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Abstract
A novel stochastic turbidostat model is investigated in this paper. The stochasticity in
the model comes from the maximal growth rate influenced by white noise. Firstly, the
existence and uniqueness of the positive solution for the system are demonstrated.
Secondly, we analyze the persistence in mean and stochastic persistence of the
system, respectively. Sufficient conditions about the extinction of the microorganism
are obtained. Finally, numerical simulation results are given to support the theoretical
conclusions.
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1 Introduction
The continuous culture of microorganism, such as the chemostat and the turbidostat, is a
significant way in reality. According to the mechanism of turbidostat, a number of mathe-
matical models were introduced to describe the change rate of microorganism and nutri-
ent. Herbert et al. [1] constructed the basic model with a constant dilution rate, but they
did not give a thorough analysis. Smith et al. [2] completely analyzed the model proposed
by [1]. Li [3] introduced a competition turbidostat model with inconstant dilution rate
d + k1x1(t) + k2x2(t) and analyzed dynamic behaviors of the system. The above-mentioned
systems are often described by ordinary differential equations.

Since the perturbation is inevitable in real conditions, an increasing number of re-
searchers have realized that some phenomena, such as time delays [4] and stochastic fac-
tors [5], could also cause various dynamical behaviors that are different from the conclu-
sions derived from ordinary differential equations. May [5] pointed out that parameters
characterizing the natural biological systems have random influence. Mao [6] also em-
phasized the significant role of stochastic models in many ways of science and industry.
Based on the above tendency and real conditions, the effect of stochastic disturbance on
population dynamic has received and has been persistently receiving more attention. In
microorganism cultivation, the sense of the stochasticity in the turbidostat may be arisen
as a result of the destabilizations such as the uncertainty of the birth rate and the stochastic
variations of environmental conditions. In particular, the survival rate is not always equiv-
alent to constant due to the feedback phenomenon in the turbidostat. In order to explain
those stochastic phenomena, scholars use white noise to represent destabilization from
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a biological point of view in generally. Standard Brownian motion B(t) is a reasonable tool
to describe the effect of white noise on a dynamic system.

Scholars have studied dynamical behaviors by constructing a stochastic model and ob-
tained many important results. Imhof et al. [7] analyzed a deterministic single-substrate
model that the dilution rate in the vessel is constant and derived the corresponding con-
clusion. They also set up a corresponding stochastic differential equation and investigated
the extinction and the persistence of the system. Liu et al. [8, 9] put up a stochastic lo-
gistic model and established the sufficient condition of the stability of the positive solu-
tion. Campillo et al. [10] built the Fokker-Planck equation of stochastic chemostat and
derived an adapted finite difference scheme to approximate the solution of the Fokker-
Planck equation. Campillo et al. [11] constructed a set of stochastic chemostat models
according to the different population scales and investigated the domain of validity for dif-
ferent scales. Zhang et al. [12] proposed a chemostat model with Holling type II functional
response and stochastic perturbation and obtained sufficient conditions for the principle
of competitive exclusion; they also provided numerical simulation to verify their results
by using Milstein’s higher order method. Zhao and Yuan [13] formulated a single-species
stochastic chemostat model with periodic coefficients due to seasonal fluctuation; they ob-
tained sufficient conditions for the existence of a random positive periodic solution and a
globally attractive condition of the random periodic solution. Wang et al. [14] proposed a
stochastic chemostat model with periodic wash-out rate and established sufficient condi-
tions for the existence of a stochastic nontrivial positive periodic solution for the system.
Lv et al. [15] proposed a stochastic competition chemostat model and derived the condi-
tions of the threshold between persistence and extinction for the corresponding determin-
istic model and the stochastic model, respectively. Meng et al. [16] developed a stochastic
chemostat model in a polluted environment and obtained the conditions of persistence
and extinction for microorganism. They also pointed out that a small enough stochastic
disturbance could cause the microorganism to die out even if the microorganism could
be persistent in the deterministic model. More mathematical models about microorgan-
ism cultivation with constant dilution rate and perturbed phenomena could be found in
[17–24]. The study of stochastic population models has been a focus of some scholars in
recent years (see [25–41]).

From a biological point of view and real condition, if the concentration of the microor-
ganism in the culture vessel is large but the wash-out rate is too small, it will affect the
growth of the microorganism in the turbidostat. On the contrary, if the concentration of
the microorganism is quite small, the fixed wash-out rate will cause the waste of the nu-
trient. Based on the above phenomenon, we construct a turbidostat model with linear
wash-out rate d + kx(t). Due to the stochastic destabilizations, the maximum growth rate,
one of the essential parameters in microorganism cultivation, will undergo variations at
different times in the turbidostat. That is, if the birth (death) rate increases (decreases) or
the temperature and food are sufficient, the maximum growth rate occurs in advance. If
the birth (death) rate decreases (increases) or the temperature and food are insufficient
in the system, the maximum growth rate delays. Therefore, the maximum growth rate
undergoes a random change.

In order to explain the above stochastic and feedback phenomena from mathematical
aspect and provide researchers with more feasible suggestions about microbial cultivation,
we consider a stochastic turbidostat model with white noise and Holling III functional
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response. We completely investigate the case that there exists stochastic destabilization
for the maximum growth rate m. Therefore, we change the maximum growth rate m in
the turbidostat model into a random variable m̃, in there m̃ = m + αḂ(t), where Ḃ(t) is
white noise, i.e., B(t) is a standard Brownian motion defined on a complete probability
space (�,F , P) (where Ft = σ {(S(t), x(t)); 0 ≤ t ≤ τe} is σ -filed generated by (S(t), x(t)),
0 ≤ t ≤ τe). α ≥ 0 represents the intensity of white noise. On the basis of [3, 30] and the
above analysis, we establish the following stochastic turbidostat model:

⎧
⎨

⎩

dS = [(S0 – S)(d + kx) – mS2x
a+S2 ] dt – αS2x

a+S2 dB(t),

dx = [ mS2

a+S2 – (d + kx)]x dt + αS2x
a+S2 dB(t),

(1.1)

where S and x represent the concentration of the nutrient and microorganism at the time
t, respectively. S0 expresses the input concentration of nutrition, d + kx stands for the
dilution rate of the turbidostat system. mS2

a+S2 is the Holling III functional response, m is
the maximal growth rate and a is called the half-saturation constant. S0, d, k, m and a are
positive.

This paper is organized as follows. In Section 2, we determine the existence and unique-
ness of a positive solution of system (1.1). In Section 3, we further investigate two kinds
of persistence of system (1.1) and the extinction of microorganism in the turbidostat and
obtain the corresponding break-even concentration. Finally, the effect of white noise on
dynamical behaviors of system (1.1) is discussed in detail and specific examples are given
to verify our theoretical conclusions.

2 Existence and uniqueness of positive solution
In this section, we demonstrate that system (1.1) has a unique global positive solution. The
coefficients of (1.1) are not linear growth, but they are locally Lipschitz continuous. Thus
for any initial value (S0, x0) ∈ R2

+, there is a unique positive local solution (S(t), x(t)) on t ∈
[0, τe), where τe is the explosion time [6] (the time that the positive local solution (S(t), x(t))
does not satisfy). If we can show that τe = ∞, then the positive solution (S(t), x(t)) ∈ R2

+ for
all t ≥ 0.

Theorem 2.1 If d > kS0, for any initial value (S0, x0) ∈ R2
+, there is a unique solution

(S(t), x(t)) of system (1.1) such that (S(t), x(t)) ∈ R2
+ for all t ≥ 0 almost surely.

Proof On the basis of the definition of Ft , choose ε0 > 0 such that S0 > ε0 and x0 > ε0 and
define the stopping time tε as follows:

τε = inf
{

t ∈ [0, τe) : S(t,ω) ≤ ε or x(t,ω) ≤ ε
}

for any ε ≥ ε0 > 0,

where τε is a random variable. For any ω ∈ � and ε > 0, there exist t1, t2, . . . , tn ∈ [0, τe)
such that S(ti,ω) ≤ ε (i = 1, 2, . . . , n) or x(ti,ω) ≤ ε (i = 1, 2, . . . , n). The stopping time τε =
inf{t1, t2, . . . , tn}, which means τε is the first time such that S(t,ω) ≤ ε or x(t,ω) ≤ ε.

Throughout this paper, we set inf∅ = ∞ (∅ represents the empty set). It is obvious that
τε is increasing as ε → 0. Set τ0 = limε→0 τε , whence τ0 ≤ τe a.s. If we can demonstrate
τ0 = ∞ a.s., then τe = ∞ a.s. and (S(t), x(t)) ∈ R2

+ for all t ≥ 0 a.s. Consequently, in order to
prove Theorem 2.1, we only need to demonstrate that τ0 = ∞ a.s.
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If the above statement is false, then there exist δ ∈ (0, 1) and a constant T > 0 such that
P{τ0 ≤ T} > δ. Therefore, we have P{τε ≤ T} > δ for all 0 < ε ≤ ε0.

According to system (1.1), the total biomass in the turbidostat satisfies N(t) = S(t) +
x(t) ≥ 0 because of the expression of the Brownian term. Besides, N(t) satisfies the follow-
ing equation:

dN(t) =
[
(d + kx)

(
S0 – N(t)

)]
dt

≤ [
dS0 –

(
d – kS0)N(t)

]
dt. (2.1)

Define

dZ(t)
dt

= dS0 –
(
d – kS0)Z(t)

with the initial value Z(0) = N(0) = S0 + x0. After a simple calculation, it is easy to show
that

Z(t) =
dS0

d – kS0 +
[

Z(0) –
dS0

d – kS0

]

e–(d–kS0)t ,

and for t ∈ [0, τe) we have

Z(t) ≤ max

{

S0 + x0,
dS0

d – kS0

}

.

By the comparison theorem for differential equation, we have

N(t) ≤ Z(t), t ∈ [0, τe) a.s.

Therefore, we can get that, for t ∈ [0, τe),

N(t) ≤ max

{

S0 + x0,
dS0

d – kS0

}

:= C1.

Define a function V : R2
+ → R̄+ as follows:

V
(
S(t), x(t)

)
= – ln

S(t)
C1

– ln
x(t)
C1

.

Obviously, V is nonnegative and definite. Using Itô’s formula, we can obtain

dV = LV dt +
αS(x – S)

a + S2 dB(t),

where

LV = –
S0(d + kx)

S
+ 2(d + kx) +

mS(x – S)
a + S2 +

1
2

α2S2(x2 + S2)
(a + S2)2 .
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Hence we can use the inequality N(t) ≤ C1 to conclude that

LV ≤ 2(d + kx) +
mS(x – S)

a + S2 +
1
2

α2S2(x2 + S2)
(a + S2)2

≤ 2(d + kC1) +
mC2

1
a

+
α2C4

1
a2

:= C2,

which yields the inequality

dV ≤ C2 dt +
αS(x – S)

a + S2 dB(t).

Integrating both sides for the above inequality from 0 to τε ∧ T and taking expectation,
we obtain

EV
(
S(τε ∧ T), x(τε ∧ T)

) ≤ V (S0, x0) + C2T .

Setting �ε = {τε ≤ T} for any nonnegative ε ≤ ε0, we can get P(�ε) > δ. In view of the
definition of the stoping time, we conclude, for every ω ∈ �ε , that there exists at least one
of S(τε ,ω), x(τε ,ω) is less than or equal to ε,

V
(
S(τε), x(τε)

)
1{ω∈�ε} ≥ – ln

ε

C1
1{ω∈�ε}.

Consequently,

EV
(
S(τε), x(τε)

)
1{ω∈�ε} ≥ –P(�ε)1{ω∈�ε} ln

ε

C1

> –δ ln
ε

C1
,

which yields the inequality

V (S0, x0) + C2T ≥ EV
(
S(τε), x(τε)

)
1{ω∈�ε} ≥ –δ ln

ε

C1
.

When ε → 0, we have

V (S0, x0) + C2T → ∞,

which leads to contradiction with

V (S0, x0) = – ln
S0

C1
– ln

x0

C1
< ∞.

Therefore we must have τ0 = ∞ a.s. �
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3 Extinction and persistence of the model
Denote

	 =
{

(S, x) ∈ R2
+ : S + x = S0}.

For the convenience of demonstration of the main results in this section, we give the
following two remarks.

Remark 1 From (2.1), we know that 	 is a nonnegative invariant set for turbidostat
stochastic model (1.1), which is essential characteristic for our theoretical analysis in the
following section.

Remark 2 Yuan et al. [30] pointed out that if m ≤ D (the maximum growth rate is less than
or equal to wash-out rate), microorganism in the system must be washed out. Moreover,
this conclusion can also be found in [2] (Chapter 1 and Section 4 of Chapter 2) and [7]. If
m ≤ d +kx, the microorganism must be washed out in model (1.1). Thus we always assume
m > d + kx in this paper, which means m > d.

From a biological point of view and the mechanism of turbidostat, if the wash-out rate
(the output constant of turbidostat) is larger than the maximum growth rate (the yield
constant of turbidostat), there is no microorganism in the culture vessel. In other words, if
the maximum growth rate is smaller than the wash-out rate, the population will be extinct.
The proof in this section is based on m > d + kx.

On the basis of the positive invariant set 	 = {(S, x) ∈ R2
+ : S + x = S0}, we only need to

investigate the following system:

dx =
[

m(S0 – x)2

a + (S0 – x)2 – (d + kx)
]

x dt +
α(S0 – x)2x
a + (S0 – x)2 dB(t), (3.1)

with the initial value x(0) = x0 ∈ (0, S0). We need the following definition and lemma in
order to determine the main results.

Definition 3.1 ([42])
(I) The microorganism in system (1.1) is persistent if

lim
t→∞

1
t

∫ t

0
x(s) ds ≥ ζ

for some constant ζ > 0;
(II) Microorganism in system (3.1) is stochastically persistent in the turbidostat if, for

any ε ∈ (0, 1), there are positive constants B1 = B1(ε) and B2 = B2(ε) such that, for
any initial value x0 ∈ R+,

lim
t→∞ inf P

(
x(t) ≤ B1

)
> 1 – ε and lim

t→∞ inf P
(
x(t) ≥ B2

)
> 1 – ε.

Lemma 3.1 ([43]) Let f ∈ C[[0,∞) × �, (0,∞)]. If there exist positive constants λ0 and λ

such that

log f (t) ≥ λt – λ0

∫ t

0
f (s) ds + F(t), a.s.
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for all t ≥ 0, where F ∈ C[[0,∞) × �, R] and limt→∞ F(t)
t = 0, a.s. Then

lim
t→∞ inf

1
t

∫ t

0
f (s) ds ≥ λ

λ0
, a.s.

Theorem 3.1 If the break-even concentration λ1 < S0, where

λ1 =
d(a + (S0)2)

mS0 +
α2(S0)3

2m(a + (S0)2)

for any given initial value (S0, x0) ∈ R2
+, the solution of turbidostat model (1.1) satisfies

lim
t→∞ inf

1
t

∫ t

0
x(s) ds ≥ maS0

(a + (S0)2(2mS0 + ka))
(
S0 – λ1

)
> 0, almost surely,

which means the microorganism in system (1.1) is persistent.

Proof Define a function V (x(t)) = ln x(t). Applying Itô’s formula, we have

dV = LV dt +
αS2

a + S2 dB(t), (3.2)

where

LV =
mS2

a + S2 – (d + kx) –
1
2

α2S4

(a + S2)2

≥ m(S0)2

a + (S0)2 –
2mS0

a
x – d – kx –

1
2

α2(S0)4

(a + (S0)2)2

=
[

m(S0)2

a + (S0)2 – d –
1
2

α2(S0)4

(a + (S0)2)2

]

–
(

2mS0

a
+ k

)

x.

Integrating (3.2) from 0 to t, we obtain

ln x(t) – ln x(0) ≥
[

m(S0)2

a + (S0)2 – d –
1
2

α2(S0)4

(a + (S0)2)2

]

t

–
(

2mS0

a
+ k

)∫ t

0
x(s) ds +

∫ t

0

αS2(s)
a + S2(s)

dB(s),

which means

ln x(t)
t

≥ mS0

a + (S0)2

(
S0 – λ1

)

–
(

2mS0

a
+ k

)
1
t

∫ t

0
x(s) ds +

1
t

M(t) +
1
t

ln x0,

where M(t) =
∫ t

0
αS2(s)

a+S2(s) dB(s) is a local continuous martingale with M(0) = 0. Define

Yt = 〈M, M〉t =
∫ t

0

α2S4

(a + S2)2 dt
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is the quadratic variation process and Yt ≤ ( α(S0)2

a+(S0)2 )4t. Therefore,

lim
t→∞ sup

〈M, M〉t

t
≤

(
α(S0)2

a + (S0)2

)4

< ∞.

Using the strong principle of large number, we obtain

lim
t→∞

M(t)
t

= 0, almost surely,

and

lim
t→∞

ln x0

t
= 0, almost surely.

If λ1 < S0, we can derive the following result by Lemma 3.1:

lim
t→∞ inf

1
t

∫ t

0
x(s) ds ≥ maS0

(a + (S0)2(2mS0 + ka))
(
S0 – λ1

)
> 0, almost surely.

This completes the proof of Theorem 3.1. �

Consider the following time-homogeneous stochastic equation:

dX(t) = b
(
X(t)

)
dt + α

(
X(t)

)
dB(t) with X(0) ∈ R+.

Lemma 3.2 ([44]) Let X(t) be a time-homogeneous solution of the above one-dimensional
time-homogeneous stochastic equation on E1 (one-dimensional Euclidean space). Assume
that:

(I) In the domain U ⊂ E1 and some neighborhood thereof, the diffusion α(X) is bounded
away from zero;

(II) If, for all X ∈ E1 \ U , the mean time τX at which a path emerging from X reaches the
set U is finite, and supX∈K E(τX) < ∞ for every compact subset K ⊂ E1.

Then the Markov process X(t) has a stationary distribution π (x).

Theorem 3.2 If the break-even concentration λ2 < S0, where

λ2 =
(a + (S0)2)d

mS0 +
α2(S0)3

m(a + (S0)2)
,

for any given initial value (S0, x0) ∈ R2
+, the microorganism x(t) is stochastically persistent

in the turbidostat and system (3.1) has a stationary distribution.

Proof Define a C2-function V : R+ → R+ for any p ∈ (0, 1) as follows:

V (x) =
1

xp(t)
, p ∈ (0, 1).
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Applying Itô’s formula, one can obtain

dV =
–p

xp+1

{[
m(S0 – x)2

a + (S0 – x)2 – (d + kx)
]

x dt +
α(S0 – x)2x
a + (S0 – x)2 dB(t)

}

+
p(p + 1)α2(S0 – x)4x2

2xp+2(a + (S0 – x)2)2 dt

= –
p
xp

{
m(S0 – x)2

a + (S0 – x)2 – d – kx –
(p + 1)α2(S0 – x)4

2(a + (S0 – x)2)2

}

dt

–
pα(S0 – x)2

xp(a + (S0 – x)2)
dB(t),

which implies that

dV = –
p
xp

{
m(S0)2

a + (S0)2 – d –
(p + 1)α2(S0)2

2(a + (S0)2)2

}

dt + F(t) dt

–
pα(S0 – x)2

xp(a + (S0 – x)2)
dB(t), (3.3)

where

F(t) =
p
xp

{
m(S0)2

a + (S0)2 –
m(S0 – x)2

a + (S0 – x)2 –
(p + 1)α2(S0)4

2(a + (S0)2)2 +
(p + 1)α2(S0 – x)4

2(a + (S0 – x)2)2 + kx
}

=
p(2maS0x – max2)

xp(a + (S0)2)(a + (S0 – x)2)
–

p(p + 1)α2

2xp

{[
(S0)2

a + (S0)2

]2

–
[

(S0 – x)2

a + (S0 – x)2

]2}

+
pkx
xp

≤ 2pmaS0x
xp(a + (S0)2)(a + (S0 – x)2)

+
pkx
xp

≤
[

2pmaS0

a(a + (S0)2)
+ kp

]
(
S0)1–p.

Let θ = p[ m(S0)2

a+(S0)2 – d – (p+1)α2(S0)4

2(a+(S0)2)2 ], then we can choose p small enough such that θ > 0.
Multiplying (3.3) by eθ t and taking an integration from 0 to t, we obtain

1
xp(t)

= e–θ t 1
xp(0)

+
∫ t

0
F(s)e–θ (t–s) ds –

∫ t

0

pα(S0 – x(t))2

xp(a + (S0 – x(t))2)
dB(s)

≤ 1
xp(0)

+
1
θ

[
2pmaS0

a(a + (S0)2)
+ kp

]
(
S0)1–p – M(t), (3.4)

where M(t) =
∫ t

0
pα(S0–x)2

xp(a+(S0–x)2) dB(s) is a continuous martingale with M(0) = 0. Taking expec-
tation on both sides of (3.4), we conclude that

E
[

1
xp(t)

]

=
1

xp(0)
+

∫ t

0
E
(
F(s)

)
e–θ (t–s) ds – E

(
M(t)

)

≤ 1
xp(0)

+
1
θ

[
2pmaS0

a(a + (S0)2)
+ kp

]
(
S0)1–p.
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Let B1 = S0, we have the following equality:

P
(
x(t) ≤ B1

)
= P

(
x(t) ≤ S0) = 1 ≥ 1 – ε,

on the positive invariant set 	. Moreover, applying Chebyshev’s inequality [6], we obtain

P
(
B2 ≤ x(t)

)
= P

(
1

Bp
2

≥ 1
xp(t)

)

= 1 – P
(

1
Bp

2
≤ 1

xp(t)

)

≥ 1 – Bp
2E

[
1

xp(t)

]

≥ 1 – Bp
2

{
1

xp(0)
+

1
θ

[
2pmaS0

a(a + (S0)2)
+ kp

]
(
S0)1–p

}

.

We can choose B2 such that Bp
2{ 1

xp(0) + 1
θ

[ 2pmaS0

a(a+(S0)2) + kp](S0)1–p} < ε, which implies that

P
(
B2 ≤ x(t)

) ≥ 1 – ε.

Therefore, the microorganism is stochastically persistent in the turbidostat. Next we prove
that system (3.1) has a stationary distribution. Let ε > 0 be a small enough number and U
be a bounded open subset with a regular boundary such that

{
x : ε ≤ x ≤ S0 – ε

} ⊂ U ⊂ Ū ⊂ (
0, S0),

where Ū represents the closure of U . Define a C2-function V : R+ → R+ as

V
(
x(t)

)
=

1
pxp(t)

+
1

S0 – x(t)

for any p ∈ (0, 1). Then apply Itô’s formula to get

dV = –
1
xp

{
a(S0 – x)2

a + (S0 – x)2 – d – kx –
(p + 1)α2

2
(S0 – x)4

(a + (S0 – x)2)2

}

dt

+
{

1
(S0 – x)2

[
m(S0 – x)2x
a + (S0 – x)2 – (d + kx)x

]

+
1

(S0 – x)3
α2(S0 – x)4x2

(a + (S0 – x)2)2

}

dt

+
{

–1
xp+1 +

1
(S0 – x)2

}
α(S0 – x)2x
a + (S0 – x)2 dB(t)

:= LV dt +
{

–1
xp+1 +

1
(S0 – x)2

}
α(S0 – x)2x
a + (S0 – x)2 dB(t),

where

LV ≤ –
1
xp

{
m(S0)2

a + (S0)2 – d –
(p + 1)α2

2
(S0)4

(a + (S0)2)2

}

+
[

2pmaS0

a(a + (S0)2)
+ kp

]
(
S0)1–p

+
mS0

a
+

α2(S0)3

a2 –
dx

(S0 – x)2 .

Use the inequality λ2 < S0 and p ∈ (0, 1) to check that, for sufficiently small ε > 0,

LV (x) ≤ –1 for all x ∈ (
0, S0) \ U ,
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which yields that (II) in Lemma 3.2 holds. It is easy to check that the diffusion σ (x) =
α(S0–x)2x
a+(S0–x)2 in system (3.1) is bounded away from zero for x ∈ (0, S0). Therefore, system (3.1)
has a stationary distribution. This completes the proof of Theorem 3.2. �

Theorem 3.3 If α2

4 + kS0 < d – m(S0)2

a+(S0)2 , then for any initial condition (S0, x0) ∈ R2
+, the mi-

croorganism x(t) will be extinct with probability one in the turbidostat.

Proof Defining a C2-function V (x(t)) = ln x(t), we obtain the following equality by Itô’s
formula:

dV =
[

mS2

a + S2 – (d + kx) –
α2S4

2(a + S2)2

]

dt +
αS2

a + S2 dB(t). (3.5)

By equation (3.5), we define

h(S) =
mS2

a + S2 – d – kx –
α2S4

2(a + S2)2 .

For h(S), we can obtain

h(S) ≤ α2aS2

(2
√

aS)2 +
m(S0)2

a + (S0)2 – d + kS0

=
α2

4
+

m(S0)2

a + (S0)2 – d + kS0. (3.6)

By equations (3.5) and (3.6), we see that

ln x(t) – ln x0 =
∫ t

0
h(S) dt +

∫ t

0

αS2

a + S2 dB(t)

≤
[

α2

4
+

m(S0)2

a + (S0)2 – d + kS0
]

t +
∫ t

0

αS2

a + S2 dB(t), (3.7)

which yields the inequality

ln x(t)
t

≤ α2

4
+

m(S0)2

a + (S0)2 – d + kS0 +
ln x0

t
+

1
t

M(t), (3.8)

where M(t) =
∫ t

0
αS2

a+S2 dB(t) is a local continuous martingale with M(0) = 0. If α2

4 + m(S0)2

a+(S0)2 –
d + kS0 < 0, then taking the supremum and limit for (3.8), we get

lim
t→∞ sup

ln x(t)
t

≤ α2

4
+

m(S0)2

a + (S0)2 – d + kS0 < 0, almost surely. (3.9)

That is, the microorganism x(t) in the vessel will exponentially tend to zero. The proof of
Theorem 3.3 is completed. �

4 Discussion and numerical simulation
In this paper, stochastic factors are introduced to the mathematical model of microorgan-
ism culture in the turbidostat. The maximum growth rate in system (1.1) is perturbed by
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stochastic phenomena such as the birth rate and the variation of environment. We show
that oscillations may occur for system (1.1) when white noise exists. Under the condition
of white noise and the feedback control of the turbidostat, system (1.1) may be persistent
(stochastically persistent) as described by Theorem 3.1 (Theorem 3.2), and it has a sta-
tionary distribution. On the contrary, the microorganism x(t) in the turbidostat might be
extinct as displayed by Theorem 3.3 because of white noise and the feedback control of
the turbidostat. We explicitly discuss those phenomena with the following three examples,
respectively.

Computer simulation of the path of (S(t), x(t)) is provided with the initial value
(S(0), x(0)) = (0.4, 0.37). Let S0 = 0.77, d = 0.18, k = 0.2, m = 1.6, a = 1.7, and choose α = 0
or α = 0.3.

⎧
⎨

⎩

dS(t) = [(0.77 – S(t))(0.18 + 0.2x(t)) – 1.6S2(t)x(t)
1.7+S2(t) ] dt – 0.3S2(t)x(t)

1.7+S2(t) dB(t),

dx(t) = [ 1.6S2(t)
1.7+S2(t) – (0.18 + 0.2x(t))]x(t) dt + 0.3S2(t)x(t)

1.7+S2(t) dB(t).
(4.1)

When α = 0, system (4.1) becomes a corresponding deterministic model. Figure 1 de-
picts the persistence of microorganism in the deterministic model. When α = 0.3, which
means system (4.1) has stochastic destabilization from internal or external factors, the
break-even concentration

λ1 =
(a + (S0)2)d

mS0 +
α2S0

2m(a + (S0)2)
≈ 0.3406 < S0 = 0.77.

Hence the microorganism in the turbidostat will be persistent according to Theorem 3.1
as is shown in Figure 2.

Computer simulation of the path of (S(t), x(t)) is provided with the initial value
(S(0), x(0)) = (0.3, 0.22). Let S0 = 0.52, d = 0.18, k = 0.2, m = 1.9, a = 1.2, and choose α = 0
or α = 0.3.

⎧
⎨

⎩

dS(t) = [(0.52 – S(t))(0.18 + 0.2x(t)) – 1.9S2(t)x(t)
1.2+S2(t) ] dt – 0.3S2(t)x(t)

1.2+S2(t) dB(t),

dx(t) = [ 1.9S2(t)
1.2+S2(t) – (0.18 + 0.2x(t))]x(t) dt + 0.3S2(t)x(t)

1.2+S2(t) dB(t).
(4.2)

Figure 1 The time series and portrait phase of model (4.1) when α = 0. (a) is the time series of S(t) and
x(t); (b) is the portrait phase.



Li et al. Advances in Difference Equations  (2017) 2017:389 Page 13 of 17

Figure 2 The time series and portrait phase of model (4.1) when α = 0.3 (S(1)(t) and S(2)(t) are two
sample paths about S(t), x(1)(t) and x(2)(t) are two sample paths about x(t).) (a) represents the time series
of S(t) and x(t); (b) represents the portrait phase.

Figure 3 The time series and portrait phase of model (4.2) when α = 0. (a) is the time series of S(t) and
x(t); (b) is the portrait phase.

When α = 0, system (4.2) is the corresponding deterministic model. The microorgan-
ism will be persistent as is depicted in Figure 3. When α = 0.3, which means system (4.2)
suffers stochastic destabilization from internal or external factors, the break-even concen-
tration

λ2 =
(a + (S0)2)d

mS0 +
α2(S0)3

m(a + (S0)2)
≈ 0.2724 < S0 = 0.52.

Figure 4 provides the simulation of stochastic persistence for system (4.2).
Comparing Figure 1 (Figure 3) and Figure 2 (Figure 4), we find that the stochastic factors,

such as the variation of environment, may cause sustained fluctuation for the microorgan-
ism, but the microorganism will also be persistent in the turbidostat because system (1.1)
has a stationary distribution described in Theorem 3.2.

Computer simulation of the path of (S(t), x(t)) is provided with the initial value
(S(0), x(0)) = (0.4, 0.39). Let S0 = 0.79, d = 0.58, k = 0.2, m = 0.6, a = 1.1, and choose α = 0
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Figure 4 The time series and portrait phase of model (4.2) when α = 0.3 (S(1)(t) and S(2)(t) are two
sample paths about S(t), x(1)(t) and x(2)(t) are two sample paths about x(t).) (a) represents the time series
of S(t) and x(t); (b) represents the portrait phase.

Figure 5 The time series and portrait phase of model (4.3) when α = 0. (a) stands for the time series of
S(t) and x(t); (b) stands for the portrait phase.

or α = 0.87.
⎧
⎨

⎩

dS(t) = [(0.79 – S(t))(0.58 + 0.2x(t)) – 0.6S2(t)x(t)
1.1+S2(t) ] dt – 0.87S2(t)x(t)

1.1+S2(t) dB(t),

dx(t) = [ 0.6S2(t)
1.1+S2(t) – (0.58 + 0.2x(t))]x(t) dt + 0.87S2(t)x(t)

1.1+S2(t) dB(t).
(4.3)

When α = 0, system (4.3) is changed into the corresponding deterministic model. The
microorganism x(t) in the turbidostat will be extinct as the numerical simulation depicted
in Figure 5. In addition, when α = 0.87, system (4.3) has stochastic destabilization from
internal or external factors and

α2

4
+

m(S0)2

a + (S0)2 – d + kS0 ≈ –0.0156 < 0.

Therefore, in view of Theorem 3.3, the microorganism in the turbidostat will be extinct
because of white noise and the feedback control of the turbidostat as is shown in Figure 6.

Comparing Figures 5 and 6, the microorganism in system (4.3) will be extinct both α = 0
and α = 0.87 because the turbidostat system has some negative feedback phenomenon
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Figure 6 The time series and portrait phase of model (4.3) when α = 0.87 (S(1)(t) and S(2)(t) are two
sample paths about S(t), x(1)(t) and x(2)(t) are two sample paths about x(t).) (a) stands for the time series
of S(t) and x(t); (b) stands for the portrait phase.

that might not help the persistence of microorganism. The stochastic system (when α =
0.87) will also fluctuate with the deterministic system (α = 0) because model (1.1) has a
stationary distribution described in Theorem 3.2.

In view of Figure 2 (Figure 4) and Figure 6, the microorganism x(t) in system (1.1) will
be persistent or extinct under the condition of white noise (α �= 0), and both situations
fluctuate with the deterministic model (α = 0), which means the white noise has nega-
tive impact on the population dynamics. In addition, we can also find that the turbidostat
system also has some negative effect on the population due to the feedback control phe-
nomenon, which leads to the extinction of the population (see Figure 5).

For better explaining the white noise effects from a mathematical point of view, we
rewrite the condition of Theorem 3.1 as

α <
1

(S0)2

√
(
a +

(
S0

)2)(2m
(
S0

)2 – d
(
a +

(
S0

)2)) := α0,

and change the condition of Theorem 3.2 into

α <

√
m(a + (S0)2)((S0)2 – d(a + (S0)2))

(S0)3 := α1.

If the intensity of white noise satisfies α < α0 (α < α1), then the destabilization will not
cause the extinction but fluctuate with the deterministic model (see Figure 2(a) and Fig-
ure 4(a)).

For the condition of Theorem 3.3, if

α <

√

d – kS0 –
m(S0)2

a + (S0)2 := α2,

then the microorganism in both the deterministic model and the stochastic model will
be extinct because of white noise and the feedback phenomenon of the turbidostat (see
Figure 5(a) and Figure 6(a)).

To sum up all the analysis given above, we have investigated the dynamic behaviors of
a turbidostat model with white noise. The importance of the conclusion in the realistic
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issue can be explained as follows. Since the stochastic perturbation is inevitable, it is rea-
sonable to investigate the persistence of the stochastic system more than the stability of the
deterministic model. Comparing the stochastic model (1.1) and the corresponding deter-
ministic model (α = 0 in model (1.1)) with numerical simulations, we find that stochastic
phenomena, either the internal factors or the external phenomena, have negative effect on
dynamical behaviors. To begin with, the break-even concentration of persistence for the
stochastic model is larger than that for the deterministic model (when α = 0). The condi-
tion of extinction is also larger than that in the deterministic model. Moreover, stochastic
destabilization may cause the fluctuation centering on the value of deterministic model
in the turbidostat as is depicted in Figure 1(a) and Figure 2(a), Figure 3(a) and Figure 4(a)
and Figure 5(a) and Figure 6(a), which means the stochastic factors may affect the culture
of microorganism in the turbidostat.
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