
Guo et al. Advances in Difference Equations  (2017) 2017:394 
https://doi.org/10.1186/s13662-017-1449-y

R E S E A R C H Open Access

A new result on the existence of periodic
solutions for Rayleigh equation with a
singularity
Yuanzhi Guo*, Yajiao Wang and Dongxue Zhou

*Correspondence:
1029158296@qq.com
College of Math & Statistics, Nanjing
University of Information Science &
Technology, 210044, Nanjing, China

Abstract
In this paper, we study the existence of periodic solutions for Rayleigh equation with
a singularity of repulsive type

x′′(t) + f (x′(t)) + ϕ(t)x(t) –
1

xα (t)
= p(t),

where α ≥ 1 is a constant, and ϕ and p are T -periodic functions. The proof of the main
result relies on a known continuation theorem of coincidence degree theory. The
interesting point is that the sign of the function ϕ(t) is allowed to change for t ∈ [0, T ].

Keywords: second order differential equation; continuation theorem; singularity;
periodic solution

1 Introduction
Singular differential equations arise in many disciplines such as physics, fluid dynamics,
and ecology (see [1–6] and the references therein). In recent years, the periodic problem
of second-order differential equations with singularities has been widely studied. The first
study in this area seems to be the paper of Nagumo [7] in 1944. After some works of Forbat
and Huaux [8], the interest increased with the pioneering paper of Lazer and Solimini [9].
They considered the existence of periodic solutions suggested by the two fundamental
examples (α > 0, and h : R → R is a continuous T-periodic function)

x′′(t) +
1

xα(t)
= h(t) (1.1)

(the singularity of attractive type) and

x′′(t) –
1

xα(t)
= h(t) (1.2)

(the singularity of repulsive type). By using topological degree methods they obtained that
a necessary and sufficient condition for the existence of positive periodic solutions for
equation (1.1) is h > 0, and if we assume in addition that α ≥ 1, then a necessary and
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sufficient condition for the existence of positive periodic solutions for equation (1.2) is
h < 0. After that, some methods associated with nonlinear functional analysis theory have
been widely applied to the studied problem in many papers such as the variational methods
used in [10–13], fixed point theorems used in [14–19], upper and lower solutions methods
used in [20, 21], and continuation theorems of coincidence degree used in [22–31]. For
example, Torres [14] studied the periodic problem for the equation with singularity of
repulsive type

x′′ + ϕ(t)x –
b(t)
xμ

= h(t), (1.3)

where ϕ, b, h ∈ L1[0, T], and μ > 0 is a constant. The function ϕ is required to satisfy

ϕ(t) ≥ 0 for all t ∈ [0, T]. (1.4)

This is due to the fact that (1.4), together with some other conditions, can guarantee the
Green function G(t, s) associated with the boundary value problem for Hill’s equation

x′′ + ϕ(t)x = h(t), x(0) = x(T), x′(0) = x′(T), (1.5)

satisfying G(t, s) ≥ 0 for all (t, s) ∈ [0, T] × [0, T]; then, the solution to problem (1.5) is
given by

x(t) =
∫ T

0
G(t, s)h(s) ds. (1.6)

Formula (1.6) is crucial in [14–17] for applying some fixed point theorems on cones. Wang
[25] studied the problem of periodic solutions for the singular delay Liénard equation of
repulsive type

x′′(t) + f
(
x(t)

)
x′(t) + ϕ(t)x(t – τ ) –

1
xμ(t – τ )

= h(t), (1.7)

where f : [0, +∞) → R is continuous, ϕ : R → R is continuous T-periodic, and τ > 0 and
μ ≥ 1 are constants. To balance the forces of ϕ(t)x at x = +∞ and 1

xμ at x = 0, ϕ is also
required to satisfy

ϕ(t) ≥ 0 for all t ∈ [0, T]. (1.8)

In [26, 28], the authors studied the periodic problem of the equation

x′′ + f (x)x′ + ϕ(t)x –
1

xμ
= h(t). (1.9)

In (1.9), the function ϕ is required to satisfy
∫ T

0 ϕ(s) ds > 0, which means that the sign of the
function ϕ is allowed to change. Now, the question is that how to investigate the existence
of T-periodic solutions for a Rayleigh equation with a singularity of repulsive type

x′′(t) + f
(
x′(t)

)
+ ϕ(t)x(t) –

1
xα(t)

= p(t), (1.10)
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where f : R → R is continuous with f (0) = 0, α ≥ 1, and ϕ, p : R → R are continuous and
T-periodic.

Motivated by this, the aim of this paper is to search for positive T-periodic solutions for
(1.10). Using a known continuation theorem of theorem of coincidence degree theory (see
[32, 33], and [34]), we obtain a new result on the existence of positive periodic solutions
for equation (1.10). In present paper, the sign of ϕ in (1.10) is allowed to change for t ∈
[0, T]. Although this condition is the same as that in [26, 28], for studying the periodic
problem of (1.9), the methods used in [26, 28] for estimating a priori bounds of positive
T-periodic solutions to (1.9) cannot be directly applied to (1.10). This is due to the fact that
mechanism of the first-order derivative term f (x′(t)) influencing a priori bounds of positive
T-periodic solutions to (1.10) is different from the corresponding ones of f (x(t))x′(t) in
(1.10). For example, if x(t) is a positive T-periodic function such that x ∈ C1(R, R), then∫ T

0 f (x(t))x′(t) dt = 0, but, generally,
∫ T

0 f (x′(t)) dt �= 0.

2 Preliminary lemmas
Let CT = {x ∈ C(R, R) : x(t + T) = x(t),∀t ∈ R} with the norm |x|∞ = maxt∈[0,T] |x(t)|, and let
C1

T = {x′ ∈ C1(R, R) : x′(t + T) = x′(t),∀t ∈ R} with the norm ‖x‖ = max{|x|∞, |x′|∞}. Clearly,
CT and C1

T are both Banach spaces. For any T-periodic solution ϕ(t) with ϕ ∈ CT , by ϕ+(t)
and ϕ–(t) we denote max{ϕ(t), 0} and – min{ϕ(t), 0}, respectively, and ϕ = 1

T
∫ T

0 ϕ(s) ds.
Then ϕ(t) = ϕ+(t) – ϕ–(t) for all t ∈ R, and ϕ = ϕ+ – ϕ–. Furthermore, for each u ∈ CT ,
let ‖u‖p := (

∫ T
0 |u(s)|p ds)1/p, p ∈ [1, +∞).

The following result can be easily obtained by using Theorem 4 in [32], Chapter 6 of
[33], and Theorem 3.1 in [34].

Lemma 2.1 Assume that there exist positive constants N0, N1, and N2 with 0 < N0 < N1

such that the following conditions hold.
1. For each λ ∈ (0, 1], each possible positive T-periodic solution x to the equation

u′′ + λf
(
u′) + λϕ(t)u –

λ

uα
= λp(t)

satisfies the inequalities N0 < x(t) < N1 and |x′(t)| < N2 for all t ∈ [0, T].
2. Each possible solution c to the equation

1
cα

– cϕ + p = 0

satisfies the inequality N0 < c < N1.
3. The inequality

(
1

Nα
0

– N0ϕ + p
)(

1
Nα

1
– N1ϕ + p

)
< 0

holds.
Then equation (1.10) has at least one positive T-periodic solution u such that N0 < u(t) < N1

for all t ∈ [0, T].

Now, we list the following assumptions, which will be used in Section 3 for investigating
the existence of positive T-periodic solutions to (1.10).
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[H1] There exist constants L > 0, σ > 0, and n ≥ 1 such that

∣∣∣∣
∫ T

0
f
(
x′(t)

)
dt

∣∣∣∣ ≤ L
∫ T

0

∣∣x′(t)
∣∣dt, ∀x ∈ C1

T (2.1)

and

yf (y) ≥ σ |y|n+1, ∀y ∈ R. (2.2)

[H2] The function ϕ satisfies ϕ+ > ϕ–;
[H3] ‖ϕ‖2 < σT– 1

2 and (LT– 1
2 + T 1

2 ϕ+)‖ϕ‖2 < σ (ϕ+ – ϕ–).

Remark 2.1 If assumption [H2] holds, then there are constants D1 and D2 with 0 < D1 <
D2 such that

1
xα

– ϕx + p > 0 for all x ∈ (0, D1)

and

1
xα

– ϕx + p < 0 for all x ∈ (D2,∞).

Now, we embed equation (1.10) into the following equations family with parameter λ ∈
(0, 1]:

x′′ + λf
(
x′) + λϕ(t)x –

λ

xα
= λp(t), λ ∈ (0, 1]. (2.3)

Let

� =
{

x ∈ CT : x′′ + λf
(
x′) + λϕ(t)x –

λ

xα
= λp(t),λ ∈ (0, 1]; x(t) > 0,∀t ∈ [0, T]

}
, (2.4)

and let

M0 = max

{
1,

LT –1
n+1 + T n

n+1 ϕ+

ϕ+ – ϕ–
B +

1 + p
ϕ+ – ϕ–

}
, (2.5)

where B will be determined by (2.13). Clearly, M0 is independent of (λ, x) ∈ (0, 1] × �.

Lemma 2.2 Assume that assumptions [H1]-[H3] hold. Then for each function x ∈ �, there
exists a point t0 ∈ [0, T] such that

x(t0) ≤ M0,

where M0 is defined by (2.5)

Proof If the conclusion does not hold, then there is a function x0 ∈ � satisfying

x0(t) > M0 for all t ∈ [0, T]. (2.6)
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From (2.4) we get

x′′
0 + λf

(
x′

0
)

+ λϕ(t)x0 –
λ

xα
0

= λp(t). (2.7)

Integrating (2.7) over the interval [0, T], we get

∫ T

0
f
(
x′

0(t)
)

dt +
∫ T

0
ϕ+(t)x0(t) dt

=
∫ T

0
ϕ–(t)x0(t) dt +

∫ T

0

1
xα

0 (t)
dt +

∫ T

0
p(t) dt,

that is,

∫ T

0
ϕ+(t)x0(t) dt

= –
∫ T

0
f
(
x′

0(t)
)

dt +
∫ T

0
ϕ–(t)x0(t) dt +

∫ T

0

1
xα

0 (t)
dt +

∫ T

0
p(t) dt.

Since ϕ+(t) ≥ 0 and ϕ–(t) ≥ 0 for all t ∈ [0, T], it follows from the integral mean value
theorem and condition (2.1) in [H1] that there are two points ξ , ζ ∈ [0, T] such that

x0(ξ )Tϕ+ ≤ L
∫ T

0

∣∣x′
0(t)

∣∣dt + x0(ζ )Tϕ– + M–α
0 T + Tp,

which, together with the fact of M0 ≥ 1 in (2.5), yields

x0(ξ )Tϕ+ ≤ L
∫ T

0

∣∣x′
0(t)

∣∣dt + |x0|∞Tϕ– + T + Tp,

that is,

x0(ξ ) ≤ LT
–1

n+1

ϕ+

(∫ T

0

∣∣x′
0(t)

∣∣n+1 dt
) 1

n+1
+

ϕ–

ϕ+
|x0|∞ +

1 + p
ϕ+

. (2.8)

Since

|x0|∞ ≤ x0(ξ ) + T
n

n+1

(∫ T

0

∣∣x′
0(s)

∣∣n+1 ds
) 1

n+1
, (2.9)

it follows from (2.8), (2.9), and [H2] that

|x0|∞ ≤ LT –1
n+1 + T n

n+1 ϕ+

ϕ+ – ϕ–

(∫ T

0

∣∣x′
0(s)

∣∣n+1 ds
) 1

n+1
+

1 + p
ϕ+ – ϕ–

. (2.10)

On the other hand, multiplying both sides of (2.7) by x′
0(t) and integrating it over the in-

terval [0, T], we get

λ

∫ T

0
f
(
x′

0(t)
)
x′

0(t) dt = –λ

∫ T

0
ϕ(t)x0(t)x′

0(t) dt + λ

∫ T

0
p(t)x′

0(t) dt.
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From condition (2.2) in [H1] we have

σ

∫ T

0

∣∣x′
0(t)

∣∣n+1 dt

≤ –
∫ T

0
ϕ(t)x0(t)x′

0(t) dt +
∫ T

0
p(t)x′

0(t) dt

≤ |x0|∞
∫ T

0

∣∣ϕ(t)
∣∣∣∣x′

0(t)
∣∣dt +

∫ T

0

∣∣p(t)
∣∣∣∣x′

0(t)
∣∣dt

≤ |x0|∞
(∫ T

0

∣∣x′
0(t)

∣∣n+1 dt
) 1

n+1
(∫ T

0
|ϕ| n+1

n dt
) n

n+1

+
(∫ T

0

∣∣x′
0(t)

∣∣n+1 dt
) 1

n+1
(∫ T

0

∣∣p(t)
∣∣ n+1

n dt
) n

n+1
,

that is,

∫ T

0

∣∣x′
0(t)

∣∣n+1 dt ≤ σ –1|x0|∞‖ϕ‖ n+1
n

(∫ T

0

∣∣x′
0(t)

∣∣n+1 dt
) 1

n+1

+ σ –1‖p‖ n+1
n

(∫ T

0

∣∣x′
0(t)

∣∣n+1 dt
) 1

n+1
. (2.11)

We infer from (2.10) and (2.11) that

∫ T

0

∣∣x′
0(t)

∣∣n+1 dt

≤ LT –1
n+1 + T n

n+1 ϕ+

σ (ϕ+ – ϕ–)
‖ϕ‖ n+1

n

(∫ T

0

∣∣x′
0(t)

∣∣n+1 dt
) 2

n+1

+ σ –1
(

1 + p
ϕ+ – ϕ–

‖ϕ‖ n+1
n

+ ‖p‖ n+1
n

)(∫ T

0

∣∣x′
0(t)

∣∣n+1 dt
) 1

n+1
. (2.12)

According to (2.12), we list two cases.

Case 1: If n > 1, then we see that there exists B0 > 0 such that (
∫ T

0 |x′
0(t)|n+1 dt) 1

n+1 ≤ B0;
Case 2: If n = 1, then by assumption [H3] there exists B1 > 0 such that

(
∫ T

0 |x′
0(t)|2 dt) 1

2 ≤ B1.

Letting B = max{B0, B1}, it follows from Case 1 or Case 2 that

(∫ T

0

∣∣x′
0(t)

∣∣n+1 dt
) 1

n+1 ≤ B. (2.13)

Substituting (2.13) into (2.10), we have

|x0|∞ ≤ LT
–1

n+1 + T
n

n+1 ϕ+

ϕ+ – ϕ–
B +

1 + p
ϕ+ – ϕ+

.

By the definition of M0 in (2.5) we have

|x0|∞ ≤ M0,



Guo et al. Advances in Difference Equations  (2017) 2017:394 Page 7 of 13

that is,

x0(t) ≤ M0 for all t ∈ [0, T],

which contradicts (2.6). This contradiction proves Lemma 2.2. �

Lemma 2.3 Assume that [H2] holds. Then there exists a positive constant γ > 0 such that,
for each x ∈ �, there is a point t1 ∈ [0, T] satisfying

x(t1) ≥ γ .

Proof Let x(t1) = maxt∈[0,T] x(t). Then x′′(t1) ≤ 0 and x′(t1) = 0, which, together with (2.3),
yields

λf (0) + λϕ(t1)x(t1) –
λ

xα(t1)
≥ λp(t1).

Since f (0) = 0, we have

x(t1) max
t∈[0,T]

ϕ(t) –
1

xα(t1)
≥ p(t1) ≥ –|p|∞. (2.14)

Multiplying both sides of (2.14) by xα(t1), we get

xα+1(t1) max
t∈[0,T]

ϕ(t) + xα(t1)|p|∞ – 1 ≥ 0. (2.15)

Set S(u) = uα+1 maxϕ(t) + uα|p|∞ – 1 for u ∈ [0, +∞). By assumption [H2] we have

S(0) = –1 < 0,

lim
u→+∞ S(u) = +∞.

So S(u) has zero points on (0, +∞). Let γ be the minimum zero point of S(u) on (0, +∞).
Then S(γ ) = 0. It follows from (2.15) that

x(t1) ≥ γ .

The proof is complete. �

3 Main result
Theorem 3.1 Assume that [H1]-[H3] hold. Then equation (1.10) has at least one positive
T-periodic solution.

Proof Firstly, we will show that there exist N1 > 0 and N2 > 0 such that each positive T-
periodic solution x(t) of equation (2.3) satisfying

x(t) < N1 and
∣∣x′(t)

∣∣ < N2 for all t ∈ [0, T]. (3.1)
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Suppose that x is an arbitrary positive T-periodic solution of equation (2.3). Then

x′′ + λf
(
x′) + λϕ(t)x –

λ

xα
= λp(t), λ ∈ (0, 1]. (3.2)

This implies that x ∈ �. So by Lemma 2.2 there exists a point t0 ∈ [0, T] such that

x(t0) ≤ M0,

and then

|x|∞ ≤ M0 + T
n

n+1

(∫ T

0

∣∣x′(s)
∣∣n+1 ds

) 1
n+1

. (3.3)

Integrating (3.2) over the interval [0, T], we get

∫ T

0
f
(
x′(t)

)
dt +

∫ T

0
ϕ(t)x(t) dt –

∫ T

0

1
xα(t)

dt =
∫ T

0
p(t) dt. (3.4)

On the other hand, similarly to the proof of (2.11), we have

∫ T

0

∣∣x′(t)
∣∣n+1 dt ≤ σ –1|x|∞‖ϕ‖ n+1

n

(∫ T

0

∣∣x′(t)
∣∣n+1 dt

) 1
n+1

+ σ –1‖p‖ n+1
n

(∫ T

0

∣∣x′(t)
∣∣n+1 dt

) 1
n+1

. (3.5)

Substituting (3.3) into (3.5), we have

∫ T

0

∣∣x′(t)
∣∣n+1 dt

≤ σ –1‖ϕ‖ n+1
n

T
n

n+1

(∫ T

0

∣∣x′(t)
∣∣n+1 dt

) 2
n+1

+
(
σ –1‖ϕ‖ n+1

n
M0 + σ –1‖p‖ n+1

n

)(∫ T

0

∣∣x′(t)
∣∣n+1 dt

) 1
n+1

. (3.6)

According to (3.6), we list two cases.

Case 1: If n > 1, then there exists ρ0 > 0 such that (
∫ T

0 |x′(t)|n+1 dt) 1
n+1 ≤ ρ0;

Case 2: If n = 1, then by assumption [H3] there exists ρ1 > 0 such that (
∫ T

0 |x′(t)|2 dt) 1
2 ≤ ρ1.

Letting ρ = max{ρ0,ρ1}, it follows from Case 1 or Case 2 that

(∫ T

0

∣∣x′(t)
∣∣n+1 dt

) 1
n+1 ≤ ρ, (3.7)

and according to (3.3), we have

x(t) ≤ M0 + T
n

n+1 ρ := N1 for all t ∈ [0, T]. (3.8)
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Clearly, there is a point t2 ∈ [0, T] such that x′(t2) = 0. Multiplying both sides of (3.2) by
x′(t) and integrating it over the interval [t2, t], we get

∫ t

t2

x′′(t)x′(t) dt

= λ

∫ t

t2

[
–f

(
x′(t)

)
x′(t) – ϕ(t)x(t)x′(t) +

x′(t)
xα(t)

+ p(t)x′(t)
]

dt

for all t ∈ [t2, t2 + T],

and then

|x′(t)|2
2

≤ λ
∣∣x′∣∣∞

[
|x|∞

∫ t2+T

t2

∣∣ϕ(t)
∣∣dt +

∫ t2+T

t2

1
xα(t)

dt +
∫ t2+T

t2

∣∣p(t)
∣∣dt

]

= λ
∣∣x′∣∣∞

[
|x|∞

∫ T

0

∣∣ϕ(t)
∣∣dt +

∫ T

0

1
xα(t)

dt +
∫ T

0

∣∣p(t)
∣∣dt

]

= λ
∣∣x′∣∣∞

[
N1T |ϕ| +

∫ T

0

1
xα(t)

dt + T |p|
]

for all t ∈ [t2, t2 + T]. (3.9)

Since

∣∣x′∣∣∞ = max
t∈[0,T]

∣∣x′(t)
∣∣ = max

t∈[t2,t2+T]

∣∣x′(t)
∣∣,

it follows from (3.9) that

|x′|2∞
2

≤ λ
∣∣x′∣∣∞

[
N1T |ϕ| +

∫ T

0

1
xα(t)

dt + T |p|
]

,

that is,

|x′|∞
2

≤ λ

[
N1T |ϕ| +

∫ T

0

1
xα(t)

dt + T |p|
]

,

which implies that

|x′(t)|
2

≤ |x′|∞
2

≤ λ

[
N1T |ϕ| +

∫ T

0

1
xα(t)

dt + T |p|
]

for all t ∈ [0, T]. (3.10)

On the other hand, from (3.4) and condition (2.1) in [H1] we have

∫ T

0

1
xα(t)

dt =
∫ T

0
f
(
x′(t)

)
dt +

∫ T

0
ϕ(t)x(t) dt –

∫ T

0
p(t) dt

≤ L
∫ T

0

∣∣x′(t)
∣∣dt + N1T |ϕ| + T |p|

≤ LρT
n

n+1 + N1T |ϕ| + T |p|,

where ρ is determined in (3.7). Substituting this formula into (3.10), we obtain

∣∣x′(t)
∣∣ ≤ λ

[
2LρT

n
n+1 + 4N1T |ϕ| + 4T |p|] := λN2 for all t ∈ [0, T]. (3.11)
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So we have

∣∣x′(t)
∣∣ ≤ N2 for all t ∈ [0, T]. (3.12)

We further show that there exists a constant γ0 ∈ (0,γ ) such that each positive T = peri-
odic solution of (2.3) satisfies

x(t) > γ0 for all t ∈ [0, T]. (3.13)

In fact, suppose that x(t) is an arbitrary positive T-periodic solution of (2.3). Then

x′′ + λf
(
x′) + λϕ(t)x –

λ

xα
= λp(t), λ ∈ (0, 1]. (3.14)

By Lemma 2.3 we see that there is a point t1 ∈ [0, T] such that

x(t1) ≥ γ .

For t ∈ [t1, t1 + T], multiplying both sides of (3.14) with x′(t) and integrating it over the
interval [t1, t] (or [t, t1]), we get

|x′(t)|2
2

–
|x′(t1)|2

2
+ λ

∫ t

t1

f
(
x′)x′ dt = λ

∫ t

t1

1
xα

x′ dt – λ

∫ t

t1

ϕ(t)xx′ dt + λ

∫ t

t1

p(t)x′ dt,

which results in

λ

∫ x(t)

x(t1)

1
sα

ds

=
|x′(t)|2

2
–

|x′(t1)|2
2

+ λ

∫ t

t1

f
(
x′(s)

)
x′(s) ds + λ

∫ t

t1

ϕ(s)x(s)x′(s) ds – λ

∫ t

t1

p(s)x′(s) ds,

that is,

λ

∫ x(t1)

x(t)

1
sα

ds = –
|x′(t)|2

2
+

|x′(t1)|2
2

– λ

∫ t

t1

f
(
x′(s)

)
x′(s) ds

– λ

∫ t

t1

ϕ(s)x(s)x′(s) ds + λ

∫ t

t1

p(s)x′(s) ds.

According to (2.2) in [H1], we get
∫ t

t1
f (x′(s))x′(s) ds ≥ 0. Thus, it follows from the last for-

mula that

λ

∫ x(t1)

x(t)

1
sα

ds ≤ –
|x′(t)|2

2
+

|x′(t1)|2
2

– λ

∫ t

t1

ϕ(s)x(s)x′(s) ds + λ

∫ t

t1

p(s)x′(s) ds

≤ ∣∣x′∣∣2
∞ + λ

∫ T

0

∣∣ϕ(s)x(s)x′(s)
∣∣ds + λ

∫ T

0

∣∣p(s)x′(s)
∣∣ds,

which, together with (3.8) and (3.11), yields

λ

∫ x(t1)

x(t)

1
sα

ds ≤ λ2N2
2 + λ2N1N2T |ϕ| + λ2N2T |p|,
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that is,

∫ x(t1)

x(t)

1
sα

ds ≤ N2
2 + N1N2T |ϕ| + N2T |p| := N3. (3.15)

Since α ≥ 1, it follows that there exists γ0 ∈ (0,γ ) such that

∫ γ

η

1
xα(t)

dt > N3 for all η ∈ (0,γ0),

which, together with (3.15), implies that

x(t) > γ0 for all t ∈ [0, T].

So (3.13) holds.
Let n0 = min{D1,γ0} and n1 ∈ (N1 + D2, +∞) be two constants. Then from (3.8), (3.12),

and (3.13) we see that each possible positive T-periodic solution x to (2.3) satisfies

n0 < x(t) < n1,
∣∣x′(t)

∣∣ < N2.

This implies that condition 1 and condition 2 of Lemma 2.1 hold. In addition, from Re-
mark 2.1 we can infer that

1
cα

– cϕ + p > 0 for c ∈ (0, n0]

and

1
cα

– cϕ + p < 0 for c ∈ [n1, +∞),

which results in
(

1
nα

0
– n0ϕ + p

)(
1

nα
1

– n1ϕ + p
)

< 0.

Therefore, condition 3 of Lemma 2.1 holds. Thus, by Lemma 2.1 we see that equation
(1.10) has at least one positive T-periodic solution. The proof is complete. �

Example 3.1 Consider the equation

x′′(t) + 10x′(t) –
(x′(t))3

1 + (x′(t))2 + a(1 + 2 sin t)x(t) –
1

x2(t)
= cos t, (3.16)

where a ∈ (0,∞). Corresponding to (1.10), we see that f (x) = 10x– x3

1+x2 , ϕ(t) = a(1+2 sin t),
p(t) = cos t, and T = 2π .

Firstly, from (3.16) we see that f (0) = 0 and

ϕ+ =
1
T

∫ T

0
ϕ+(t) dt =

2π
3 +

√
3

π
a, ϕ– =

1
T

ϕ–(t) dt =
– π

3 +
√

3
π

a.
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Obviously, [H2] is satisfied. Secondly, integrating f (x′) over the internal [0, T], we get

∣∣∣∣
∫ T

0
f
(
x′)dt

∣∣∣∣ =
∣∣∣∣
∫ T

0

[
10x′(t) –

(x′(t))3

1 + (x′(t))2

]
dt

∣∣∣∣

=
∣∣∣∣–

∫ T

0

(x′(t))3

1 + (x′(t))2 dt
∣∣∣∣

=
∣∣∣∣
∫ T

0

|x′(t)|3
1 + (x′(t))2 dt

∣∣∣∣

≤
∫ T

0

∣∣x′(t)
∣∣dt,

which implies that we can chose L = 1 such that assumption [H1] holds. Besides, from

yf (y) = 10y2 –
y4

1 + y2 ≥ 9y2

we see that the constant σ can be chosen as σ = 9 such that assumption [H1] is satisfied.
Last, let L = 1, σ = 9, n = 1. Then we get

1 –
LT –1

2 + T 1
2 ϕ+

σ (ϕ+ – ϕ–)
‖ϕ‖2 = 1 –

√
3

9
–

18 + 4
√

3π

27
a > 0,

1 – σ –1‖ϕ‖2T
1
2 = 1 –

2π

3
√

3
a > 0.

If

a <
27 – 3

√
3

18 + 4
√

3π
,

then [H3] holds. Thus, by Theorem 3.1 we have that equation (3.16) has at least one posi-
tive 2π-periodic solution.
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