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Abstract
In this paper, we mainly discuss the uniqueness problem when an entire function
shares 0 CM and nonzero complex constant a IM with its difference operator. We also
consider the general case where they share two distinct complex constants a∗ CM
and a IM under some additional condition and give some further discussions.
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1 Introduction and main results
In this paper, meromorphic means meromorphic in the whole complex plane. We assume
that the reader is familiar with the standard notation and results of the Nevanlinna theory
(see, for instance, [1–3]).

Let f (z) and g(z) be two nonconstant meromorphic functions, and let a be an arbitrary
complex constant. If f (z) – a and g(z) – a have the same zeros counting multiplicities (ig-
noring multiplicities), we say that f (z) and g(z) share a CM (IM). Especially, if f (z) and
g(z) share a IM, then we denote by N(p,q)(r, 1

f (z)–a ) (N (p,q)(r, 1
f (z)–a )) the counting function

(the reduced counting function) of zeros of f (z) – a with respect to all the points such that
they are zeros of f (z) – a with multiplicity p and zeros of g(z) – a with multiplicity q. In
addition, by S(r, f ) we denote any quantity that satisfies the condition S(r, f ) = o(T(r, f )) as
r → ∞ possibly outside of an exceptional set of finite logarithmic measure.

Furthermore, we need some notation on differences. Let c be a nonzero complex con-
stant, and let f (z) be a meromorphic function. We use the notation �n

c f (z) to denote the
difference operators of f (z), which are defined by

�cf (z) = f (z + c) – f (z) and �n
c f (z) = �n–1

c
(
�cf (z)

)
, n ∈N, n ≥ 2.

In particular, if c = 1, then we denote �cf (z) = �f (z).
The uniqueness of meromorphic functions sharing values with their derivatives has al-

ways been an important topic of uniqueness of meromorphic functions. Many good and
general results have been obtained (see [2]).

In 2000, Li and Yang [4] proved the following result.

Theorem A ([4]) Let f (z) be a nonconstant entire function, and let a and b be two distinct
complex numbers. If f (z) and f (k)(z) (k ≥ 1) share a, b IM, then f (z) ≡ f (k)(z).
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The uniqueness of meromorphic functions sharing values with their shifts or difference
operators has become a subject of great interest recently. In 2009, Heittokangas et al. [5]
started to consider the value sharing problems for shifts of meromorphic functions and
obtained some important results. After that, many authors considered some related prob-
lems (see, for instance, [6–14]).

In 2013, Chen and Yi [6] considered the case where entire functions f (z) and �cf (z)
share two values CM under the condition that the order of f (z) is not an integer or infinite
and obtained the following theorem.

Theorem B ([6]) Let f (z) be a transcendental entire function such that its order σ (f ) is not
an integer or infinite, and let c be a constant such that f (z + c) �≡ f (z). If f (z) and �cf (z)
share two distinct finite values a, b CM, then f (z) ≡ �cf (z).

In 2014, Zhang and Liao [14] discussed the case where the condition ‘its order σ (f ) is
not an integer or infinite’ is omitted and proved the following result.

Theorem C ([14]) Let f (z) be a transcendental entire function of finite order, and let a
and b be two distinct constants. If �f (z) ( �≡ 0) and f (z) share a, b CM, then �f (z) ≡ f (z).
Furthermore, f (z) must be of the form f (z) = 2zh(z), where h is a periodic entire function
with period 1.

In 2016, Li and Yi [8] considered the case where entire functions f (z) and �cf (z) share
three values IM and obtained the following theorem.

Theorem D ([8]) Let f (z) be a nonconstant entire function such that ρ2(f ) < 1, and let c be
a nonzero complex number. Suppose that f (z) and �cf (z) share a1, a2, a3 IM, where a1, a2,
a3 are three distinct finite values. Then 2f (z) = f (z + c) for all z ∈ C .

From Theorems A-D a natural question is what results we can get if the condition that
f (z) and �cf (z) share two values CM or three values IM is relaxed to one value CM and
another one IM or even two values IM, and if �cf (z) is replaced by �n

c f (z)? Corresponding
to this question, we first consider the case where f (z) and �n

c f (z) share 0 CM and nonzero
complex constant a IM and get the following result.

Theorem 1.1 Let c ∈ C \ {0}, n ∈ N, and let f (z) be a nonconstant entire function of finite
order. If f (z) and �n

c f (z) share 0 CM and a nonzero complex constant a IM, then f (z) ≡
�n

c f (z).

Remark 1 Some idea of the proof of Theorem 1.1 is due to [4]. We have not found any
example such that f (z) �≡ �n

c f (z) under the condition that f (z) and �n
c f (z) share two dis-

tinct complex constants a∗ CM and a IM. We wonder whether 0 CM in Theorem 1.1 can
be replaced by an arbitrary complex constant a∗ ( �= a) CM or not.

Then we continue to investigate the case where 0 CM is replaced by arbitrary complex
constant a∗ ( �= a) CM under some additional condition. Using a similar method as in the
proof of Theorem 1.1, we have the next result.
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Theorem 1.2 Let c ∈ C \ {0}, n ∈ N, and let f (z) be a nonconstant entire function of finite
order. If f (z) and �n

c f (z) share two distinct complex constants a∗ CM and a IM and if

N
(

r,
1

f (z) – a∗

)
= T(r, f ) + S(r, f ), (1.1)

then f (z) ≡ �n
c f (z).

Remark 2 We omit the proof of Theorem 1.2, as it can be proved with a similar idea as in
the proof of Theorem 1.1. In fact, we can consider the functions

γ (z) =
f ′(z)(�n

c f (z) – f (z))
(f (z) – a)(f (z) – a∗)

, η(z) =
(�n

c f (z))′(�n
c f (z) – f (z))

(�n
c f (z) – a)(�n

c f (z) – a∗)
.

Especially, it follows from (1.1) that m(r, 1
f (z)–a∗ ) = S(r, f ), which ensures that still T(r,

�n
c f (z)) = T(r, f (z)) + S(r, f ) when f (z) and �n

c f (z) share a∗ CM instead of 0 CM.

2 Proof of Theorem 1.1
Before giving the proof of Theorem 1.1, we need to introduce some lemmas. In particu-
lar, the following lemma can be derived from the difference logarithmic derivative lemma
(see [15]), which was obtained independently by Chiang and Feng [16] and Halburd and
Korhonen [17] and plays a very important role in studying the difference analogues of
Nevanlinna theory.

Lemma 2.1 ([15]) Let c ∈C, n ∈N, and let f (z) be a meromorphic function of finite order.
Then for any small periodic function a(z) with period c, with respect to f (z),

m
(

r,
�n

c f
f – a

)
= S(r, f ),

where the exceptional set associated with S(r, f ) is of at most finite logarithmic measure.

Lemma 2.2 ([2]) Suppose that f (z) is a nonconstant meromorphic function and P(f ) =
a0f p + a1f p–1 + · · · + ap (a0 �= 0) is a polynomial in f of degree p with constant coefficients aj

(j = 0, 1, . . . , p). Suppose furthermore that bj (j = 1, 2, . . . , q) (q > p) are distinct values. Then

m
(

r,
P(f )f ′

(f – b1)(f – b2) · · · (f – bq)

)
= S(r, f ).

Lemma 2.3 ([3]) If f1(z) and f2(z) are meromorphic functions in |z| < R (R ≤ ∞), then

N(r, f1f2) – N
(

r,
1

f1f2

)
= N(r, f1) + N(r, f2) – N

(
r,

1
f1

)
– N

(
r,

1
f2

)
,

where 0 < r < R.

Lemma 2.4 ([2]) Let f (z) be a nonconstant meromorphic function in the complex plane,
and let R(f ) = P(f )

Q(f ) , where

P(f ) =
p∑

k=0

akf k and Q(f ) =
q∑

j=0

bjf j
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are two mutually prime polynomials in f . If the coefficients {ak(z)} and {bj(z)} are small
functions of f and ap(z) �≡ 0, bq(z) �≡ 0, then

T
(
r, R(f )

)
= max{p, q}T(r, f ).

Proof of Theorem 1.1 Suppose f (z) �≡ �n
c f (z). Set

γ (z) =
f ′(z)(�n

c f (z) – f (z))
f (z)(f (z) – a)

,

η(z) =
(�n

c f (z))′(�n
c f (z) – f (z))

�n
c f (z)(�n

c f (z) – a)
.

(2.1)

Note that f (z) is a nonconstant entire function of finite order and that 0 and a are CM and
IM values shared by f (z) and �n

c f (z), respectively. We see that γ (z) and η(z) are entire. By
the lemma of the logarithmic derivative and Lemma 2.1 it is obvious that

T
(
r,γ (z)

)
= m

(
r,γ (z)

)
= m

(
r,

f ′(z)(�n
c f (z) – f (z))

f (z)(f (z) – a)

)

≤ m
(

r,
f ′(z)

f (z) – a

)
+ m

(
r,

�n
c f (z)
f (z)

– 1
)

+ S(r, f ) = S(r, f ). (2.2)

Since 0 is a CM value shared by f (z) and �n
c f (z), it gives

�n
c f (z)
f (z)

= eh(z),

where h(z) is an entire function. Using Lemma 2.1 again, we get

T
(
r, eh(z)) = m

(
r, eh(z)) = m

(
r,

�n
c f (z)
f (z)

)
= S(r, f ),

and then

T
(
r,�n

c f (z)
)

= T
(
r, eh(z)f (z)

)
= T

(
r, f (z)

)
+ S(r, f ). (2.3)

For any b ∈C \ {0, a}, by Lemmas 2.1 and 2.2 we obtain

m
(

r,
1

f (z) – b

)
= m

(
r,

f ′(z)(�n
c f (z) – f (z))

f (z)(f (z) – a)(f (z) – b)γ (z)

)

≤ m
(

r,
�n

c f (z)
f (z)

– 1
)

+ m
(

r,
f ′(z)

(f (z) – a)(f (z) – b)

)
+ S(r, f )

= S(r, f ). (2.4)

According to the second fundamental theorem, we get

T
(
r, f (z)

) ≤ N
(

r,
1

f (z)

)
+ N

(
r,

1
f (z) – a

)
+ N

(
r, f (z)

)
+ S(r, f )

≤ N
(

r,
1

f (z)

)
+ N

(
r,

1
f (z) – a

)
+ S(r, f ).
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In addition, by (2.1), (2.2), and Lemma 2.1 we obtain

N
(

r,
1

f (z)

)
+ N

(
r,

1
f (z) – a

)

= N
(

r,
f ′(z)

f (z)(f (z) – a)

)
= N

(
r,

γ (z)
�n

c f (z) – f (z)

)

≤ T
(
r,�n

c f (z) – f (z)
)

+ S(r, f ) = m
(
r,�n

c f (z) – f (z)
)

+ S(r, f )

≤ m
(

r,
�n

c f (z)
f (z)

– 1
)

+ m
(
r, f (z)

)
+ S(r, f )

= T
(
r, f (z)

)
+ S(r, f ).

Combining the above two inequalities, we get

N
(

r,
1

f (z)

)
+ N

(
r,

1
f (z) – a

)
= T

(
r, f (z)

)
+ S(r, f ). (2.5)

Since f (z) is a nonconstant entire function of finite order, it follows from the second
fundamental theorem and (2.3) that

2T
(
r, f (z)

)
= 2T

(
r,�n

c f (z)
)

+ S(r, f )

≤ N
(

r,
1

�n
c f (z)

)
+ N

(
r,

1
�n

c f (z) – a

)
+ N

(
r,

1
�n

c f (z) – b

)

+ S(r, f ).

Note that 0 and a are CM and IM values shared by f (z) and �n
c f (z), respectively. From

(2.3) and (2.5) we have

N
(

r,
1

�n
c f (z)

)
+ N

(
r,

1
�n

c f (z) – a

)
+ N

(
r,

1
�n

c f (z) – b

)

≤ N
(

r,
1

f (z)

)
+ N

(
r,

1
f (z) – a

)
+ T

(
r,

1
�n

c f (z) – b

)
– m

(
r,

1
�n

c f (z) – b

)

≤ T
(
r, f (z)

)
+ T

(
r,�n

c f (z)
)

– m
(

r,
1

�n
c f (z) – b

)
+ S(r, f )

= 2T
(
r, f (z)

)
– m

(
r,

1
�n

c f (z) – b

)
+ S(r, f ).

From the above two inequalities we obtain that

m
(

r,
1

�n
c f (z) – b

)
= S(r, f ). (2.6)

Obviously, we have

m
(

r,
f (z) – b

�n
c f (z) – b

)
– m

(
r,

�n
c f (z) – b
f (z) – b

)

= T
(

r,
f (z) – b

�n
c f (z) – b

)
– N

(
r,

f (z) – b
�n

c f (z) – b

)
– T

(
r,

�n
c f (z) – b
f (z) – b

)
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+ N
(

r,
�n

c f (z) – b
f (z) – b

)

= N
(

r,
�n

c f (z) – b
f (z) – b

)
– N

(
r,

f (z) – b
�n

c f (z) – b

)
+ O(1).

Considering functions f1(z) = �n
c f (z) – b, f2(z) = 1

f (z)–b and applying Lemma 2.3, we have

N
(

r,
�n

c f (z) – b
f (z) – b

)
– N

(
r,

f (z) – b
�n

c f (z) – b

)

= N
(
r,�n

c f (z) – b
)

+ N
(

r,
1

f (z) – b

)
– N

(
r, f (z) – b

)

– N
(

r,
1

�n
c f (z) – b

)
+ O(1)

= N
(

r,
1

f (z) – b

)
– N

(
r,

1
�n

c f (z) – b

)
+ O(1).

Then by (2.3), (2.4), and (2.6) we get

N
(

r,
1

f (z) – b

)
– N

(
r,

1
�n

c f (z) – b

)

= T
(

r,
1

f (z) – b

)
– m

(
r,

1
f (z) – b

)
– T

(
r,

1
�n

c f (z) – b

)

+ m
(

r,
1

�n
c f (z) – b

)

= T
(

r,
1

f (z) – b

)
– T

(
r,

1
�n

c f (z) – b

)
+ S(r, f )

= T
(
r, f (z)

)
– T

(
r,�n

c f (z)
)

+ S(r, f ) = S(r, f ).

Clearly, the last three equations give

m
(

r,
f (z) – b

�n
c f (z) – b

)
– m

(
r,

�n
c f (z) – b
f (z) – b

)
= S(r, f ).

By Lemma 2.1 and (2.4) this equation yields

m
(

r,
f (z) – b

�n
c f (z) – b

)
= m

(
r,

�n
c f (z) – b
f (z) – b

)
+ S(r, f )

≤ m
(

r,
�n

c f (z)
f (z) – b

)
+ m

(
r,

b
f (z) – b

)
+ S(r, f ) = S(r, f ). (2.7)

According to Lemma 2.2, from (2.1) and (2.7) we deduce that

T
(
r,η(z)

)
= m

(
r,η(z)

)
= m

(
r,

(�n
c f (z))′(�n

c f (z) – f (z))
�n

c f (z)(�n
c f (z) – a)

)

≤ m
(

r,
(�n

c f (z))′(�n
c f (z) – b)

�n
c f (z)(�n

c f (z) – a)

)
+ m

(
r,

�n
c f (z) – f (z)
�n

c f (z) – b

)
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≤ m
(

r,
(�n

c f (z))′(�n
c f (z) – b)

�n
c f (z)(�n

c f (z) – a)

)
+ m

(
r, 1 –

f (z) – b
�n

c f (z) – b

)

= S
(
r,�n

c f (z)
)

+ S(r, f ) = S(r, f ). (2.8)

Let z0 be any zero of f (z) – a and �n
c f (z) – a with multiplicities p and q, respectively.

From (2.1) we see that

γ (z0)a = p ·
(

�n
c f (z) – f (z)

z – z0

)∣∣
∣∣
z=z0

,

η(z0)a = q ·
(

�n
c f (z) – f (z)

z – z0

)∣
∣∣∣
z=z0

.

This leads to qγ (z0) = pη(z0). Similarly, for any zero of f (z) and �n
c f (z) with multiplicities

p and q, denoted by z1, we can prove that qγ (z1) = pη(z1). We distinguish two cases.
Case 1. Suppose that qγ (z) �≡ pη(z). From the above discussion we see that any zero of

f (z) – a and �n
c f (z) – a (or any zero of f (z) and �n

c f (z)) with multiplicities p and q must be
the zero of qγ (z) – pη(z), and this, together with (2.2) and (2.8), yields

N (p,q)

(
r,

1
f (z)

)
+ N (p,q)

(
r,

1
f (z) – a

)

≤ N
(

r,
1

qγ (z) – pη(z)

)
≤ T

(
r, qγ (z) – pη(z)

)

≤ T
(
r,γ (z)

)
+ T

(
r,η(z)

)
+ O(1) = S(r, f ). (2.9)

Thus (2.3) and (2.9) show that

N
(

r,
1

f (z)

)
+ N

(
r,

1
f (z) – a

)

=
∑

p,q

(
N (p,q)

(
r,

1
f (z)

)
+ N (p,q)

(
r,

1
f (z) – a

))

≤
∑

p+q<8

(
N (p,q)

(
r,

1
f (z)

)
+ N (p,q)

(
r,

1
f (z) – a

))

+
∑

p+q≥8

(
N (p,q)

(
r,

1
f (z)

)
+ N (p,q)

(
r,

1
f (z) – a

))

≤ 1
8

∑

p+q≥8

(
N(p,q)

(
r,

1
f (z)

)
+ N(p,q)

(
r,

1
�n

c f (z)

))

+
1
8

∑

p+q≥8

(
N(p,q)

(
r,

1
f (z) – a

)
+ N(p,q)

(
r,

1
�n

c f (z) – a

))
+ S(r, f )

≤ 1
8

(
N

(
r,

1
f (z)

)
+ N

(
r,

1
�n

c f (z)

))

+
1
8

(
N

(
r,

1
f (z) – a

)
+ N

(
r,

1
�n

c f (z) – a

))
+ S(r, f )

≤ 1
4

T
(
r, f (z)

)
+

1
4

T
(
r,�n

c f (z)
)

+ S(r, f ) =
1
2

T
(
r, f (z)

)
+ S(r, f ),

which contradicts (2.5).
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Case 2. Suppose that qγ (z) ≡ pη(z).
Since �n

c f (z) �≡ f (z), according to (2.1), we have

q · f ′(z)
f (z)(f (z) – a)

≡ p · (�n
c f (z))′

�n
c f (z)(�n

c f (z) – a)
.

Integration gives

(
f (z)

f (z) – a

)q

≡ A
(

�n
c f (z)

�n
c f (z) – a

)p

, (2.10)

where A ( �= 0) is a constant.
By Lemma 2.4 and (2.3) the last equation implies

qT
(
r, f (z)

)
= pT

(
r · �n

c f (z)
)

+ O(1) = pT
(
r, f (z)

)
+ S(r, f ),

which leads to p = q. By (2.10) it follows that there exists a nonzero constant B such that

f (z)
f (z) – a

≡ B
�n

c f (z)
�n

c f (z) – a
.

Since �n
c f (z) �≡ f (z), we get that B �= 1.

Rewrite the last equation as

f (z) –
aB

B – 1
=

aB
1 – B

· f (z) – a
�n

c f (z) – a
. (2.11)

Since B �= 0, 1, we get aB
B–1 �= 0, a. According to (2.11), it is obvious that any zero of f (z) – aB

B–1
must be a zero of f (z) – a, which is impossible. Hence f (z) – aB

B–1 has no zeros. According
to the second fundamental theorem and (2.5), we deduce the following contradiction:

T
(
r, f (z)

) ≤ N
(

r,
1

f (z)

)
+ N

(
r,

1
f (z) – a

)
+ N

(
r,

1
f (z) – aB

B–1

)

+ N
(
r, f (z)

)
– T

(
r, f (z)

)
+ S(r, f )

= N
(

r,
1

f (z)

)
+ N

(
r,

1
f (z) – a

)
+ S(r, f ) – T

(
r, f (z)

)
= S(r, f ).

Therefore we immediately get �n
c f (z) ≡ f (z). The proof of Theorem 1.1 is completed. �
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