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Abstract
In this article, we discuss a new coupled system of fractional differential equations
with integral boundary conditions

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Dαu(t) + f (t, v(t)) = a, 0 < t < 1,

Dβv(t) + g(t,u(t)) = b, 0 < t < 1,

u(0) = 0, u(1) =
∫ 1
0 φ(t)u(t)dt,

v(0) = 0, v(1) =
∫ 1
0 ψ (t)v(t)dt,

where 1 < α,β ≤ 2, f ,g ∈ C([0, 1]× (–∞, +∞), (–∞, +∞)),φ ,ψ ∈ L1[0, 1], a,b are
constants and D denotes the usual Riemann-Liouville fractional derivative. Based
upon a fixed point theorem of increasing ϕ-(h, e)-concave operators, we establish the
existence and uniqueness of solutions for the new coupled system dependent on
two constants. And then the obtained result is well demonstrated with the aid of an
interesting example.
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1 Introduction
In this article, we study a new coupled system of fractional differential equations and con-
sider the existence and uniqueness of solutions for the system with integral boundary con-
ditions. Namely, we discuss the following problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dαu(t) + f (t, v(t)) = a, 0 < t < 1,

Dβv(t) + g(t, u(t)) = b, 0 < t < 1,

u(0) = 0, u(1) =
∫ 1

0 φ(t)u(t) dt,

v(0) = 0, v(1) =
∫ 1

0 ψ(t)v(t) dt,

(1.1)

where 1 < α,β ≤ 2, f , g ∈ C([0, 1] × (–∞, +∞), (–∞, +∞)),φ,ψ ∈ L1[0, 1], a, b are con-
stants and D denotes the usual Riemann-Liouville fractional derivative (see [1, 2]). A pair
of functions (u, v) ∈ C([0, 1])×C([0, 1]) is called a solution of system (1.1) if it satisfies (1.1).
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We will consider system (1.1) under the case a > 0, b > 0. When a = b = 0, we can study
problem (1.1) by using the usual methods and give some results about the existence and
uniqueness of positive solutions (see [3]). However, when a, b > 0, we cannot get similar
results by using the previous methods. So system (1.1) is new, and we need to seek new
methods to discuss problem (1.1). Fortunately, we can use a recent fixed point theorem for
ϕ-(h, e)-concave operators to resolve problem (1.1). First, we list the following hypotheses
on the functions φ(t),ψ(t):

(Q) φ,ψ : [0, 1] → [0, +∞) with φ,ψ ∈ L1[0, 1] and

σ1 :=
∫ 1

0
φ(t)tα–1 dt, σ2 :=

∫ 1

0
ψ(t)tβ–1 dt ∈ (0, 1);

σ3 :=
∫ 1

0
tα–1(1 – t)φ(t) dt, σ4 :=

∫ 1

0
tβ–1(1 – t)ψ(t) dt > 0.

A lot of boundary value problems of coupled systems involving fractional differential
equations have been investigated extensively, see the works [4–25] and the references
therein. Different boundary conditions of coupled systems can be found in the discus-
sions of some problems such as Sturm-Liouville problems and some reaction-diffusion
equations (see [26, 27]), and they have some applications in many fields such as mathe-
matical biology (see [28, 29]), natural sciences and engineering; for example, we can see
beam deformation and steady-state heat flow [30, 31] and heat equations [14, 32, 33]. So
nonlinear coupled systems subject to different boundary conditions have been paid much
attention to, and the existence or multiplicity of solutions for the systems has been given
in literature, see [4–14, 16–25] for example. The usual methods used are Schauder’s fixed
point theorem, Banach’s fixed point theorem, Guo-Krasnosel’skii’s fixed point theorem on
cone, nonlinear differentiation of Leray-Schauder type and so on. Recently, several pa-
pers [4, 8–10] considered some new coupled systems of fractional differential equations
and obtained some new results about the existence and uniqueness of solutions by using
general methods.

From literature, no papers have considered system (1.1). Inspired by the works of cou-
pled systems and recent papers [16, 34], we study the coupled system (1.1) and give the
existence and uniqueness of solutions. By using a fixed point theorem of increasing ϕ-
(h, e)-concave operators, we establish the existence and uniqueness of solutions for the
coupled system dependent on two constants. Our result shows that the unique solution
exists in a product set and can be approximated by making an iterative sequence for any
initial point in the product set. So our result is an extension and improvement of the pre-
vious works.

2 Preliminaries
Lemma 2.1 (see [11]) Let

∫ 1
0 φ(t)tα–1 dt �= 1 and σ ∈ C[0, 1]. Then the problem

⎧
⎨

⎩

Dαu(t) + σ (t) = 0, 0 < t < 1,

u(0) = 0, u(1) =
∫ 1

0 φ(t)u(t) dt
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has the unique solution u(t) =
∫ 1

0 G1α(t, s)σ (s) ds, where G1α(t, s) = G2α(t, s) + G3α(t, s) with

G2α(t, s) =

⎧
⎨

⎩

tα–1(1–s)α–1–(t–s)α–1

�(α) , 0 ≤ s ≤ t ≤ 1,
tα–1(1–s)α–1

�(α) , 0 ≤ t ≤ s ≤ 1,

G3α(t, s) =
tα–1

1 –
∫ 1

0 φ(t)tα–1 dt

∫ 1

0
φ(t)G2α(t, s) dt.

The function G(t, s) = (G1α(t, s), G1β(t, s)) is the Green’s function of problem (1.1).

Lemma 2.2 (see [11]) Let
∫ 1

0 φ(t)tα–1 dt ∈ [0, 1). Then G1α(t, s) ≥ 0 is continuous for all
t, s ∈ [0, 1], and G1α(t, s) > 0 for all t, s ∈ (0, 1).

Lemma 2.3 (see [3]) The function G2α(t, s) satisfies

α – 1
�(α)

tα–1(1 – t)(1 – s)α–1s ≤ G2α(t, s) ≤ tα–1(1 – s)α–1

�(α)
, t, s ∈ [0, 1].

Lemma 2.4 (see [3]) Suppose α,β ∈ (1, 2] and (Q) is satisfied. Then the functions G1α(t, s),
G1β (t, s) satisfy

(α – 1)σ3s(1 – s)α–1tα–1

(1 – σ1)�(α)
≤ G1α ≤ (1 – s)α–1tα–1

�(α)(1 – σ1)
, t, s ∈ [0, 1];

(β – 1)σ4s(1 – s)β–1tβ–1

(1 – σ2)�(β)
≤ G1β ≤ (1 – s)β–1tβ–1

�(β)(1 – σ2)
, t, s ∈ [0, 1].

Next we present a fixed point theorem which can be easily used to study some systems
of differential equations.

Suppose (E,‖·‖) is a real Banach space and it is partially ordered by a cone P ⊂ E. For any
x, y ∈ E, x ∼ y denotes that there are μ > 0 and ν > 0 such that μx ≤ y ≤ νx. Take h > θ (i.e.,
h ≥ θ and h �= θ ), we consider the set Ph = {x ∈ E | x ∼ h}. Clearly, Ph ⊂ P. Take another
element e ∈ P with θ ≤ e ≤ h, we define Ph,e = {x ∈ E|x + e ∈ Ph}.

Definition 2.1 (see [34]) Assume that A : Ph,e → E is an operator which satisfies: for any
x ∈ Ph,e and λ ∈ (0, 1), there exists ϕ(λ) > λ such that A(λx+(λ–1)e) ≥ ϕ(λ)Ax+(ϕ(λ)–1)e.
Then we call A a ϕ-(h, e)-concave operator.

Lemma 2.5 (see [34]) Suppose that P is normal and A is an increasing ϕ-(h, e)-concave
operator satisfying Ah ∈ Ph,e. Then A has a unique fixed point x∗ in Ph,e. In addition, for
any w0 ∈ Ph,e, constructing the sequence wn = Awn–1, n = 1, 2, . . . , then ‖wn – x∗‖ → 0 as
n → ∞.

Given h1, h2 ∈ P with h1, h2 �= θ . Let h = (h1, h2), then h ∈ P := P × P. Take θ ≤ e1 ≤ h1,
θ ≤ e2 ≤ h2, and let θ̄ = (θ , θ ), e = (e1, e2). Then θ̄ = (θ , θ ) ≤ (e1, e2) ≤ (h1, h2) = h. That is,
θ̄ ≤ e ≤ h. If P is normal, then P = P × P is normal (see [35]).

Lemma 2.6 (see [3]) Ph = Ph1 × Ph2 .
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Lemma 2.7 Ph,e = Ph1,e1 × Ph2,e2 .

Proof By Lemma 2.6, we obtain

Ph,e =
{

(x, y) ∈ E × E | (x, y) + e ∈ P̄h
}

=
{

(x, y) ∈ E × E | (x + e1, y + e2) ∈ Ph1 × Ph2

}

=
{

(x, y) ∈ E × E | x + e1 ∈ Ph1 , y + e2 ∈ Ph2

}
=

{
(x, y) ∈ E × E | x ∈ Ph1,e1 , y ∈ Ph2,e2

}

= Ph1,e1 × Ph2,e2 . �

3 Existence and uniqueness of solutions
In this section, let E = {u|u ∈ C[0, 1]} and the norm of E is ‖u‖ = maxt∈[0,1] |u(t)|. We will
consider (1.1) in E × E. For (u, v) ∈ E × E, let ‖(u, v)‖ = max{‖u‖,‖v‖}. It is clear that (E ×
E,‖(u, v)‖) is a Banach space. Let P = {(u, v) ∈ E × E|u(t) ≥ 0, v(t) ≥ 0}, P = {u ∈ E|u(t) ≥
0, t ∈ [0, 1]}, then the cone P ⊂ E × E and P = P × P is normal, and the space E × E has a
partial order: (u1, v1) ≤ (u2, v2) ⇔ u1(t) ≤ u2(t), v1(t) ≤ v2(t), t ∈ [0, 1]. By Lemma 2.1 and
the result of [21], we can easily get the following result.

Lemma 3.1 Suppose that (Q) is satisfied and f (t, x), g(t, x) are continuous, then (u, v) ∈
E ×E is a solution of (1.1) if and only if (u, v) ∈ E ×E is a solution of the following equations:

⎧
⎨

⎩

u(t) =
∫ 1

0 G1α(t, s)f (s, v(s)) ds – a
∫ 1

0 G1α(t, s) ds,

v(t) =
∫ 1

0 G1β (t, s)g(s, u(s)) ds – b
∫ 1

0 G1β (t, s) ds.

For (u, v) ∈ E × E, we define three operators A1, A2 and T by

A1u(t) =
∫ 1

0
G1α(t, s)f

(
s, v(s)

)
ds – a

∫ 1

0
G1α(t, s) ds,

A2v(t) =
∫ 1

0
G1β (t, s)g

(
s, u(s)

)
ds – b

∫ 1

0
G1β (t, s) ds,

and T(u, v)(t) = (A1u(t), A2v(t)). Then A1, A2 : E → E and T : E × E → E × E. From
Lemma 3.1, (u, v) is the solution of system (1.1) if and only if (u, v) is the fixed point of
operator T . Let

e1(t) = a
∫ 1

0
G1α(t, s) ds, e2(t) = b

∫ 1

0
G1β (t, s) ds,

h1(t) = M1tα–1, h2(t) = M2tβ–1,
(3.1)

where M1 ≥ a
�(α+1)(1–σ1) , M2 ≥ b

�(β+1)(1–σ2) .

Theorem 3.1 Let 1 < α,β ≤ 2, a > 0, b > 0 and e1, e2, h1, h2 be given as in (3.1). Assume that
f , g ∈ C([0, 1] × (–∞, +∞), (–∞, +∞)) and (Q) holds. Moreover,

(H1) f : [0, 1] × [–e∗
2, +∞) → (–∞, +∞) is increasing with respect to the second variable,

where e∗
2 = max{e2(t) : t ∈ [0, 1]}; g : [0, 1] × [–e∗

1, +∞) → (–∞, +∞) is increasing with re-
spect to the second variable, where e∗

1 = max{e1(t) : t ∈ [0, 1]};
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(H2) for λ ∈ (0, 1), there exists ϕ(λ) > λ such that

f
(
t,λx + (λ – 1)y

) ≥ ϕ(λ)f (t, x), t ∈ [0, 1], x ∈ (–∞, +∞), y ∈ [
0, e∗

2
]
;

g
(
t,λx + (λ – 1)y

) ≥ ϕ(λ)g(t, x), t ∈ [0, 1], x ∈ (–∞, +∞), y ∈ [
0, e∗

1
]
;

(H3) f (t, 0) ≥ 0, g(t, 0) ≥ 0 with f (t, 0) �≡ 0, g(t, 0) �≡ 0 for t ∈ [0, 1].
Then:
(1) system (1.1) has a unique solution (u∗, v∗) in Ph,e, where

e(t) =
(
e1(t), e2(t)

)
, h(t) =

(
h1(t), h2(t)

)
, t ∈ [0, 1];

(2) taking any point (u0, v0) ∈ Ph,e, construct the following sequences:

un+1(t) =
∫ 1

0
G1α(t, s)f

(
s, vn(s)

)
ds – a

∫ 1

0
G1α(t, s) ds,

vn+1(t) =
∫ 1

0
G1β (t, s)g

(
s, un(s)

)
ds – b

∫ 1

0
G1β (t, s) ds,

n = 0, 1, 2, . . . , we have un+1(t) → u∗(t), vn+1(t) → v∗(t) as n → ∞.

Proof By Lemma 2.2, for t ∈ [0, 1],

e1(t) = a
∫ 1

0
G1α(t, s) ds ≥ 0, e2(t) = b

∫ 1

0
G1β (t, s) ds ≥ 0.

From Lemma 2.4, for t ∈ [0, 1],

e1(t) = a
∫ 1

0
G1α(t, s) ds ≤ a

∫ 1

0

(1 – s)α–1tα–1

�(α)(1 – σ1)
=

atα–1

�(α)(1 – σ1)

∫ 1

0
(1 – s)α–1 ds

=
atα–1

α�(α)(1 – σ1)
=

a
�(α + 1)(1 – σ1)

tα–1 ≤ M1tα–1 = h1(t);

e2(t) = b
∫ 1

0
G1β (t, s) ds ≤ b

∫ 1

0

(1 – s)β–1tβ–1

�(β)(1 – σ2)
=

btβ–1

�(β)(1 – σ2)

∫ 1

0
(1 – s)β–1 ds

=
btβ–1

β�(β)(1 – σ2)
=

b
�(β + 1)(1 – σ2)

tβ–1 ≤ M2tβ–1 = h2(t).

That is, 0 ≤ e1 ≤ h1, 0 ≤ e2 ≤ h2.
In the following, we prove that T : Ph,e → E×E is a ϕ-(h, e)-concave operator. For (u, v) ∈

Ph,e, λ ∈ (0, 1), we obtain

T
(
λ(u, v) + (λ – 1)e

)
(t)

= T
(
λ(u, v) + (λ – 1)(e1, e2)

)
(t)

= T
(
λu + (λ – 1)e1,λv + (λ – 1)e2

)
(t)

=
(
A1

(
λu + (λ – 1)e1

)
, A2

(
λv + (λ – 1)e2

))
(t).
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We discuss A1(λu + (λ – 1)e1)(t) and A2(λv + (λ – 1)e2)(t) respectively. From (H2),

A1
(
λu + (λ – 1)e1

)
(t)

=
∫ 1

0
G1α(t, s)f

(
s,λv(s) + (λ – 1)e2(s)

)
ds – e1(t)

≥ ϕ(λ)
∫ 1

0
G1α(t, s)f

(
s, v(s)

)
ds – e1(t)

= ϕ(λ)
[∫ 1

0
G1α(t, s)f

(
s, v(s)

)
ds – e1(t)

]

+
[
ϕ(λ) – 1

]
e1(t)

= ϕ(λ)A1u(t) +
[
ϕ(λ) – 1

]
e1(t),

A2
(
λv + (λ – 1)e2

)
(t)

=
∫ 1

0
G1β (t, s)g

(
s,λu(s) + (λ – 1)e1(s)

)
ds – e2(t)

≥ ϕ(λ)
∫ 1

0
G1β (t, s)g

(
s, u(s)

)
ds – e2(t)

= ϕ(λ)
[∫ 1

0
G1β (t, s)g

(
s, u(s)

)
ds – e2(t)

]

+
[
ϕ(λ) – 1

]
e2(t)

= ϕ(λ)A2v(t) +
[
ϕ(λ) – 1

]
e2(t).

So we have

T
(
λ(u, v) + (λ – 1)e

)
(t)

≥ (
ϕ(λ)A1u(t) +

[
ϕ(λ) – 1

]
e1(t),ϕ(λ)A2v(t) +

[
ϕ(λ) – 1

]
e2(t)

)

=
(
ϕ(λ)A1u(t),ϕ(λ)A2v(t)

)
+

((
ϕ(λ) – 1

)
e1(t),

(
ϕ(λ) – 1

)
e2(t)

)

= ϕ(λ)
(
A1u(t), A2v(t)

)
+

(
ϕ(λ) – 1

)(
e1(t), e2(t)

)

= ϕ(λ)T(u, v)(t) +
(
ϕ(λ) – 1

)
e(t).

That is,

T
(
λ(u, v) + (λ – 1)e

)

≥ ϕ(λ)T(u, v) +
[
ϕ(λ) – 1

]
e, (u, v) ∈ Ph,e,λ ∈ (0, 1).

Hence, T is a ϕ-(h, e)-concave operator.
Next we show that T : Ph,e → E × E is increasing. For (u, v) ∈ Ph,e, we have (u, v) + e ∈ Ph.

From Lemma 2.6, (u + e1, v + e2) ∈ Ph1 × Ph2 . So there are λ1,λ2 > 0 such that

u(t) + e1(t) ≥ λ1h1(t), v(t) + e2(t) ≥ λ2h2(t), t ∈ [0, 1].

Therefore, u(t) ≥ λ1h1(t) – e1(t) ≥ –e1(t) ≥ –e∗
1, v(t) ≥ λ2h2(t) – e2(t) ≥ –e2(t) ≥ –e∗

2. By
(H1) and the definitions of A1, A2, we obtain T : Ph,e → E × E is increasing.
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Now we prove that Th ∈ Ph,e, so we need to prove Th + e ∈ Ph. For t ∈ [0, 1],

Th(t) + e(t) = T(h1, h2)(t) + e(t) =
(
A1h1(t), A2h2(t)

)
+

(
e1(t), e2(t)

)

=
(
A1h1(t) + e1(t), A2h2(t) + e2(t)

)
.

We discuss A1h1(t) + e1(t), A2h2(t) + e2(t), respectively. By Lemma 2.4 and (H1), (H3),

A1h1(t) + e1(t) =
∫ 1

0
G1α(t, s)f

(
s, h2(s)

)
ds

≥
∫ 1

0

(α – 1)σ3s(1 – s)α–1

(1 – σ1)�(α)
tα–1f

(
s, M2sα–1)ds

≥ (α – 1)σ3

(1 – σ1)�(α)
tα–1

∫ 1

0
s(1 – s)α–1f (s, 0) ds

=
(α – 1)σ3

(1 – σ1)M1�(α)
h1(t)

∫ 1

0
s(1 – s)α–1f (s, 0) ds,

A1h1(t) + e1(t) ≤
∫ 1

0

(1 – s)α–1tα–1

(1 – σ1)�(α)
f (s, M2) ds

=
1

M1(1 – σ1)�(α)
h1(t)

∫ 1

0
(1 – s)α–1f (s, M2) ds.

From (H1), (H3), one has
∫ 1

0 (1 – s)α–1f (s, M2) ds ≥ ∫ 1
0 s(1 – s)α–1f (s, 0) ds > 0. Note that σ3 ≤

σ1 < 1 and α – 1 ≤ 1, we obtain

l1 :=
(α – 1)σ3

(1 – σ1)H1�(α)

∫ 1

0
s(1 – s)α–1f (s, 0) ds

≤ l2 :=
1

H1(1 – σ1)�(α)

∫ 1

0
(1 – s)α–1f (s, M2) ds,

and thus l1h1(t) ≤ A1h1(t) + e1(t) ≤ l2h1(t). This shows A1h1 + e1 ∈ Ph1 . Similarly, by using
Lemma 2.4 and (H1), (H3), we also can get A2h2 + e2 ∈ Ph2 . Consequently, by Lemma 2.7,

Th + e = (A1h1 + e1, A2h2 + e2) ∈ Ph1 × Ph2 = Ph.

Finally, by using Lemma 2.5, T has a unique fixed point (u∗, v∗) ∈ Ph,e. In addition, for any
given (u0, v0) ∈ Ph,e, the sequence

(un, vn) = (A1un–1, A2vn–1), n = 1, 2, . . .

converges to (u∗, v∗) as n → ∞. Therefore, system (1.1) has a unique solution (u∗, v∗) in
Ph,e; taking any point (u0, v0) ∈ Ph,e, construct the following sequences:

un+1(t) =
∫ 1

0
G1α(t, s)f

(
s, vn(s)

)
ds – a

∫ 1

0
G1α(t, s) ds,

vn+1(t) =
∫ 1

0
G1β (t, s)g

(
s, un(s)

)
ds – b

∫ 1

0
G1β (t, s) ds,

n = 0, 1, 2, . . . , we have un+1(t) → u∗(t), vn+1(t) → v∗(t) as n → ∞. �
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Example 3.1 Consider the coupled system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D 3
2 v(t) + ( 1280 3√140

3087 u(t) + 1
�( 4

3 )
)

1
5 ( 147

160 – 3
4 t)

1
5 t

1
15 = 1, 0 < t < 1,

D 4
3 u(t) + ( 1215

√
15

1372 v(t) + 1
�( 3

2 )
)

1
5 ( 98

135 – 2
3 t)

1
5 t 1

10 = 1, 0 < t < 1,

u(0) = 0, u(1) =
∫ 1

0 t2u(t) dt, v(0) = 0, v(1) =
∫ 1

0 tv(t) dt.

(3.2)

In this example, α = 3
2 , β = 4

3 , a = b = 1, ϕ(t) = t2, ψ(t) = t and

f (t, x) =
(

1280 3√140
3087

x +
1

�( 4
3 )

) 1
5
(

147
160

–
3
4

t
) 1

5
t

1
15 ,

g(t, x) =
(

1215
√

15
1372

x +
1

�( 3
2 )

) 1
5
(

98
135

–
2
3

t
) 1

5
t

1
10 .

f , g : [0, 1] × (–∞, +∞) → (–∞, +∞) are continuous and increasing with respect to the
second variable. After a simple computation, we have

σ1 =
2
7

, σ2 =
3
7

, σ3 =
4

63
, σ4 =

9
70

.

Evidently, σ1,σ2 ∈ (0, 1),σ3,σ4 > 0. Moreover,

G1α(t, s) = G2α(t, s) + G3α(t, s), G1β (t, s) = G2β (t, s) + G3β (t, s),

G2α(t, s) =

⎧
⎪⎨

⎪⎩

t
1
2 (1–s)

1
2 –(t–s)

1
2

�( 3
2 )

, s ≤ t,

t
1
2 (1–s)

1
2

�( 3
2 )

, t ≤ s,

G2β (t, s) =

⎧
⎪⎨

⎪⎩

t
1
3 (1–s)

1
3 –(t–s)

1
3

�( 4
3 )

, s ≤ t,

t
1
3 (1–s)

1
3

�( 4
3 )

, t ≤ s,

G3α(t, s) =
t 1

2

1 – σ1

∫ 1

0
t2G2α(t, s) dt

=
t 1

2

5
7�( 3

2 )

{∫ s

0
t2 · t

1
2 (1 – s)

1
2 dt +

∫ 1

s
t2 · [t

1
2 (1 – s)

1
2 – (t – s)

1
2
]

dt
}

=
2t 1

2

75�( 3
2 )

[
15(1 – s)

1
2 – 35(1 – s)

3
2 + 28(1 – s)

5
2 – 8(1 – s)

7
2
]

and

G3β (t, s) =
t 1

3

1 – σ2

∫ 1

0
tG2β (t, s) dt

=
t 1

3

4
7�( 4

3 )

{∫ s

0
t · t

1
3 (1 – s)

1
3 dt +

∫ 1

s
t
[
t

1
3 (1 – s)

1
3 – (t – s)

1
3
]

dt
}

=
3t 1

3

16�( 4
3 )

[
4(1 – s)

1
3 – 7(1 – s)

4
3 + 3(1 – s)

7
3
]
.
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Further,

e1(t) =
∫ 1

0
G1α(t, s) ds =

1
�( 3

2 )

(
98

135
t

1
2 –

2
3

t
3
2

)

,

e2(t) =
∫ 1

0
G1β (t, s) ds =

1
�( 4

3 )

(
147
160

t
1
3 –

3
4

t
4
3

)

,

e∗
1 = max

{
e1(t) : t ∈ [0, 1]

}
=

1372
1215

√
15�( 3

2 )
,

e∗
2 = max

{
e2(t) : t ∈ [0, 1]

}
=

3087
1280 3√140�( 4

3 )
.

Take h1(t) = M1t 1
2 , h2(t) = M2t 1

3 , where

M1 ≥ a
�(α + 1)(1 – σ1)

=
7

5�( 5
2 )

,

M2 ≥ b
�(β + 1)(1 – σ2)

=
7

4�( 7
3 )

.

Then

e1(t) =
t 1

2

�( 3
2 )

(
98

135
–

2
3

t
)

≤ 98t 1
2

135�( 3
2 )

<
49

45�( 5
2 )

t
1
2 <

7
5�( 5

2 )
t

1
2 ≤ M1t

1
2 = h1(t),

e2(t) =
t 1

3

�( 4
3 )

(
147
160

–
3
4

t
)

≤ 147t 1
3

160�( 4
3 )

<
49

40�( 4
3 )

t
1
3 <

7
4�( 7

3 )
t

1
3 ≤ M2t

1
3 = h2(t).

g(t, 0) = ( 1
�( 3

2 )
)

1
5 ( 98

135 – 2
3 t)

1
5 t 1

10 ≥ 0 with g(t, 0) �≡ 0, f (t, 0) = ( 1
�( 4

3 )
)

1
5 ( 147

160 – 3
4 t)

1
5 t

1
15 ≥ 0 with

f (t, 0) �≡ 0. In addition,

f (t, x) =
(

1280 3√140
3087

x +
1

�( 4
3 )

) 1
5
(

147
160

–
3
4

t
) 1

5
t

1
15

=
(

1
�( 4

3 )

) 1
5
(1280 3√140�( 4

3 )
3087

x + 1
) 1

5
(

147
160

t
1
3 –

3
4

t
4
3

) 1
5

=
(1280 3√140�( 4

3 )
3087

x + 1
) 1

5 [
e2(t)

] 1
5

=
(1280 3√140�( 4

3 )
3087

xe2(t) + e2(t)
) 1

5
,

g(t, x) =
(

1
�( 3

2 )

) 1
5
(1215

√
15�( 3

2 )
1372

x + 1
) 1

5
(

98
135

t
1
2 –

2
3

t
3
2

) 1
5

=
(1215

√
15�( 3

2 )
1372

x + 1
) 1

5 [
e1(t)

] 1
5

=
(1215

√
15�( 3

2 )
1372

xe1(t) + e1(t)
) 1

5
.
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For λ ∈ (0, 1), x ∈ (–∞, +∞), y ∈ [0, e∗
2],

f
(
t,λx + (λ – 1)y

)

=
{1280 3√140�( 4

3 )
3087

e2(t)
[
λx + (λ – 1)y

]
+ e2(t)

} 1
5

= λ
1
5

{1280 3√140�( 4
3 )

3087
e2(t)

[

x +
(

1 –
1
λ

)

y
]

+
1
λ

e2(t)
} 1

5

= λ
1
5

{1280 3√140�( 4
3 )

3087
e2(t)x +

(

1 –
1
λ

)1280 3√140�( 4
3 )

3087
e2(t)y +

1
λ

e2(t)
} 1

5

≥ λ
1
5

{1280 3√140�( 4
3 )

3087
e2(t)x +

(

1 –
1
λ

)

e2(t) +
1
λ

e2(t)
} 1

5

= λ
1
5

{1280 3√140�( 4
3 )

3087
e2(t)x + e2(t)

} 1
5

= λ
1
5 f (t, x) = ϕ(λ)f (t, x),

here ϕ(λ) = λ
1
5 . By Theorem 3.1, system (3.2) has a unique nontrivial solution (u∗, v∗) in

Ph,e, where

e(t) =
(
e1(t), e2(t)

)
=

(
1

�( 3
2 )

(
98

135
t

1
2 –

2
3

t
3
2

)

,
1

�( 4
3 )

(
147
160

t
1
3 –

3
4

t
4
3

))

,

h(t) =
(
h1(t), h2(t)

)
=

(
M1t

1
2 , M2t

1
3
)
, t ∈ [0, 1].

Taking any point (u0, v0) ∈ Ph,e, construct the following sequences:

un+1(t) =
∫ 1

0
G1α(t, s)f

(
s, vn(s)

)
ds –

1
�( 3

2 )

(
98

135
t

1
2 –

2
3

t
3
2

)

,

vn+1(t) =
∫ 1

0
G1β (t, s)g

(
s, un(s)

)
ds –

1
�( 4

3 )

(
147
160

t
1
3 –

3
4

t
4
3

)

,

n = 0, 1, 2, . . . , we have un+1(t) → u∗(t), vn+1(t) → v∗(t) as n → ∞.

4 Conclusions
Recently, fractional coupled systems of differential equations have gained more attention
in different fields of science and engineering such as physics, control systems and dynam-
ical systems. So, for nonlinear coupled systems subject to different boundary conditions,
there are many articles studying the existence or multiplicity of solutions or positive solu-
tions. But the unique results are very rare. In this paper, we study the new coupled system
of fractional differential equations (1.1). Our method is a new fixed point theorem of in-
creasing ϕ-(h, e)-concave operators. We present the existence and uniqueness of solutions
for (1.1) dependent on two constants. Our result shows that the unique solution exists in a
product set Ph,e = Ph1,e1 × Ph2,e2 and can be approximated by making an iterative sequence
for any initial point in Ph,e. Finally, an interesting example is presented to demonstrate the
main result.
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