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Abstract
Over-harvesting of forestry resource, primarily trees, through illegal logging has been
exceptionally regular for decades. In the context of this worldwide issue, a
mathematical model considering the joined impact of legal and illegal logging of
trees from forestry biomass using delay-driven ordinary differential equations is
proposed. For the set of equations, we have taken immature, mature forestry biomass,
and industrial densities as three state variables. Additionally, the effect of time-lag for
the conversion of immature forestry biomass to mature forestry biomass is
considered. System boundedness, feasible equilibrium analysis and the stability of all
the feasible equilibria is examined using the differential equation theory. From the
detailed analysis of the system, it is observed that with the delay in time, the system
bifurcates as it reaches the critical threshold. While without the delay, the system is
asymptotically stable. Biologic and bio-economic results of the system are also
interpreted for the optimal equilibrium solutions. The optimal path is obtained by
constructing the Hamiltonian, which is further solved using Pontryagin”s principle
associated with the control problem. Further, numerical simulation is also provided in
support of analytical results. Moreover, the normalized forward sensitivity index is
used to analyze the parameter sensitivity.
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1 Introduction
The forestry ecosystems are biologically richest on earth, exert the key influence on the
biological diversity, human habitat, and the environmental conditions. Forestry biomass
conserves landscapes, soil and water resources and provides services and products for
the livelihood of millions of the living animals as well as humans. In many developing
countries forests contribute towards the local employment, processing, and trade of forest
products [1]. As per the examination on mangrove forest dynamics of the Sundarbans in
Bangladesh and India, the timberland is the center for economic activities, such as the
extraction of timber and fuel wood, fishing and collecting honey and other backwoods-
based items. About 300,000 individuals work regularly as woodcutters, palm collectors,
angler, and honey hunters.
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Illegal logging and deforestation of forest land continue all over the world at an alarm-
ing rate. According to the report [2], an area of forests the size of Greece is lost every year.
Now the time has come when the international community takes some protective action
for the conservation of forestry population and legal logging. Also, the forest management
committee should focus on increasing investment in sustainable forest management. Since
illegal logging is significantly more profitable for industries than legal logging, the forest
biomass is more rapidly decaying than the actual prediction. Chatham house in their brief-
ing paper [3] saw significant effects as 17 million hectares of forest land were assessed to
be protected from degradation. They likewise detailed that if the trees were legally logged,
this could get USD 6.5 billion in extra income to the nations concerned. Also in this paper,
they mentioned that more than half of the loss of forest in tropical countries is due to ille-
gal logging and lack of social control. Areas affected by logging should be reforested with
indigenous tree species. A worldwide program on the importance and ecological role of
forests on biological diversity should be started by the government in schools and com-
munities.

Previously, a lot of work has been done by researchers considering pollution, population,
toxicant, industrialization, climate change (due to anthropogenic and natural causes) [4–
8]. A palm oil plantation problem was undertaken for a nonlinear dynamical system [9].
The authors also obtained a control problem to estimate the control variables while main-
taining the biomass level and maximize the oil palm production in a long period. In [10],
the author discussed the competing effect of wood and synthetic-based industries using
the ODE system. The author of [11] further modified the work considering the delay effect
on the mature forestry biomass taking the DDE system. In [12], a mathematical model for
the forestry biomass and the alternatives using the modified Leslie-Gower term was pro-
posed. From the analysis, they observed that with increasing effort there is a decrease in
both the mature forestry biomass and industrialization. Sufficient conditions for both per-
sistence and global attraction of the system were obtained. Analytic results for the optimal
harvesting policy and bionomic equilibrium were also presented in the analysis.

Forestry ecosystem and human habitat both are interrelated, and it attracts a lot of re-
searchers, scientist as well as government bodies to study and understand the seriousness
of the problem.

The dynamic growth model developed is based on the age-structure delay differential
equation approach and is similar to that of Chaudhary et al. [10, 11]. In this paper, an at-
tempt is made to develop a dynamical model based on legal and illegal logging of forestry
biomass for the set-up of forest-based industries. We consider taxation as a control instru-
ment for logging since a large portion of forests are illegally logged and this does not come
under the taxation. The paper is divided into several sections. An introduction is based on
survey articles, reports, and the tools and techniques used in the present work. System dy-
namics and the assumption made for the set-up of the mathematical model are discussed
in Section 2. Stability and system behavior in the presence of Hopf bifurcation, the direc-
tion of Hopf bifurcation, the control strategy used for the optimal use of forestry biomass,
numerical simulation, and quantitative analysis are discussed in the later Sections 3, 4, 5,
6, 7, and 8. Sensitivity analysis of the parameters associated with the coexistence state is
discussed in Section 9. Finally, we conclude the work with salient result and discussion.
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Figure 1 Schematic diagram with f (P) = (r + γ )P – rP2
k – βP,

f1(P, I) = a1((p1 – τ1)q1 + p1d1)P – a1c1I and
f2(P, I) = a2((p2 – τ2)q2 + p2d2)M – a2c2I.

2 System dynamics
2.1 Model assumptions
Extending the work of [13], for the proposed system, we consider P and M as the immature
and mature forestry biomass and I as the industrial density which is directly proportional
to the industrial efforts to harvest forestry biomass (both immature and mature). In the
present study, we assume h1 to be the maturation delay (time delayed to convert from
immature to mature population). We also assume that there is illegal logging of forestry
biomass done by industries for its growth, which is free from tax. This particular portion
of illegal logging is defined by d1 and d2 for the immature and mature forestry biomass,
respectively. Since a portion of forestry biomass is illegally cut down for the individual
benefit, it is interesting to check how it affects both the immature and mature forestry
biomass and industrial growth.

2.2 Schematic flow
By assumptions considered for the model definition, the schematic diagram is described
in Figure 1.

3 A delay-driven conceptual system
Forest management planning relies on the outcome or the estimation of mathematical
models using dynamical system theory and provides a framework for a flexible represen-
tation of varying disturbances in nature’s biological diversity and human habitat.

For the system dynamics, we have considered three state variables: two of them are re-
lated to forestry biomass via immature and mature forestry biomass and the third is the
industries which harvest both immature and mature forestry biomass. According to [14],
in all the natural phenomena time lag or delay is so often that to ignore it is to ignore the
reality. Here, for the present system, we consider h1 as the delay parameter, or maturation
delay, which is the actual time taken to convert an immature tree to a mature one. Also, for
the third equation, it is considered that the industrial density is directly proportional to
the industrial effort E, i.e., I ∝ E, and hence we could write the rate of change in the indus-
trial density as dI

dt = α dE
dt . For simplicity, we take α = 1. The proposed model is governed

by the following system of delay differential equations:

dP
dt

= (r + γ )P –
rP2

K
– βP(t – h1) – q1PI – d1PI, (1)

dM
dt

= βP(t – h1) – q2MI – d2MI – μM, (2)

dI
dt

=
[
a1

(
(p1 – τ1)q1 + p1d1

)
P + a2

(
(p2 – τ2)q2 + p2d2

)
M – a1c1 – a2c2 – d3

]
I. (3)
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Table 1 Description of parameters

Parameter Description Unit

r intrinsic growth rate per yr
γ new plantation per yr
K carrying capacity –
β transition rate per yr
q1 harvesting rate comes under tax per yr
q2 harvesting rate comes under tax per yr
d1 depletion rate because of illegal cutting per yr
d2 depletion rate because of illegal cutting per yr
d3 depletion rate of industries per yr
μ depletion rate of mature trees for non-industrial uses per yr
a1 measuring the strength of reaction of harvest effort –
a2 measuring the strength of reaction of harvest effort –
p1 price of forestry biomass per unit
p2 price of forestry biomass per unit
c1 harvesting cost of forestry biomass per yr
c2 harvesting cost of forestry biomass per yr
τ1 tax of forestry biomass per unit
τ2 tax of forestry biomass per unit
h1 delay parameter years

Initially, P(�) = P0 ≥ 0 for �ε[–h1, 0], M(0) ≥ 0, I(0) ≥ 0. The parameters chosen for the
numerical simulation are hypothetical, and their description with corresponding units is
given in Table 1.

4 Positivity and system boundedness
4.1 Positivity of solutions
For the positivity of all the solutions P(t), M(t), and I(t), the initial population is considered
as P(0) = P0 > 0, M(0) = M0 > 0, and I(0) = I0 > 0. From system equation (1), we have dP

dt ≥
–(βP + q1PIu + d1IuM) on solving the inequality

P ≥ P0 exp–(β+q1Iu+d1Iu)t . (4)

Again, from equation (2), dM
dt ≥ –(μ + q2Iu + d2Iu)M on solving the inequality

M ≥ M0 exp–(μ+q2Iu+d2Iu)t . (5)

Similarly, from equation (3), dI
dt ≥ –(a1c1 + a2c2 + d3)I on solving the inequality, we can

write

I ≥ I0 exp–(a1c1+a2c2+d3)t . (6)

Hence P, M, and I are greater than zero for all t ≥ 0. The value of Iu is defined in the next
Section 4.2. To analyze the model, we need the bounds of dependent variables involved.
For this, we find the region of attraction in the following lemma. We show the boundedness
of the system using a comparison theorem as discussed in [15].

4.2 Boundedness of the system
Lemma 1 With positive initial conditions, system (1)-(3) is uniformly bounded in the re-
gion χ = {(P, M, I)εR3

+ : 0 ≤ P + M + I ≤ φ

η
}, as t → ∞.
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Proof From equation (1), we have dP
dt ≤ (r + γ )P – rP2

K . Now, using the comparison the-
orem as t → ∞, we get limt→∞ sup P(t) ≤ (r+γ )K

r = Pu. Similarly, from equation (2), we
have limt→∞ sup M(t) ≤ βPu

μ
= Mu as t → ∞. For the whole system equations (1)-(3), let

W = P + M + I , then

dW
dt

≤ (r + γ )P –
rP2

k
– μM – (a1c1 – a2c2 + d3)I,

or = (r + γ + ψ)P –
rP2

k
– μM – (a1c1 – a2c2 + d3I),

or = (r + γ + ψ)Pu – ηW ,

where η = min{ψ ,μ, (a1c1 + a2c2 + d3)}. Now, after using the comparison theorem, we have
limt→∞ sup W (t) ≤ φ

η
as t → ∞ or we could say some of (P + M + I) ≤ φ

η
, i.e., Iu ≤ φ

η
. This

completes the proof of lemma. �

5 Equilibrium and stability analysis
5.1 Equilibrium analysis
System (1)-(3) has three biologically feasible equilibrium points (positive equilibrium) that
are described as follows:

Trivial equilibrium point Ē = (0, 0, 0): Existence of the trivial case is obvious as all the
three populations are extinct.

Axial equilibrium point Ẽ = (P̃, M̃, 0): P̃ = (K (r–β+γ ))
r , M̃ = (Kβ(r–β+γ ))

rμ . Axial equilibrium
exists when (r + γ ) > β , i.e., the transition rate from immature to mature stage is less than
the sum of intrinsic growth and government efforts. In this case industries no longer exist.

Interior equilibrium point Ê = (P̂, M̂, Î): Existence of interior equilibrium depends upon
the industrial density as both immature and mature forestry biomass are defined in terms
of industrial density (I). Immature population P̂ = K

r [(r + γ ) – (q1 + d1)Î – β], mature pop-
ulation M̂ = βP̂

(q2+d2)Î+μ
, both P and M exist when P̂ > 0, when (r + γ ) > (q1 + d1)Î – β is

satisfied, and I is defined by the positive roots of the quadratic equation

z1 Î2 + z2 Î + z3 = 0. (7)

The quadratic equation (7) has one positive root when z3 is less than zero and is possible
when (r +γ ) > β . Values of z1, z2, and z3 are given as z1 = (a1d2

1d2K +a1d2
1Kq1 +a1d1d2Kq1 +

a1d1Kq2
1)p1 + (a1d1d2Kq1 + a1d1Kq2

1 + a1d2Kq2
1 + a1Kq3

1)(p1 – τ1), z2 = (a1d2Kq1β +
a1Kq2

1β – a1d2Kq1r – a1Kq2
1r – a1d2Kq1γ – a1Kq2

1γ + a1d1Kq1μ + a1Kq2
1μ)(p1 – τ1) +

(a2d1Kq2β + a2Kq1q2β)(p2 – τ2) + (a1d1d2Kβ + a1d1Kq1β – a1d1d2Kr – a1d1Kq1r –
a1d1d2Kγ – a1d1Kq1γ + a1d2

1Kμ + a1d1Kq1μ)p1 + (a2d1Kd2β + a2Kd2q1β)p2 + a1c1d2r +
a2c2d2r + d2d3r + a1c1q1r + a2c2q1r + d3q1r, and z3 = (a2Kd2β

2 – a2Kd2rβ – a2Kd2βγ )p2 +
(a1d1Kβμ – a1d1Krμ – a1d1Kγμ)p1 + (a1Kq1βμ – a1Kq1rμ – a1Kq1γμ)(p1 – τ1) +
(a2Kq2β

2 – a2Kq2rβ – a2Kq2βγ )(p2 – τ2) + a1c1rμ + a2c2rμ + d3rμ.
In the next section, the local stability criteria are obtained for the co-existence state, as

we are interested in the state, when all the populations coexist for the defined system.
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5.2 Stability analysis
5.2.1 System without maturation delay
In this section, we show the local stability of the system for all the feasible equilibria. A vari-
ational matrix corresponding to system (1)-(3) is given as follows:

J =

⎡

⎢
⎣

j11 0 j13

j21 j22 j23

j31 j32 j33

⎤

⎥
⎦ ,

where j11 = r – β + γ – 2rP
K – (d1 + q1)I , j13 = –(d1 + q1)P, j21 = β , j22 = –(d2 + q2)I – μ,

j23 = –(d2 + q2)M, j31 = a1I(d1p1 + q1(p1τ1)), j32 = a2I(d2p2 + q2(p2τ2)), and j33 = a1P(d1p1 +
q1(p1τ1)) + a2M(d2p2 + q2(p2τ2)) – a1c1 – a2c2 – d3. It is observed that:

1. Trivial equilibrium Ē is obvious and is unstable.
2. Axial equilibrium Ẽ with eigenvalues – rP̃

K , –μ, and
–a1c1 – a2c2 – d3 + a1d1P̃p1 + a2d2M̃p2 + a1P̃(p1 – τ1)q1 + a2M̃(p2 – τ2)q2 is stable
when a1c1 + a2c2 + d3 > a1d1P̃p1 + a2d2M̃p2 + a1P̃(p1 – τ1)q1 + a2M̃(p2 – τ2)q2.

3. The stability of interior equilibrium Ê is an interesting case as all the state variables,
immature (P) and mature (M) forestry biomass together with industrialization (I)
coexist; analysis of them is as follows.

A variational matrix for the interior equilibrium Ê is given by

J1 =

⎡

⎢
⎣

– rP̂
K 0 –(d1 + q1)P̂

β –μ –(d2 + q2)M̂
a1 Î(d1p1 + q1(p1 – τ1)) a2 Î(d2p2 + q2(p2 – τ2)) 0

⎤

⎥
⎦ ,

the corresponding characteristic equation for the variational matrix J is

λ3 + Z1λ
2 + Z2λ + Z3 = 0,

where Z1 = d2 Î + q2 Î + rP̂
K + μ, Z2 = rP̂

K ((d2 + q2)Î + μ) + (a1d2
1 ÎP̂ + a1d1 ÎP̂q1)p1 +

(a2d2
2 ÎM̂ + a2d2 ÎM̂q2)p2 + (a1d1 ÎP̂q1 + a1 ÎP̂q2

1)(p1 – τ1) + (a2d2 ÎM̂q2 + a2ÎM̂q2
2)(p2 – τ2)

and Z3 = (a1d2
1d2I2P̂ + a1d1d2 Î2Pq1 + a1d2

1 Î2P̂q2 + a1d1 Î2P̂q1q2 + a1d2
1 ÎP̂μ+ a1d1 ÎP̂q1μ)p1 +

(a1d1d2 Î2Pq1 + a1d2 Î2P̂q2
1 + a1d1 Î2P̂q1q2 + a1 Î2P̂q2

1q2 + a1d1 ÎP̂q1μ + a1 ÎP̂q2
1μ)(p1 – τ1) +

( a2d2
2 ÎM̂P̂r
K + a2d2 ÎM̂P̂q2r

K + a2d1d2 ÎP̂β + a2d2 ÎP̂q1β)p2 + ( a2d2 ÎM̂P̂q2r
K + a2 ÎM̂P̂q2

2r
K + a2d1 ÎP̂q2β +

a2 ÎP̂q1q2β)(p2 – τ2).
Now, on applying the Routh-Hurwitz criteria, the system is locally stable as all the co-

efficients Z1, Z2, and Z3 are positive and the condition

Z1Z2 – Z3 > 0 (8)

is satisfied. Hence, the interior equilibrium is locally asymptotically stable as all the con-
ditions of Routh-Hurwitz criteria are satisfied.

Remark We have considered the tax τ1, τ2 per unit of forestry biomass is less than the
price p1, p2 per unit of forestry biomass. Hence, if the co-existence state of the system
exists, it is always stable for the system.
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5.2.2 System with maturation delay
For the analysis of delayed system, we refer to [7, 16, 17]. Equilibrium points of the system
without maturation delay and of that with maturation delay are the same, as time delay
does not change the equilibria of the system. To study the local stability of the interior
equilibrium Ê = (P̂, M̂, Î) for the delay system, first we use linear transformation in the
system equations (1)-(3) as P = P1 + P̂, M = M1 + M̂, and I = I1 + Î , where P1 � 1, M1 � 1,
I1 � 1. A variational matrix for the delay system about the interior equilibrium is

J2 =

⎡

⎢
⎣

–βe–λh1 – d1 Î – q1 Î – 2rP̂
K + r + γ 0 –(d1 + q1)P̂

βe–λh1 –μ – (q2 + d2)Î –(d2 + q2)M̂
a1 Î(d1p1 + q1(p1 – τ1)) a2Î(d2p2 + q2(p2 – τ2)) 0

⎤

⎥
⎦ ,

the characteristic equation corresponding to the interior equilibrium is

λ3 + A1λ
2 + A2λ + A3 + βe–λh1

(
B1λ

2 + B2λ + B3
)

= 0, (9)

where A1 = μ – r – γ + d1 Î + d2 Î + q1 Î + 2rP̂
K + q2 Î , A2 = –rμ – γμ – d2rÎ – q2rÎ – d2γ Î –

q2γ Î + d1μÎ + q1μÎ + d1d2 Î2 + d2q1 Î2 + d1q2Î2 + q1q2 Î2 + a2d2
2p2 ÎM̂ + 2a2d2p2q2 ÎM̂ +

a2p2q2
2 ÎM̂ – a2d2q2τ2 ÎM̂ – a2q2

2τ2 ÎM̂ + 2rμP̂
K + a1d2

1p1 ÎP̂ + 2a1d1p1q1 ÎP̂ + a1p1q2
1 ÎP̂ + 2d2rÎP̂

K +
2q2rÎP̂

K – a1d1q1τ1 ÎP̂ – a1q2
1τ1 ÎP̂, A3 = p1(a1d2

1μÎP̂ + a1d1q1μÎP̂ + a1d2
1d2 Î2P̂ + a1d1d2q1 Î2P̂ +

a1d2
1q2 Î2P̂ + a1d1q1q2 Î2P̂) + (p1 – τ1)(a1d1q1μÎP̂) + a1q2

1μÎP̂ + a1d1d2q1 Î2P̂ + a1d2q2
1 Î2P̂ +

a1d1q1q2 Î2P̂ + a1q2
1q2 Î2P̂) + p2(–a2d2

2rÎM̂ – a2d2q2rÎM̂ – a2d2
2γ ÎM̂ – a2d2q2γ ÎM̂

+ a2d1d2
2 Î2M̂ + a2d2

2q1 Î2M̂ + a2d1d2q2 Î2M̂ + a2d2q1q2 Î2M̂ + 2a2d2
2rÎM̂P̂
K + 2a2d2q2rÎM̂P̂

K + (p2 –
τ2)(a2d2q2rÎM̂ + a2q2

2rÎM̂ + a2d2q2γ ÎM̂ + a2q2
2γ ÎM̂ – a2d1d2q2 Î2M̂ – a2d2q1q2 Î2M̂ –

a2d1q2
2 Î2M̂ – a2q1q2

2 Î2M̂ – 2a2d2q2rÎM̂P̂
K – 2a2q2

2rÎM̂P̂
K ), B1 = β , B2 = βμ + d2β Î + q1β Î , and

B3 = βd2 ÎP̂(d1 + q1)p2 + a2q2 ÎP̂(d1 + q1)β(p2 – τ2).
Previously, it was noticed when there is no delay (h1 = 0) the system is locally asymp-

totically stable. Now, we assume for some λ = iω with ω > 0 be the solution of (9). Then
equation (9) can be written as

A3 + iA2ω – A1ω
2 – iω3 + B3 cos(ωh1) + iB2ω cos(ωh1) – B1ω

2 cos(ωh1)

– iB3 sin(ωh1) + B2ω sin(ωh1) + iB1ω
2 sin(ωh1) = 0. (10)

On separating the real and imaginary parts, we have

A3 – A1ω
2 = B1ω

2 cos(ωh1) – B3 cos(ωh1) – B2ω sin(ωh1). (11)

A2ω – ω3 = B3 sin(ωh1) – B1ω
2 sin(ωh1) – B2ω cos(ωh1). (12)

Squaring and adding equations (11) and (12) and substituting ω2 = ζ leads to a cubic equa-
tion

h(ζ ) = ζ 3 + k1ζ
2 + k2ζ + k3 = 0, (13)

where k1 = A2
2 – B2

2 – 2B1B3, k2 = A2
1 – 2A2 – B2

1, and k3 = A2
3 – B2

3. If the condition of the
Routh-Hurwitz criterion satisfies h(ζ ), then equation (13) will not have any positive real
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root, and we may not get any positive value of ω, which satisfies equations (11) and (12).
In this case the results are given in the form of the following lemma.

Lemma 2 If coefficients of equation (13) are positive, all the conditions of Routh-Hurwitz
criteria are satisfied and the interior equilibrium exists, it is locally asymptotically stable
for all h1 > 0.

Proof Now, we consider that the values’ of k1, k2, and k3 do not satisfy the conditions of
the Routh-Hurwitz criterion. In this case a simple assumption

k1 > 0, k2 > 0, and k3 < 0 (14)

gives that equation (14) has one positive root. If condition (14) holds good, then equation
(9) has a pair of purely imaginary roots ±iω0. Next, using transcendental equations (11)-
(12), we get

tanωh1 =
B2ω0(A3 – A1ω

2
0) – (A2ω0 – ω3

0)(B3 – B1ω
2
0)

B2ω0(A2ω0 – ω3
0) + (A3 – A1ω

2
0)(B3 – B1ω

2
0)

.

For a positive value of ω0, the value of h1 is defined as

h1n =
nπ

ω0
+

1
ω0

tan–1 B2ω0(A3 – A1ω
2
0) – (A2ω0 – ω3

0)(B3 – B1ω
2
0)

B2ω0(A2ω0 – ω3
0) + (A3 – A1ω

2
0)(B3 – B1ω

2
0)

for n = 0, 1, 2, . . . .
In the similar logic [17, 18], it can be concluded that the stable interior equilibrium Ê

remains stable for h1 < h10. Next, we will investigate the possibility of Hopf bifurcation as
h1 is greater than h10. �

Lemma 3 The transversality condition d Reλk (h1k )
dτ

> 0, where k = 0, 1, 2, 3, . . . , is satisfied,
i.e., system (1)-(3) undergoes a Hopf bifurcation at the co-existing state of equilibrium Ê for
h1 = h1n.

Proof Differentiating (9) with respect to h1 gives

(
dλ

dh1

)–1

=
(3λ2 + 2A1λ + A2) + (2B1λ + B2)e–λh1

λ(B1λ2 + B2λ + B3)eλh1
–

h1

λ
. (15)

Now,

sgn

[
d(Re(λ))

dh1

]

h1=h10

= sgn

[
d(Re(λ))

dh1

]–1

h1=h10

= sgn

[
Re

(
d(λ)
dh1

)–1]

λ=iω0

= sgn

[
3ω4

0 + 2k1ω
2
0 + k2

B2
2ω

2
0 + (B3 – B1ω

2
0)2

]

= sgn

[
h′(ω2

0)
B2

2ω
2
0 + (B3 – B1ω

2
0)2

]
.
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The condition defined in equation (15) is satisfied, h′(ω2
0) > 0. Hence the transversality

condition holds, which confirms that the Hopf bifurcation occurs at h1 = h10. �

Remark The condition defined in equation (8) is satisfied when equation (15) holds, the
interior equilibrium Ê of system (1)-(3) is locally asymptotically stable for h1ε[0, h10) and
becomes unstable for h1 > h10.

5.2.3 Stability and direction of a Hopf bifurcation point
Previously, we have acquired the condition where the system undergoes bifurcation for the
interior equilibrium when h1 crosses the critical threshold. Here, we will derive explicit
formulae for determining the direction and bifurcating periodic solutions that emerge
through the Hopf bifurcation. We will use the normal form theory and the center mani-
fold theorem as in [19]. Without loss of generality, we denote the critical values of h by hk

at which (9) has a pair of purely imaginary roots and the system undergoes the Hopf bifur-
cation. Hence, for any root of (9) of the form ψ(h) = ν(h) + iω(h),ν(hk) = 0,ω(hk) = ω0, and
| dν

dh |h=hk 	= 0, let h = hk + μ, μ ∈ R, so that μ = 0 is a Hopf bifurcation value for the system.
Next, taking the space of continuous real-valued functions as C = C([–1, 0], R3), using

the transformation u1 = P(t) – P̂, u2 = M(t) – M̂, u3 = I(t) – Î , and χi(t) = ui(ht) for i = 1, 2, 3,
the delay system (1)-(3) then transforms to FDE in C as follows:

dχ

dt
= Lμχt + f (μ,χt), (16)

where χ (t) = (χ1(t),χ2(t),χ3(t))T ∈ R3,χt(�) = χ (t + �),� ∈ [–1, 0], Lμ : C → R3, and f :
C × R → R3 are given by

Lμζ = (hk + μ)
[
M1ζ (0) + M2ζ (–1)

]
, (17)

where

M1 =

⎛

⎜
⎝

r + γ – 2rP̂
K – q1 Î – d1 Î 0 –(q1 + d1)P̂

0 –(q2 Î + d2 Î + μ} –(q2 + d2)M̂
{a1q1(p1 – τ1) + a1p1d1}Î {a2q2(p2 – τ2) + a2p2d2}Î 0

⎞

⎟
⎠ , (18)

M2 =

⎛

⎜
⎝

–β 0 0
β 0 0
0 0 0

⎞

⎟
⎠ (19)

and

f (μ, ζ ) = (hk + μ)

⎛

⎜
⎝

Z1

Z2

Z3

⎞

⎟
⎠ , (20)

where Z1 = – r
K ζ 2

1 (0) – (q1 + d1)ζ1(0)ζ3(0), Z2 = –(q2 + d2)ζ2(0)ζ3(0), Z3 = [a1{(p1 – τ1)q1 +
p1d1}]ζ1(0)ζ3(0) + [a2{(p2 – τ2)q2 + p2d2}]ζ2(0)ζ3(0) for ζ = (ζ1ζ2, ζ3)T ∈ C.
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As per the Riesz representation theorem, there exists a function η(�,μ) whose compo-
nents are of bounded variation for � ∈ [–1, 0] such that

Lμζ =
∫ –1

0
dη(�,μ)ζ (�). (21)

In view of equation (17), we can choose

η(�,μ) = (hk + μ)
[
M1δ(�) + M2δ(θ + 1)

]
, (22)

where ζ ∈ C1([–1, 0], R3), define

A(μ)ζ =

⎧
⎨

⎩

dζ (�)
d�

, � ∈ [–1, 0),
∫ 0

–1 dη(ρ,μ)ζ (ρ) = Lμζ , � = 0.
(23)

Also,

R(μ)ζ =

⎧
⎨

⎩
0, � ∈ [–1, 0),

f (ζ ,μ), � = 0.
(24)

System (16) is equivalent to

χ̇t = A(μ)χt + R(μ)χt , (25)

where χt(�) = χ (t + �) for � ∈ [–1, 0].
For ψ ∈ C1([–1, 0], (R3)∗), define

A∗ξ (ρ) =

⎧
⎨

⎩
– dξ (ρ)

ds , ρ ∈ (0, 1],
∫ 0

–1 dηT (t, 0)ξ (–t), ρ = 0,
(26)

and a bilinear inner product

〈ξ , ζ 〉 = ξ̄ (0).ζ (0) –
∫ 0

�=–1

∫ �

ν=0
ξ̄T (ν – �) dη(�)ζ (ν) dν. (27)

Here, η(�) = η(�, 0), then A(0) (from here onwards we use A(0) as A) and A∗ are adjoint
operators. Since ±iω0hk are the eigenvalues of A, they are also the eigenvalues of A∗. Next,
we compute the eigenvectors of A and A∗ corresponding to +iω0hk and –iω0hk , respec-
tively.

Suppose q(�) = (1, b1, b2)T eiω0hk� is the eigenvector of A corresponding to eigenvalues
iω0hk , then

Aq(�) = iω0hkq(�), (28)

which for � = 0 gives

hk

⎛

⎜
⎝

m11 0 m13

m21 m22 m23

m31 m32 m33

⎞

⎟
⎠q(0) =

⎛

⎜
⎝

0
0
0

⎞

⎟
⎠ , (29)
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where m11 = iω0 + βe–iω0hk – (r + γ ) + ( 2rP̂
K + q1 Î + d1 Î), m13 = (q1 + d1)P̂, m21 = –βe–iω0hk ,

m22 = iω0 + q2 Î + d2 Î + μ, m23 = (q2 + d2)M̂, m31 = –[a1{(p1 – τ1)q1 + p1d1}]Î , m32 =
–[a2{(p2 – τ2)q2 + p2d2}]Î , m33 = iω0.

Solving the system of equation (29), we get b1 = iω0a2–[a1{(p1–τ1)q1+p1d1}]Î
[a2{(p2–τ2)q2+p2d2}]Î , b2 =

– iω0+βe–iω0hk +( 2rP̂
K +q1 Î+d1 Î)–r–γ

(q1+d1)P̂
.

Similarly, we calculate q∗(ρ) = (1, b∗
1, b∗

2)T eiω0hkρ such that

A∗q∗(ρ) = –iω0hkq∗(ρ), (30)

where b∗
1 = C2b∗

2
C1

, b∗
2 = C1(q1+d1)P̂

C1iω0–C2(q2+d2)M̂
, C1 = –iω0 + {(q2 + d2)Î + μ}, C2 = [a2{(p2 – τ2)q2 +

p2d2}]Î .
The normalization condition gives 〈q∗(ρ).q(�)〉 = 1, q̄∗(0).q(0) – D̄

∫ 0
�=–1

∫ �

ν=0 q̄∗(0) ×
e–iω0hk (ν–�) dη(�)q(0)eiω0hkν dν = 1, D̄[1 + b1b̄∗

1 + b2b̄∗
2 – eiω0hk hkφb̄∗

2] = 1.
Thus, D̄ is chosen such that

D̄ =
1

1 + b1b̄∗
1 + b2b̄∗

2 – eiω0hk hkφb̄∗
2

. (31)

Proceeding the same as in [19] and using the same notation, we compute the coordinates
to describe the center manifold C0 at μ = 0. Let χt be a solution of equation (25) when
μ = 0. Define

Z(t) =
〈
q∗,χt

〉
, W (t,�) = χt(�) – 2 Re

{
Z(t)q(�)

}
. (32)

On the center manifold C0, we have

W (t, θ ) = W (Z, Z̄,�), (33)

W (z, z̄,�) = W20(�)
z2

2
+ W11(�)zz̄ + W02(�)

z̄2

2
+ · · · (34)

z and z̄ are local coordinates for the center manifold C0 in the direction of q∗ and q̄∗. Note
that W is real if χt is real. Here, we consider only real solutions. For solution χt ∈ C0 of
equation (25), since μ = 0, we have

ż = iω0hkz + q̄∗(0).f
(
0, W (z, z̄, 0) + 2 Re

{
zq(0)

})

= iω0hkz + q̄∗(0).f0(z, z̄). (35)

We can rewrite this equation as

ż = iω0hkz + g(z, z̄), where g(z, z̄) = q̄∗(0).f0(z, z̄) (36)

or = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄
2

+ · · · .

It follows from (33) and (35) that

χt(�) = W (z, z̄,�) + 2 Re
{

zq(�)
}

, (37)
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or = W20(�)
z2

2
+ W11(�)zz̄ + W02(�)

z̄2

2
+ z(1, b1, b2)T

× eiω0hk� + z̄(1, b̄1, b̄2)T e–iω0hk� + · · · .

Also, we have

g(z, z̄) = q̄∗(0).f0(0,χt) = hkD̄
(
1, b̄1

∗, b̄2
∗)T

⎛

⎜
⎝

V1

V2

V3

⎞

⎟
⎠ ,

where V1 = – r
K χ2

1t(0) – (q1 + d1)χ1t(0)χ3t(0), V2 = –(q2 + d2)χ2t(0)χ3t(0), V3 = [a1{(p1 –
τ1)q1 + p1d1}]χ1t(0)χ3t(0) + [a2{(p2 – τ2)q2 + p2d2}]χ2t(0)χ3t(0), so that

χ1t(�) = W 1
20(�)

z2

2
+ W 1

11(�)zz̄ + W 1
02(�)

z̄2

2
+ zeiω0hk� + z̄e–iω0hk� + · · · ,

χ2t(�) = W 2
20(�)

z2

2
+ W 2

11(�)zz̄ + W 2
02(�)

z̄2

2
+ b1zeiω0hk� + b̄1z̄e–iω0hk� + · · · ,

χ3t(�) = W 3
20(�)

z2

2
+ W 3

11(�)zz̄ + W 3
02(�)

z̄2

2
+ b2zeiω0hk� + z̄b̄2e–iω0hk� + · · · .

Therefore,

χ1t(0) = z + z̄ + W 1
20(0)

z2

2
+ W 1

11(0)zz̄ + W 1
02(0)

z̄2

2
+ · · · ,

χ2t(0) = b1z + b̄1z̄ + W 2
20(0)

z2

2
+ W 2

11(0)zz̄ + W 1
02(0)

z̄2

2
+ · · · ,

χ3t(0) = b2z + b̄2z̄ + W 3
20(0)

z2

2
+ W 3

11(0)zz̄ + W 3
02(0)

z̄2

2
+ · · · ,

g(z, z̄) = hkD̄
(
1, b̄1

∗, b̄2
∗)T .

⎛

⎜
⎝

V1

V2

V3

⎞

⎟
⎠ (38)

= hkD̄
[

–
r
K

χ2
1t(0) +

{
–(q1 + d1) + a1b̄2

∗((p1 – τ1)q1 + p1d1
)}

χ1t(0)χ3t(0)
]

+ hkD̄
[{

–b̄1
∗(q2 + d2) + a2b̄2

∗{(p2 – τ2)q2 + p2d2
}}

χ2t(0)χ3t(0)
]
. (39)

Comparing the coefficients in (37) with those in (41), we get

g20 = 2hkD̄
[

–
r
K

– b2(q1 + d1) + b2b̄∗
2 + a1

{
(p1 – τ1)q1 + p1d1

}

– b1b2b̄1
∗(q2 + d2) + b1b2b̄∗

2a2
{

(p2 – τ2)q2 + p2d2
}]

, (40)

g11 = 2hkD̄
[

–
r
K

+ Re(b2)
{

–(q1 + d1) + b̄∗
2a1

(
(p1 – τ1)q1 + p1d1

)}
]

+ 2hkD̄
[
(b̄1b2 + b1b̄2)

{
–b̄1

∗(q2 + d2) + b̄∗
2a2

(
(p2 – τ2)q2 + p2d2

)}]
, (41)

g02 = 2hkD̄
[

–
r
K

– b̄2(q1 + d1) + b̄2b̄∗
2a1

{
(p1 – τ1)q1 + p1d1

}]
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+ 2hkD̄
[
b̄1b̄2

{
–b̄1

∗(q2 + d2) + a2b̄∗
2
(
(p2 – τ2)q2 + p2d2

)}]
. (42)

g21 = 2hkD̄
[

–
r
K

(
W (1)

20 + 2W (1)
11

)
+

{
–(q1 + d1) + a1b̄2

∗((p1 – τ1)q1

+ p1d1
)}

(
b2W (1)

11 +
b̄2

2
W (1)

20 +
W (3)

20
2

+ W (3)
11

)]
+ 2hkD̄

[
–b̄1

∗(q2 + d2)

+ a2b̄∗
2
{

(p2 – τ2)q2 + p2d2
}
(

b2W (2)
11 + b̄2W (2)

20 +
b̄1W (3)

20
2

+ b1W (3)
11

)]
. (43)

In order to compute (43), we need W20(�) and W11(�). From equations (33) and (37), we
have

Ẇ = χ̇t – żq – żq̄

=

⎧
⎨

⎩
AW – 2 Re{q̄∗(0)(0).f0q(�)}, � ∈ [–1, 0),

AW – 2 Re{q̄∗(0)(0).f0q(0)} + f0, � = 0
(44)

= AW + H(z, z̄,�) (45)

with

H(z, z̄,�) = H20(�)
z2

2
+ H11(�)zz̄ + H02(�)

z̄2

2
+ · · · . (46)

Also, on C0, using the chain rule, we get

Ẇ = Wzż + Wz̄ ˙̄z. (47)

It follows from (54), (44), and (46) that

(A – 2iω0hk)W20 = –H20, (48)

AW11 = H11. (49)

Now, for � ∈ [–1, 0), we have

H(z, z̄,�) = –q̄∗(0).f0q(�) – q̄∗(0).f̄0q̄(�) (50)

= –g(z, z̄)q(�) – ḡ(z, z̄)q̄(�)

= –
(
g20q(�) + ¯g02q̄(�)

)z2

2
–

(
g11q(�) + ḡ11q̄(�)

)
zz̄ + · · · ,

which on computing the coefficients with (45) gives

H20(�) = –g20q(�) – ¯g02q̄(�), (51)

H11(�) = –g11q(�) – ¯g11q̄(�). (52)

From (48), (51), and the definition of A, we have

W
′
20(�) = 2iω0hkW20(�) + g20q(�) + ¯g02q̄(�). (53)
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Note that q(�) = q(0)eiω0hk�, hence

W20(�) =
ig20

ω0hk
q(�) +

i ¯g20

3ω0hk
q̄(�) + F1e2iω0hk�. (54)

Similarly, from (48), (51), and the definition of A, we get

W
′
11(�) = g11q(�) + ¯g11q̄(�), (55)

W11(�) = –
ig11

ω0hk
q(�) +

i ¯g11

ω0hk
q̄(�) + F2, (56)

where F1 = (F (1)
1 , F (2)

1 , F (3)
1 ) and F2 = (F (1)

2 , F (2)
2 , F (3)

2 ) ∈ R3 are constant vectors to be deter-
mined. It follows from the definition of A and (52) that

∫ 0

–1
dη(�)W20(�) = 2iω0hkW20(0) – H20(0), (57)

∫ 0

–1
dη(�)W11(�) = –H11(0). (58)

From equations (53) and (55), we get

H20(0) = –g20q(0) – ¯g02 ¯q(0)

+ 2hk

⎛

⎜
⎝

– r
K + b2(q1 + d1)

–b1b2(q2 + d2)
b2a1(p1 – τ1)q1 + p1d1 + b1b2a2(p2 – τ2)q2 + p2d2

⎞

⎟
⎠ (59)

and

H11(0) = –g11q(0) – ¯g11 ¯q(0)

+ 2hk

⎛

⎜
⎝

– r
K + Re(b2)(q1 + d1)

–(b̄1b2 + b1b̄2)(q2 + d2)
Re(b2)a1(p1 – τ1)q1 + p1d1 + (b̄1b2 + b1b̄2)a2{(p2 – τ2)q2 + p2d2}

⎞

⎟
⎠ .

(60)

Using (53) and (58) in (56) and noting that q(�) is an eigenvector of A, we have

(
2iω0hkI –

∫ 0

1
e2iω0hk� dη(�)

)
F1

= 2hk

⎛

⎜
⎝

–{ r
K + b2(q1 + d1)}

–b1b2(q2 + d2)
b2a1{(p1 – τ1)q1 + p1d1} + b1b2a2{(p2 – τ2)q2 + p2d2}

⎞

⎟
⎠ , (61)

⎛

⎝
2iω0 + βe–iω0hk – (r + γ ) + 2rP̂

K + q1 Î + d1 Î 0 (q1 + d1)Î
–βe–iω0hk 2iω0 + q2 Î + d2 Î + μ (q2 + d2)M̂

–{a1q1(p1 – τ1) + a1p1d1}Î –{a2q2(p2 – τ2) + a2p2d2}Î 2iω0

⎞

⎠

×
⎛

⎜
⎝

F (1)
1

F (2)
1

F (3)
1

⎞

⎟
⎠ = 2

⎛

⎜
⎝

–{ r
K + b2(q1 + d1)}

–b1b2(q2 + d2)
b2a1{(p1 – τ1)q1 + p1d1} + b1b2a2{(p2 – τ2)q2 + p2d2}

⎞

⎟
⎠ . (62)
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Similarly, using (55) and (56) in (59), we get

⎛

⎜
⎝

β – (r + γ ) + 2rP̂
K + q1 Î + d1 Î 0 (q1 + d1)P̂

–β q2 Î + d2 Î + μ (q2 + d2)M̂
–{a1q1(p1 – τ1) + a1p1d1}Î –{a2q2(p2 – τ2) + a2p2d2}Î 0

⎞

⎟
⎠

⎛

⎜
⎝

F (1)
2

F (2)
2

F (3)
2

⎞

⎟
⎠

= 2

⎛

⎜
⎝

–{ r
K + Re(b2)(q1 + d1)}

–(b̄1b2 + b1b̄2)(q2 + d2)
Re(b2)a1{(p1 – τ1)q1 + p1d1} + (b̄1b2 + b1b̄2)a2{(p2 – τ2)q2 + p2d2}

⎞

⎟
⎠ . (63)

Next, solving (60) for F1 and (61) for F2 and using these values, we can determine W20

and W11, and hence g21. Afterwards, to determine the direction, stability, and the period
of bifurcating solutions from a critical point at the critical threshold h = hk , we can come
to the following necessary quantities as given by [19]:

b1(0) =
i

2ω0hk

(
g11g20 – 2|g11|2 –

|g02|2
3

)
+

g21

2
, (64)

μ2 = –
Re{b1(0)}

Re{ψ ′ (hk)} , (65)

m2 = 2 Re
{

b1(0)
}

, (66)

T2 = –
Imb1(0) + μIm{ψ ′ (hk)}

ω0hk
. (67)

Hence, using the results of [19], we have the following theorem.

Theorem 1 If μ2 > 0 (μ2 < 0), then the Hopf bifurcation is supercritical (subcritical), and
the bifurcating periodic solutions exist for h > hk (h < hk). The bifurcating periodic solution
is stable (unstable) if m2 < 0 (m2 > 0), and the period increases (decreases) if T2 > 0 (T2 < 0).

6 Bionomic equilibria
The total net economic revenue at any time is given by � = [(p1q1P – c1) + (p2q2M – c2)]I =
�1 +�2, where �1 = (p1q1P–c1)I and �2 = (p2q2M–c2)I are the net economic revenue for
immature forestry biomass P and mature forestry biomass M, respectively. We have found
the bionomic equilibrium (P∞, M∞, I∞, ) from the following simultaneous equations:

(r + γ )P –
rP2

K
– βP(t – h1) – q1PI – d1PI = 0, (68)

βP(t – h1) – q2MI – d2MI – μM = 0, (69)
[
(p1q1P – c1) + (p2q2M – c2)

]
I = 0. (70)

Here, we consider (70) as the zero profit line. Harvesting is profitable when revenue for
both the populations is greater than the cost, i.e., p1q1P > c1 and p2q2M > c2. When har-
vesting continues in both the populations, then P∞ = c1

p1q1
and M∞ = c2

p2q2
. From equation

(69), we get I∞ = βc1q2p2
c2p1q1

– μ. Hence bionomic equilibrium (P∞, M∞, I∞) exists when the
inequality βc1q2p2

c2p1q1
> μ holds.
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7 Quantitative analysis and simulation
To show the feasibility of the analytic results described in Section 4, we present the numer-
ical results using MATLAB and Mathematica software. To verify the results, we consider
three parametric sets as follows:

Set 1: r = 0.4, k = 70, β = 0.7, a1 = 0.3, a2 = 0.26, c1 = 0.01, c2 = 0.02, τ1 = 0.25, τ2 = 0.2,
q1 = 0.03, q2 = 0.025, d1 = 0.1, d2 = 0.12, p1 = 0.35, p2 = 0.3, γ = 0.3, μ = 0.01, d3 = 0.12;

Set 2: r = 1.2, k = 70, β = 0.7, a1 = 0.3, a2 = 0.26, c1 = 0.01, c2 = 0.02, τ1 = 0.25, τ2 = 0.2,
q1 = 0.03, q2 = 0.025, d1 = 0.01, d2 = 0.012, p1 = 0.35, p2 = 0.3, γ = 0.3, μ = 0.2, d3 = 0.42;

Set 3: r = 1.2, k = 70, β = 0.7, a1 = 0.3, a2 = 0.26, c1 = 0.01, c2 = 0.02, τ1 = 0.25, τ2 = 0.2,
q1 = 0.03, q2 = 0.025, d1 = 0.1, d2 = 0.12, p1 = 0.35, p2 = 0.3, γ = 0.3, μ = 0.01, d3 = 0.12.

Using set 1, the trivial equilibrium case (extinction of all the population) is shown in
Figure 2. For set 2, the axial equilibrium case Ẽ (extinction of industrial density) is shown in
Figure 3 with numerically calculated values (46.664, 163.337, 0), and using set 3 the interior
equilibrium case Ê (all the population coexist) is shown in Figure 4 with (6.296, 5.637,
5.324) as the numerical values for P̂, M̂, and Î . 3d-plot for the stable graph when h1 = 0.72
is shown in Figure 5. As we introduce delay, the system becomes unstable as it crosses
the critical value h1 = 0.76; the time series graph and 3d-plot for the same are shown in
Figures 6 and 7, respectively. Also, for set 3, we get b1(0) = –0.1602 – 16.10i, μ2 = 0.1654,
m2 = –0.3458, and T2 = 2.001. Since μ2 > 0, the Hopf bifurcation is supercritical and the
direction of the bifurcation h > h10. Also m2 < 0 and T2 > 0, this implies that the bifurcating
periodic solutions arising from Ê at h10 are stable and the periods of limit cycle increase.
Graphical representation of increasing legal and illegal logging d1, d2 and their effect on
immature and mature forestry biomass (both populations decrease) is shown in Figures 8
and 9. Figure 10 depicts the decreasing label of industries on increasing the non-industrial
uses of mature forestry biomass.

Figure 2 Extinction of all the population (trivial equilibrium Ē when r = 0.4).
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Figure 3 Extinction of industrialization (axial equilibrium Ẽ).

Figure 4 Population distributions with respect to time.

8 Optimal harvesting policy
In this section, our objective is to maximize the present value of a continuous time stream
of revenue given by

Q =
∫ ∞

0
e–δt{(p1q1P – c1)I + (p2q2M – c2)I

}
dt,

where δ is continuous discount rate for the harvesting of forestry biomass. Here, our ob-
jective is to maximize the present value of Q subject to the system equations (1)-(3) and
control constraints (τi)min ≤ τ ≤ (τi)max (i = 1, 2). Hamiltonian for the above control prob-
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Figure 5 3d-plot for the stable delay system when h1 = 0.72.

Figure 6 With delay term h1 = 0.88, time series graph of the system.

lem is defined as follows:

H = e–δt[p1q1P – c1 + p2q2M – c2]I

+ λ1(t)
[

(r + γ )P –
rP2

K
– βP(t – h1) – q1PI – d1PI

]

+ λ2(t)
[
βP(t – h1) – q2MI – d2MI – μM

]
+ λ3(t)

[
a1

(
(p1 – τ1)q1 + p1d1

)
P

+ a2
(
(p2 – τ2)q2 + p2d2

)
M – a1c1 – a2c2 – d3I

]
, (71)
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Figure 7 Interior equilibrium point loses its stability and Hopf bifurcation occurs when delay term
h1 = 0.88 is introduced in the system.

Figure 8 Time series graph for illegal logging (d1) on immature trees (P).

where λ1(t), λ2(t), and λ3(t) are the adjoint variables. For H to be maximum on the control
set (τi)min ≤ τ ≤ (τi)max for i = 1, 2, we must have ∂H

∂τi
= 0, i.e., λ3 = 0. This gives a necessary

condition for a singular control to be optimal. For the optimal control, using Pontryagin’s
principle [20, 21], model equations (1)-(3), and the interior equilibrium, we can write

dλ1

dt
= –e–δtp1q1 Î +

rP̂
K

λ1 – βλ2, (72)
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Figure 9 Time series graph for illegal logging (d2) on mature trees (M).

Figure 10 Depletion rate (μ) on mature trees (M).

dλ2

dt
= –e–δtp2q2 Î +

βP̂
M̂

λ2, (73)

dλ3

dt
= –e–δt(p1q1P̂ + p2q2M̂ – c1 – c2) – (q1 + d1)P̂λ1 – (q2 + d2)M̂λ2 = 0. (74)

Solving equations (72), (73), we have λ2 = – s1
s2+δ

e–δt + c1es2δ and λ1 = – s3
s4+δ

e–δt + c1es4δ ,

where s1 = p2q2 Î , s2 = βP̂
M̂

, s3 = rP̂
K , and s4 = –p1q1 Î + β1s1

s2+δ
. The values of λ1 and λ2 are
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bounded as t → ∞. Therefore, we can write λ1 and λ2 as

λ2 = –
s1

s2 + δ
e–δt (75)

and

λ1 = –
s3

s4 + δ
e–δt . (76)

On substituting the values of λ1 and λ2 in equation (74), we get the optimal singular path
for the optimum equilibrium level as

(s4 + δ)(s2 + δ)[c1 + c2 – p1q1P̂ – p2q2M̂]

– (s2 + δ)(d1 + q1)P̂s3 – s1(s4 + δ)(d2 + q2)M̂ = 0, (77)

where P̂ = Pδ , M̂ = Mδ , and Î = Iδ are the optimum levels of population densities. Also,
from (75) and (77), we can calculate λ1, which in this case is defined as

λ1 =
(–p1q1P̂ + p2q2M̂ – c1 – c2)(s2 + δ) + s1M̂(q2 + d2)

eδt(q1 + d1)P̂
. (78)

On comparing (75)-(78), we have

–
s3

s4 + δ
e–δt =

(–p1q1P̂ + p2q2M̂ – c1 – c2)(s2 + δ)e–δt + s1M̂(q2 + d2)
(q1 + d1)P̂

. (79)

Hence, solving the steady state equations together with (79), we get the optimal tax and
optimal solution P̂ = Pδ , M̂ = Mδ , and Î = Iδ , which could be applied to harvest forestry
biomass in a conservative way.

9 Sensitivity analysis
The relative change in the state variable when the respective parameter changes is the sen-
sitivity analysis. The sensitivity of interior equilibrium Ê with corresponding parameters
is analyzed using the normalized forward sensitivity index, and the sensitivity of param-
eters is shown using the bar graph (see Figure 11). From the bar graph in Figure 11, we
notice the following:

1. Parameters β , a1, p1 are negatively sensitive, and r, K , a2, p2, γ are positively
sensitive parameters to immature forestry biomass (P̂).

2. Parameters r, a2, d2, p2 are negatively sensitive, and K , β , d1, p1, γ are positively
sensitive ones to mature forestry biomass (M̂).

3. Parameters a1, q1, d1, p1 are negatively sensitive, and r, a2, p2 are positively
sensitive parameters to industrial density (Î).

10 Result and discussion
The dynamical mathematical approach makes it possible to build up the forestry model to
accommodate disturbances arising in the presence of excess illegal logging. An important
consideration in the study of forestry and industrial density-based dynamical delay model
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Figure 11 Graph depicts the trend in sensitivity of interior equilibrium with respective parameters.

is the role of illegal logging and the depletion rate of mature trees for non-industrial uses.
For the present system, we have considered β as the transition rate of immature to mature
population and h1 as the time taken to convert the immature population to mature popu-
lation, which plays a crucial role in the model formulation. In general bifurcation theory
is concerned with the dynamical system which contains one or more external parameters
and with the manner in which the solution set may undergo structural changes as the pa-
rameter or parameters are varied. In present problem, h1 is that external parameter. When
the delay parameter is greater than the critical threshold h1 = 0.72, the model starts bifur-
cating. In this study, it is observed that in the absence of maturation delay, the system is
locally asymptotically stable, while in the presence of maturation delay, a Hopf bifurcation
is observed as the delay parameter (h10) reaches the critical threshold. As illegal logging
increases in forestry, both immature and mature forestry biomass decrease. Numerically,
using parametric set 3, the value of h1 is 0.78. The trivial, axial, and coexisting states are
graphically presented using set 1, 2, and 3, respectively. Optimal control policy has been
discussed by constructing the Hamiltonian which is further analyzed using Pontryagin’s
principle. We have observed that in the case of infinite discount rate economic rent tends
to zero. We have found the bionomic equilibrium and also obtained the optimal path for
the optimal equilibrium level of forestry biomass and industrial density. We have found
the sensitivity of the coexisting state using the normalized forward sensitivity index using
the parameters mentioned in set 3. The sensitivity of parameters depends upon the choice
of parameters. From the analysis of this tool, we have observed that if we consider small
(or large) values of the parameters then, accordingly, the outcome is highly negatively (or
positively) sensitive.
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