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Abstract
In this paper, a memristor-based hyperchaotic system is introduced. Considering time
delays between the drive system and the response system in the process of
synchronization, this paper designs one kind of flexible sandwich controller, which
includes a rest in the sandwich structure, to realize the synchronization between two
memristor-based hyperchaotic systems. Based on Lyapunov stability theory, matrix
inequality, sandwich control and considering time delays, the exponential
synchronization conditions for the memristor-based hyperchaotic systems with time
delays via sandwich control are given. Finally, simulation results are displayed to verify
the effectiveness and feasibility of this method.
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1 Introduction
Memristor as the fourth fundamental circuit element was first proposed by Chua [1] in
1971 based on logical symmetry arguments, and it was realized by Hewlett-Packard [2]
research team in 2008. This passive electronic device has generated unprecedented world-
wide interest because of its potential applications in signal processing, programmable
logic, control system, neural network, brain-computer interface [3], etc.

Recently, the research on memristor-based circuits is becoming a hot topic. A lot of
memristor oscillator systems have been used in generating signals which are found in
satellite communications, radio, switching power supply, etc. [4–10]. With the potential
memristor applications, it is necessary to do some deep research on the related nonlinear
memristor-based oscillator systems [11–13]. Itoh and Chua [14] derived several nonlin-
ear oscillators from Chua’s oscillators by replacing Chua’s diodes with memristors. Bao
et al. [15, 16] studied the complicated dynamical behaviors of the memristor oscillators.
Although various memristor-based chaotic systems have been researched in recent years
[17–19], the research of synchronization between two memristor-based hyperchaotic sys-
tems is rarely reported. Because the synchronization of the memristor-based chaotic sys-
tems is a challenging problem [20–23], chaotic behavior, especially the hyperchaotic be-
havior that has more than one positive Lyapunov exponent, may be uncoordinated and
unpredictable.
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Sandwich control is one kind of discontinuous control. It can be used in many industrial
fields [24]. It could include many subsystems that are continuous. Feng et al. [25] studied
the sandwich structure control system that includes two continuous controls and an im-
pulsive control in each period and applied it to control Chua’s oscillator. While this paper
will talk about another kind of flexible sandwich structure, which is different from [25]. In
each period of this sandwich control system, the first and third parts of the control system
are continuous controls, which may be continuous controls with different control gains.
Between these two parts, there is a rest. This kind of sandwich control structure is very
suitable for these systems that cannot be controlled continuously all the time.

In this paper, we apply this kind of sandwich control to ensure the synchronization be-
tween two memristor-based hyperchaotic systems. We pay attention to time delays be-
tween the drive system and the response system when we control the error system [26–
29], because there are always some transmission time delays between the drive system and
the response system in the real environment. Based on Lyapunov stability theory, matrix
inequality, sandwich control and considering time delays, the exponential synchronization
conditions for the memristor-based hyperchaotic systems with time delays via sandwich
control are given.

2 The fourth-order memristor-based hyperchaotic system
Memristor is a nonlinear circuit element, and its value is not unique. Assume that the flux-
controlled memristor is characterized by the mathematical model of a smooth continuous
cubic monotone-increasing nonlinearity [15]

q(ϕ) = aϕ + bϕ3, (1)

where a and b are parameters. From equation (1), the memductance W (ϕ) is obtained as
follows:

W (ϕ) = dq(ϕ)/dϕ = a + 3bϕ2. (2)

Consider one kind of fourth-order memristor-based hyperchaotic oscillator system as
Figure 1 shows. It is directly extended from Chua’s oscillator by replacing Chua’s diode
with a smooth flux-controlled memristor and a negative conductance [14, 30, 31]. In
this memristor-based hyperchaotic circuit, these two parts, passive memristor (flux-
controlled memristor) and negative conductance, can be considered an active memristor.

According to KCL and KVL, this circuit can be described by the following differential
equations.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

V̇1(t) = 1
C1R1

(V2(t) – V1(t)) + G
C1

V1(t) – 1
C1

W (ϕ(t))V1(t),

V̇2(t) = 1
C2R1

V1(t) – 1
C2R1

V2(t) + 1
C2

i(t),

i̇(t) = – 1
L V2(t) – R2

L i(t),

ϕ̇(t) = V1(t),

(3)

where C refers to capacitor, V denotes voltages, W (ϕ) is memductance, R denotes resis-
tors, ϕ, L, i, G are magnetic flux, inductor, current and conductance, respectively. From
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Figure 1 Memristor-based hyperchaotic system.

equations (2) and (3), it follows that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

V̇1(t) = 1
C1R1

V2(t) – ( 1
C1R1

– G
C1

+ a
C1

)V1(t) – 3b
C1

ϕ(t)2V1(t),

V̇2(t) = 1
C2R1

V1(t) – 1
C2R1

V2(t) + 1
C2

i(t),

i̇(t) = – 1
L V2(t) – R2

L i(t),

ϕ̇(t) = V1(t).

(4)

If we let x1 = V1, x2 = V2, x3 = i, x4 = ϕ, γ1 = 1
C1R1

, γ2 = 1
C1R1

– G
C1

+ a
C1

, γ3 = 3b
C1

, γ4 = 1
C2R1

,
γ5 = 1

C2
, γ6 = 1

L and γ7 = R2
L , system (4) can be further expressed as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ1(t) = γ1x2(t) – γ2x1(t) – γ3x4(t)2x1(t),

ẋ2(t) = γ4x1(t) – γ4x2(t) + γ5x3(t),

ẋ3(t) = –γ6x2(t) – γ7x3(t),

ẋ4(t) = x1(t).

(5)

If we set γ1 = 15, γ2 = –3.2, γ3 = 19.7, γ4 = 1, γ5 = 1, γ6 = 15, γ7 = 0.52 for the initial states
(10–4, 10–4, 10–4, 10–4)T , by means of a computer program with MATLAB 7.0, computer
simulation shows that system (5) has hyperchaotic attractors as shown in Figure 2.

Remark 1 Although various memristor-based chaotic systems have been researched ex-
tensively in recent years, the research of memristor-based hyperchaotic systems is rarely
reported and investigated directly. Thus the hyperchaotic system (5) is important for un-
derstanding of memristor-based hyperchaotic systems.
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Figure 2 Memristor-based hyperchaotic attractors: 3D projection.

3 Synchronization of the memristor-based hyperchaotic systems with time
delays

In this section, system (5) is taken as two parts, that is,

ẋ(t) = Ax(t) + Bg
(
x(t)

)
, (6)

where x(t) = (x1(t), x2(t), x3(t), x4(t))T ,

A =

⎡

⎢
⎢
⎢
⎣

–γ2 γ1 0 0
γ4 –γ4 γ5 0
0 –γ6 –γ7 0
1 0 0 0

⎤

⎥
⎥
⎥
⎦

, B =

⎡

⎢
⎢
⎢
⎣

–γ3 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎥
⎦

and g
(
x(t)

)
=

⎡

⎢
⎢
⎢
⎣

x2
4x1

0
0
0

⎤

⎥
⎥
⎥
⎦

.

Because g(x) satisfies the Lipschitz condition, for any x, x′ ∈ �, we have

∣
∣gi(x) – gi

(
x′)∣∣ ≤ L

∣
∣x – x′∣∣, i = 1, 2, 3, 4, (7)

where L is the Lipschitz coefficient.
If we take system (6) as the drive system, the response system is described by

ẏ(t) = Ay(t) + Bg
(
y(t)

)
+ u(t), (8)

where y is the state variable, y(t) = (y1(t), y2(t), y3(t), y4(t))T . u(t) is the sandwich controller,
which might be with two different control gains. Considering time delays between the
drive system and the response system, u(t) can be described as the following equations:

u(t) =

⎧
⎪⎪⎨

⎪⎪⎩

I1(y(t) – x(t – τ )), nT ≤ t < nT + θ1T ,

0, nT + θ1T ≤ t < nT + (θ1 + θ2)T ,

I2(y(t) – x(t – τ )), nT + (θ1 + θ2)T ≤ t < (n + 1)T ,

(9)

where I1 and I2 refer to control gains, θ1 and θ2 are the percentages of each period T ,
θ1 + θ2 < 1. Let e(t) = y(t) – x(t – τ ), then e(t) is the synchronization error between system
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(6) and system (8) with time delays. The error system can be described by the following
equation:

ė(t) = ẏ(t) – ẋ(t – τ ) = Ae(t) + B
(
g
(
y(t)

)
– g

(
x(t – τ )

))
+ u(t). (10)

If we apply sandwich control to system (10), then the error system can be re-described
as three subsystems:

⎧
⎪⎪⎨

⎪⎪⎩

ė(t) = Ae(t) + B(g(y(t)) – g(x(t – τ ))) + I1e(t), nT ≤ t < nT + θ1T ,

ė(t) = Ae(t) + B(g(y(t)) – g(x(t – τ ))), nT + θ1T ≤ t < nT + (θ1 + θ2)T ,

ė(t) = Ae(t) + B(g(y(t)) – g(x(t – τ ))) + I2e(t), nT + (θ1 + θ2)T ≤ t < (n + 1)T .

(11)

Remark 2 In the real environment, there are always some time delays between the drive
system and the response system. Thus considering time delays between the drive system
and the response system in the process of synchronization is of great practical significance.

Remark 3 The sandwich control put forward by this paper is a general model, which
can be used as a prototype of other discontinuous controls that include more than two
continuous controls with different control gains in each period.

Lemma 1 ([32]) Given any real matrices �1, �2, �3 of appropriate dimensions and a
scalar ε > 0 such that 0 < �3 = �T

3 , the following inequality holds:

�T
1 �2 + �T

2 �1 ≤ ε�T
1 �3�1 + ε–1�T

2 �–1
3 �2. (12)

Next, we will find the proper T , I1, I2, θ1, θ2, s1, s2, s3 to ensure the synchronization
between drive system (6) and response system (8). In other words, if the stability of er-
ror system (11) can be guaranteed, drive system (6) and response system (8) can realize
synchronization.

Theorem 1 Suppose there are three positive scalars (s1 > 0, s2 > 0, s3 > 0, ε1 > 0, ε2 > 0 and
ε3 > 0) and the following conditions hold:

(1) A + AT + 2I1E + ε1BBT + ε–1
1 L̃2E + s1E ≤ 0,

(2) A + AT + ε2BBT + ε–1
2 L̃2E – s2E ≤ 0,

(3) A + AT + 2I2E + ε3BBT + ε–1
3 L̃2E + s3E ≤ 0,

(4) s1θ1 – s2θ2 + s3(1 – θ1 – θ2) > 0, where L̃ is the largest Lipschitz coefficient, then error
system (11) is exponentially stable. That is, the exponential synchronization between
system (6) and system (8) with time delays will be realized.

Proof Define a Lyapunov function V (e(t)) = e(t)T e(t). When nT ≤ t < nT +θ1T , the deriva-
tive of V (e(t)) with respect to time t of the first subsystem is calculated and estimated as
follows:

V̇
(
e(t)

)
= 2e(t)T ė(t) = 2e(t)T(

Ae(t) + B
(
g
(
y(t)

)
– g

(
x(t – τ )

))
+ I1e(t)

)

= 2e(t)T Ae(t) + 2e(t)T B
(
g
(
y(t)

)
– g

(
x(t – τ )

))
+ 2e(t)T I1e(t)

= e(t)T(
A + AT)

e(t) + 2e(t)T I1e(t) + 2e(t)T B
(
g
(
y(t)

)
– g

(
x(t – τ )

))
.
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Through Lemma 1, we get

2e(t)T B
(
g
(
y(t)

)
– g

(
x(t – τ )

))

≤ ε1
(
Be(t)

)T Be(t) + ε–1
1

(
g
(
y(t)

)
– g

(
x(t – τ )

))T(
g
(
y(t)

)
– g

(
x(t – τ )

))

= ε1e(t)T BBT e(t) + ε–1
1

∥
∥g

(
y(t)

)
– g

(
x(t – τ )

)∥
∥2

≤ ε1e(t)T BBT e(t) + ε–1
1 L̃2e(t)T e(t).

So that the value of V̇ (e(t)) should satisfy

V̇
(
e(t)

) ≤ e(t)T(
A + AT + 2I1E + ε1BBT)

e(t) + ε–1
1 L̃2e(t)T e(t)

= e(t)T(
A + AT + 2I1E + ε1BBT + ε–1

1 L̃2E + s1E
)
e(t) – s1V

(
e(t)

)

≤ –s1V
(
e(t)

)
.

Similarly, when nT + θ1T ≤ t < nT + (θ1 + θ2)T , the derivative of V (e(t)) with respect to
time t of the second subsystem is as follows:

V̇
(
e(t)

)
= 2e(t)T ė(t) = e(t)T(

A + AT)
e(t) + 2e(t)T B

(
g
(
y(t)

)
– g

(
x(t – τ )

))

≤ e(t)T(
A + AT)

e(t) + ε2e(t)T BBT e(t) + ε–1
2

∥
∥g

(
y(t)

)
– g

(
x(t – τ )

)∥
∥2

≤ e(t)T(
A + AT + ε2BBT)

e(t) + ε–1
2 L̃2e(t)T e(t)

= e(t)T(
A + AT + ε2BBT + ε–1

2 L̃2E – s2E
)
e(t) + s2V

(
e(t)

)

≤ s2V
(
e(t)

)
.

When nT + (θ1 + θ2)T ≤ t < (n + 1)T , the V̇ (e(t)) of the third subsystem is as follows:

V̇
(
e(t)

)
= 2e(t)T ė(t) ≤ e(t)T(

A + AT + 2I2E + ε3BBT)
e(t) + ε–1

3 L̃2e(t)T e(t)

= e(t)T(
A + AT + 2I2E + ε3BBT + ε–1

3 L̃2E + s3E
)
e(t) – s3V

(
e(t)

)

≤ –s3V
(
e(t)

)
.

Therefore, we get that
Case 1. When n = 0, then
Subcase 1. If 0 ≤ t < θ1T , then we have that

V
(
e(t)

) ≤ V
(
e(t0)

)
exp(–s1t),

V
(
e
(
θ1T–)) ≤ V

(
e(t0)

)
exp(–s1θ1T).

Subcase 2. If θ1T ≤ t < (θ1 + θ2)T , then we have that

V
(
e(t)

) ≤ V
(
e
(
θ1T–))

exp
(
s2(t – θ1T)

)

≤ V
(
e(t0)

)
exp

(
–s1θ1T + s2(t – θ1T)

)
,

V
(
(θ1 + θ2)T–) ≤ V

(
e(t0)

)
exp(–s1θ1T + s2θ2T).
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Subcase 3. If (θ1 + θ2)T ≤ t < T , then we have that

V
(
e(t)

) ≤ V
(
e
(
(θ1 + θ2)T–))

exp
(
–s3(t – θ1T – θ2T)

)

≤ V
(
e(t0)

)
exp

(
–s1θ1T + s2θ2T – s3(t – θ1T – θ2T)

)
,

V
(
e
(
T–)) ≤ V

(
e(t0)

)
exp

(
–s1θ1T + s2θ2T – s3(T – θ1T – θ2T)

)
.

Similarly, we get that
Case 2. When n = 1, then
Subcase 1. If T ≤ t < T + θ1T , then we have that

V
(
e(t)

) ≤ V
(
e(t0)

)
exp

(
–s1θ1T + s2θ2T – s3(T – θ1T – θ2T) – s1(t – T)

)
,

V
(
e
(
(T + θ1T)–)) ≤ V

(
e(t0)

)
exp

(
–2s1θ1T + s2θ2T – s3(T – θ1T – θ2T)

)
.

Subcase 2. If T + θ1T ≤ t < T + (θ1 + θ2)T , then we have that

V
(
e(t)

) ≤ V
(
e(t0)

)
exp

(
–2s1θ1T + s2θ2T – s3(T – θ1T – θ2T) + s2(t – T – θ1T)

)
,

V
(
e
((

T + (θ1 + θ2)T
)–)) ≤ V

(
e(t0)

)
exp

(
–2s1θ1T + 2s2θ2T – s3(T – θ1T – θ2T)

)
.

Subcase 3. If T + (θ1 + θ2)T ≤ t < 2T , then we have that

V
(
e(t)

) ≤ V
(
e(t0)

)

× exp
(
–2s1θ1T + 2s2θ2T – s3(T – θ1T – θ2T) – s3(t – T – θ1T – θ2T)

)
,

V
(
e
(
2T–)) ≤ V

(
e(t0)

)
exp

(
–2s1θ1T + 2s2θ2T – 2s3(T – θ1T – θ2T)

)
.

By induction, we get the following.
Case m + 1. When n = m, then
Subcase 1. If mT ≤ t < mT + θ1T , then we have that

V
(
e(t)

) ≤ V
(
e(t0)

)
exp

(
–ms1θ1T + ms2θ2T – ms3(T – θ1T – θ2T)

)
.

Because (t – θ1T)/T < m ≤ t/T , then

V
(
e(t)

) ≤ V
(
e(t0)

)
exp

(
–
(
s1θ1 – s2θ2 + s3(1 – θ1 – θ2)

)
(t – θ1T)

)
.

Subcase 2. If mT + θ1T ≤ t < mT + (θ1 + θ2)T , then we have that

V
(
e(t)

) ≤ V
(
e(t0)

)
exp

(
–(m + 1)s1θ1T + (m + 1)s2θ2T – ms3(T – θ1T – θ2T)

)
.

Because (t + T – θ1T – θ2T)/T < m + 1 ≤ (t + T – θ1T)/T , then

V
(
e(t)

) ≤ V
(
e(t0)

)
exp

(
–
(
s1θ1 – s2θ2 + s3(1 – θ1 – θ2)

)
(t + T – θ1T – θ2T)

+ s3(T – θ1T – θ2T)
)
.
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Subcase 3. If mT + (θ1 + θ2)T ≤ t < (m + 1)T , similarly, then we have that

V
(
e(t)

) ≤ V
(
e(t0)

)
exp

(
–
(
s1θ1 – s2θ2 + s3(1 – θ1 – θ2)

)
t + s3(T – θ1T – θ2T)

)
.

Therefore, in this situation, for any t > 0, if s1θ1 – s2θ2 + s3(1 – θ1 – θ2) > 0, error system
(11) is exponentially stable, which implies system (6) and system (8) with time delays can
realize exponential synchronization. �

Corollary 1 If there are positive scalars θ1, θ2, s1, s2 and s3 that satisfy the condition

s′
1θ1 – s′

2θ2 + s′
3(1 – θ1 – θ2) > 0,

where 0 < θ1 + θ2 < 1, s1 ≤ s′
1 = –λmin(AT + A) –λmin(BBT ) – 2I1 – L̃2, s2 ≥ s′

2 = λmin(AT + A) +
λmin(BBT )+ L̃2, and s3 ≤ s′

3 = –λmin(AT +A)–λmin(BBT )–2I2 – L̃2, then the memristor-based
hyperchaotic systems (6) and (8) with time delays can realize exponential synchronization.

4 Simulation results
In this section, the simulation results will be displayed. Set γ1 = 15, γ2 = –3.2, γ3 = 19.7,
γ4 = 1, γ5 = 1, γ6 = 15, γ7 = 0.52, and let these two systems get their initial values:

(
x1(0), x2(0), x3(0), x4(0)

)T =
(
10–6, 10–6, 0, 0

)T ,
(
y1(0), y2(0), y3(0), y4(0)

)T =
(
0, 10–4, 10–4, 10–4)T .

According to the boundaries of state variables, we get L̃ = 4.1794. When I1 = –8, I2 = –7,
if we choose T = 1, θ1 = 0.3, θ2 = 0.2, s1 = 5, s2 = 4, s3 = 5 and τ = 0.3, then by Theorem 1
and Corollary 1, we know that system (11) is exponentially stable. Synchronization be-
tween two memristor-based systems with τ = 0.3 is shown in Figure 3.

Figure 3 Sandwich synchronization between two memristor-based hyperchaotic systems with
τ = 0.3.
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5 Conclusions
In this paper, the characteristics of a memristor-based hyperchaotic system have been
discussed. Based on Lyapunov stability theory, matrix inequality, sandwich control and
considering time delays, this paper designed one type of sandwich controller and applied
it to realize the exponential synchronization between two memristor-based hyperchaotic
systems with transmission time delays. Simulation results were given to verify the effec-
tiveness of this method.
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