = 0.

Case 1 By exploiting the MATLAB LMI Toolbox, we can get the matrices P1, P2 and
K satisfying (21), P1 = diag(0.6164, 0.3794, 0.7305), P2 = diag(0.5164, 0.7861, 0.5532), K =
diag(0.0567, 0.7613, 0.0387).
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Figure 5 The synchronized error ‖ei(t)‖2, i = 1, 2, 3, 4, 5, 6, of system (33) under pinning control (18).

Figure 6 The synchronized error ‖ei(t)‖2, i = 1, 2, 3, 4, 5, 6, of system (33) under adaptive control (26).

According to Theorem 4.1, system (33) is synchronized. The simulation results are given
in Figure 5.

Case 2 Take β2 = 0.06, we can easily get the matrices P1, P2 and k∗ satisfying (29), P1 =
diag(2.6117, 3.5616, 3.5498), P2 = diag(2.8325, 2.8051, 3.5430), k∗ = diag(0.1671, 0.5675,
0.0653).

By Theorem 4.2, it is obvious that system (33) is synchronized by using pinning feedback
controllers. The simulation results are given in Figures 6 and 7.

Example 5.3 Consider complex networks with 10 nodes, the fractional-order dynami-
cal equation of each node is described by the following fractional-order chaotic Lorenz
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Figure 7 Adaptive feedback gains k1(0) = 0.01, k2(0) = 0.03, k3(0) = 0.04.

Figure 8 Chaotic attractor of a fractional-order chaotic Lorenz system with order α = 0.98.

system:

Dα
t0,txi1(t) = �

(
xi1(t) – xi2(t)

)
,

Dα
t0,txi2(t) = ωxi1(t) – xi1(t)xi3(t) – xi2(t),

Dα
t0,txi3(t) = xi1(t)xi2(t) – νxi3(t),

(34)

where i = 1, . . . , 10. When the parameters are chosen as � = 1, ω = 2.8, ν = 8
3 and α = 0.98,

system (34) displays a chaotic attractor in Figure 8.
System (34) can be rewritten as system (5) consisting of ten nodes (N = 10) with the

following parameters:

A =

⎛
⎜⎝

–� � 0
ω –1 0
0 0 –ν

⎞
⎟⎠ , B =

⎛
⎜⎝

1 0 0
–1 0 0
2 0 –1

⎞
⎟⎠ ,
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Figure 9 The synchronized error ‖ei(t)‖2, i = 1, . . . , 10, of system (32) under pinning control (3).

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

–0.8 0 0 0 0 0 0 0 0.1 0
0 –1 0 0 0 0 0 0.03 0 0
0 0 –0.5 0 0 0 0 0 0 0
0 0 0 –0.4 0 0 0 0 0 0
0 0 0 0 –2 0 0 0 0 0
0 0 0 0 0 –0.4 0 0 0 0
0 0 0 0 0 0 –0.1 0 0 0
0 0.09 0 0 0 0 0 –0.5 0 0
0 0 0 0 0 0 0 0 –0.10
0 0 0 0 0 0 0 0 0 –0.2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

f (xi) = (0, –xi1xi3, xi1xi2)T , J = (0, 0, 0)T , A = diag(0.5, 0.4, 0.4), � = diag(0.5, 0.6, 0.5), c = 2;
obviously, fj(·) (j = 1, 2, 3) satisfies the Lipschitz condition with �j = 0.6. We select nodes 1
and 2 as pinned nodes. Take S(t) = (0, 0, 0) ∈R

3. By exploiting the MATLAB LMI Toolbox,
we can get the matrices P1 and P2 satisfying (7), P1 = diag(0.2872, 0.4371, 0.4351), P2 =
diag(2.8063, 1.3935, 0.7430). According to Theorem 3.1, system (32) is synchronized. The
simulation results are given in Figure 9.

6 Conclusions
In this paper, synchronization of fractional-order complex dynamical networks with and
without time-varying delay has been studied by applying pinning adaptive control. First,
by using the fractional Lyapunov method and generalized Barbalat’s lemma, several suffi-
cient conditions have been derived to realize synchronization of fractional-order complex
networks without time-varying delay. Second, by using Razumikhin-type stability theory
and fractional integral inequality, some sufficient conditions have been derived to real-
ize synchronization of fractional-order complex networks with time-varying delay. More-
over, several adaptive control strategies to tune the coupling strength and pinning feed-
back gain have been proposed, and by using the designed adaptive laws, several criteria
for synchronization have been established. In the future, it is very interesting to study the
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multi-synchronization of coupled fractional-order complex dynamical networks with and
without time-varying delay.
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