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Abstract
This paper is concerned with a non-zero sum differential game problem of an
anticipated forward-backward stochastic differential delayed equation under partial
information. We establish a maximum principle and a verification theorem for the
Nash equilibrium point by virtue of the duality and convex variation approach. We
study a linear-quadratic system under partial information and present an explicit form
of the Nash equilibrium point. We derive the filtering equations and prove the
existence and uniqueness for the Nash equilibrium point. As an application, we solve
a time-delayed pension fund management problem with nonlinear expectation to
measure the risk and obtain the explicit solution.
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1 Introduction
The general nonlinear backward stochastic differential equations (BSDEs) were first de-
veloped by Pardoux and Peng [1] and have been widely applied in the optimal control,
mathematical finance, and related fields (see Peng [2, 3], Karoui et al. [4]). The classical
Black-Scholes option pricing formula in the financial market can also be deduced by virtue
of the BSDE theory. If a BSDE is coupled with a forward stochastic differential equation
(SDE), it is called the forward-backward stochastic differential equation (FBSDE). The
fundamental research based on FBSDEs has been surveyed by Ma and Yong [5]. FBSDEs
are widely encountered in the application of the stochastic recursive utility (see, e.g., Wang
and Wu [6]), financial optimization problem with large investors (see Cvitanic and Ma [7]),
asset pricing problem with differential utilities (see Antonellia et al. [8]), etc. The classical
Hamiltonian system is also one of the forms of FBSDEs in the stochastic control field (see,
e.g., Yong and Zhou [9]).

In classical cases, there are many phenomena that have the nature of past-dependence,
i.e., their behavior not only depends on the situation at the present time, but also on their
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past history. Such models were identified as stochastic differential delayed equations (SD-
DEs), which are a natural generalization of the classical SDEs and have been widely stud-
ied in engineering, life science, finance, and other fields (see, for example, the population
growth model in Mohammed [10], Arriojas et al. [11]). Chen and Wu [12] first studied a
stochastic control problem based on SDDE. When introducing the adjoint equation, they
need some new types of BSDEs, which have been introduced by Peng and Yang [13] for
the general nonlinear case and called anticipated BSDEs (ABSDEs). The anticipated term
defined by the conditional expectation can be regarded as a predicted value of the future
state. It can be applied to the insider trading market, describing the asset price influenced
by insiders (see, e.g., Øksendal and Sulem [14], Kyle [15]). Moreover, a class of BSDEs with
time-delayed generators (BSDDEs) has also been studied in the stochastic control field
(see Wu and Wang [16], Shi and Wang [17], Wu and Shu [18]). Recently, Chen and Wu
[19], Huang et al. [20] studied a linear-quadratic (LQ) case based on a coupled SDDE and
ABSDE called the anticipated forward-backward stochastic differential delayed equation
(AFBSDDE).

Game theory has been pervading the economic theory, and it attracts more and more re-
search attention. It was firstly introduced by Von Neumann and Morgenstern [21]. Nash
[22] made the fundamental contribution in non-cooperate games and gave the classical
notion of Nash equilibrium point. In recent years, many articles on stochastic differen-
tial game problems driven by stochastic differential equations have appeared. Researchers
try to consider the strategy on multiple players rather than one player and try to find an
equilibrium point rather than an optimal control. These problems are more complicated
than the classical control problems but much closer to social and behavior science. Yu [23]
solved the LQ game problem on a forward and backward system. Øksendal and Sulem [24],
Hui and Xiao [25] made a research on the maximum principle of a forward-backward sys-
tem. Chen and Yu [26] studied the maximum principle of an SDDE case, Shi and Wang
[17], Wu and Shu [18] discussed a BSDDE case.

In reality, instead of complete information, there are many cases where the controller
can only obtain partial information, reflecting in mathematics that the control variable
is adapted to a smaller filtration. Based on this phenomenon, Xiong and Zhou [27] dealt
with a mean-variance problem in the financial market that the investor’s optimal portfolio
is only based on the stock process he observed. This assumption of partial information is
indeed natural in the financial market. Recently, Wu and Wang [16], Wu and Shu [18] also
considered the partial information case.

To our best knowledge, the research on general AFBSDDEs and its wide applications
in mathematical finance are quite lacking in the literature. Recently, Huang and Shi [28]
discussed the optimal control problem based on the AFBSDDE system. Our work distin-
guished itself from the above-mentioned ones in the following aspects. First, we study the
stochastic differential game problem with multiple players rather than the control prob-
lem with only one controller. We aim to find the equilibrium point rather than the optimal
control. Second, we consider the case that the diffusion coefficient can contain control
variables and the control field is convex. Third, we deal with the system under partial in-
formation that the available information to the players is partial, which can be seen as a
generalization of the complete information case. Fourth, we derive the filtering equations
of an LQ system and get worthwhile results about the existence and uniqueness of the
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equilibrium point. Finally, as an example, we solve a financial problem by virtue of the
theoretical results we obtain.

The rest of this paper is organized as follows. In Section 2, we give some necessary no-
tions and state some preliminary results. In Section 3, we establish a necessary condition
(maximum principle) and a sufficient condition (verification theorem) for the Nash equi-
librium point. In Section 4, we study a linear-quadratic game problem under partial infor-
mation. We derive the filtering equations and prove the existence and uniqueness for the
Nash equilibrium point. In Section 5, we solve a pension fund management problem with
nonlinear expectation and obtain the explicit solution.

2 Preliminary results
Throughout this article, we denote by R

k the k-dimensional Euclidean space; by R
k×l the

collection of k × l matrices. For a given Euclidean space, we denote by 〈·, ·〉 (resp. | · |)
the scalar product (resp. norm). The superscript τ denotes the transpose of vectors or
matrices.

Let (�,F , {Ft}t≥0,P) be a complete filtered probability space equipped with a d + d̄-
dimensional, Ft-adapted standard Brownian motion (W (·), W̄ (·)), where F = FT . EFt [·] =
E[·|Ft] denotes the conditional expectation under natural filtration Ft , and fx(·) denotes
the partial derivative of function f (·) with respect to x. Let T > 0 be the finite time duration
and 0 < δ < T be the constant time delay. Moreover, we denote by C([–δ, 0];Rk) the space
of a uniformly bounded continuous function on [–δ, 0], by L

p
F (�;Rk) the space of an F -

measurable random variable ξ satisfying E|ξ |p < ∞ for any p ≥ 1, and by L
p
F (r, s;Rk) the

space of Rk-valued Ft-adapted processes ϕ(·) satisfying E
∫ s

r |ϕ(t)|p dt < ∞ for any p ≥ 1.
We consider the following AFBSDDE:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxv(t) = b(t, xv(t), xv
δ(t), v1(t), v2(t)) dt + σ (t, xv(t), xv

δ(t), v1(t), v2(t)) dW (t)

+ σ̄ (t, xv(t), xv
δ(t), v1(t), v2(t)) dW̄ (t),

–dyv(t) = f (t, xv(t), yv(t), zv(t), z̄v(t), yv
δ+ (t), v1(t), v2(t)) dt

– zv(t) dW (t) – z̄v(t) dW̄ (t), t ∈ [0, T],

xv(t) = ξ (t), t ∈ [–δ, 0],

yv(T) = G(xv(T)), yv(t) = ϕ(t), t ∈ (T , T + δ].

(1)

Here, (xv(·), yv(·), zv(·), z̄v(·)) : �× [–δ, T] × [0, T + δ] × [0, T] × [0, T], b : �× [0, T] ×R
n ×

R
n ×R

k1 ×R
k2 →R

n, σ : �× [0, T] ×R
n ×R

n ×R
k1 ×R

k2 →R
n×d , σ̄ : �× [0, T] ×R

n ×
R

n ×R
k1 ×R

k2 → R
n×d̄ , f : � × [0, T] ×R

n ×R
m ×R

m×d ×R
m×d̄ ×R

m ×R
k1 ×R

k2 →
R

m, G : � ×R
n → R

n are given continuous maps, xv
δ(t) = xv(t – δ), yv

δ+ (t) = E
Ft [yv(t + δ)],

ξ (·) ∈ C([–δ, 0];Rn) is the initial path of xv(·), ϕ(·) ∈ L
2
F (T , T + δ;Rm) is the terminal path

of yv(·). Here, for simplicity, we omit the notation of ω in each process.
Let Ui be a nonempty convex subset of Rki , G i

t ⊆ Ft be a given sub-filtration which
represents the information available to the player i, and vi(·) be the control process of
player i (i = 1, 2). We denote by U i

ad the set of Ui-valued G i
t-adapted control processes

vi(·) ∈ L
2
Gi (0, T ;Rki ), and it is called the admissible control set for player i (i = 1, 2).

Uad = U1
ad × U2

ad is called the set of admissible controls for the two players. We also in-
troduce the following assumption:
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H1. Functions b, σ , σ̄ are continuously differentiable in (x, xδ , v1, v2), f is continuously
differentiable in (x, y, z, z̄, yδ+ , v1, v2), G is continuously differentiable in x. All the
partial derivatives of b, σ , σ̄ , f , G are uniformly bounded.

Then we have the following existence and uniqueness result which can be found in [12,
13].

Theorem 2.1 If v1(·) and v2(·) are admissible controls and assumption H1 holds, AFBS-
DDE (1) admits a unique solution (x(·), y(·), z(·), z̄(·)) ∈ L

2
F (–δ, T ;Rn) ×L

2
F (0, T + δ;Rm) ×

L
2
F (0, T ;Rm×d) ×L

2
F (0, T ;Rm×d̄).

The players have their own preferences which are described by the following cost func-
tionals:

Ji
(
v1(·), v2(·)) = E

[∫ T

0
li
(
t, xv(t), yv(t), zv(t), z̄v(t), v1(t), v2(t)

)
dt + 	i

(
xv(T)

)

+ γi
(
yv(0)

)
]

.

Here, li : � × [0, T] × R
n × R

m × R
m×d × R

m×d̄ × R
k1 × R

k2 → R, 	i : � × R
n → R,

γi : � × R
m → R (i = 1, 2) are given continuous maps. li, 	i, and γi satisfy the following

condition:
H2. Functions li, 	i, and γi are continuously differentiable with respect to

(x, y, z, z̄, v1, v2), x, and y, respectively. Moreover, there exists a positive constant C
such that the partial derivatives of li, 	i, and γi are bounded by
C(1 + |x| + |y| + |z| + |z̄| + |v1| + |v2|), C(1 + |x|), and C(1 + |y|), respectively.

Now we suppose that each player hopes to maximize his cost functional Ji(v1(·), v2(·)) by
selecting a suitable admissible control vi(·) (i = 1, 2). The problem is to find an admissible
control (u1(·), u2(·)) ∈ Uad such that

⎧
⎨

⎩

J1(u1(·), u2(·)) = supv1(·)∈U1 J1(v1(·), u2(·)),
J2(u1(·), u2(·)) = supv2(·)∈U2 J2(u1(·), v2(·)).

(2)

If we can find an admissible control (u1(·), u2(·)) satisfying (2), then we call it a Nash equi-
librium point. In what follows, we aim to establish the necessary and sufficient condition
for the Nash equilibrium point subject to this game problem.

3 Maximum principle
In this section, we will establish a necessary condition (maximum principle) and a suffi-
cient condition (verification theorem) for problem (2).

Let (u1(·), u2(·)) be an equilibrium point of the game problem, (v1(·), v2(·)) ∈ L
2
G1 (0, T ;

R
k1 ) × L

2
G2 (0, T ;Rk2 ) be such that (u1(·) + v1(·), u1(·) + v2(·)) ∈ Uad. Then, for any 0 ≤

ε ≤ 1, we take the variational control uε
1(·) = u1(·) + εv1(·) and uε

2(·) = u2(·) + εv2(·).
Because both U1 and U2 are convex, (uε

1(·), uε
2(·)) is also in Uad. For simplicity, we de-

note by (xuε
1 (·), yuε

1 (·), zuε
1 (·), z̄uε

1 (·)), (xuε
2 (·), yuε

2 (·), zuε
2 (·), z̄uε

2 (·)), and (x(·), y(·), z(·), z̄(·)) the
corresponding state trajectories of system (1) with control (uε

1(·), u2(·)), (u1(·), uε
2(·)), and

(u1(·), u2(·)).
The following lemma gives an estimation of (x(·), y(·), z(·), z̄(·)).
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Lemma 3.1 Let H1 hold. For i = 1, 2,

sup
0≤t≤T

E
∣
∣xuε

i (t) – x(t)
∣
∣2 ≤ Cε2, sup

0≤t≤T
E

∣
∣yuε

i (t) – y(t)
∣
∣2 ≤ Cε2,

E

∫ T

0

∣
∣zuε

i (t) – z(t)
∣
∣2 dt ≤ Cε2, E

∫ T

0

∣
∣z̄uε

i (t) – z̄(t)
∣
∣2 dt ≤ Cε2.

Proof Using Itô’s formula to |xuε
i (t) – x(t)|2 and Gronwall’s inequality, we draw the conclu-

sion. �

For notational simplicity, we set ζ (t) = ζ (t, x(t), xδ(t), u1(t), u2(t)) for ζ = b,σ , σ̄ ; f (t) =
f (t, x(t), y(t), z(t), z̄(t), yδ+ (t), u1(t), u2(t)), and li(t) = li(t, x(t), y(t), z(t), z̄(t), u1(t), u2(t)) (i =
1, 2).

We introduce the following variational equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1
i (t) = [bx(t)x1

i (t) + bxδ
(t)x1

i (t – δ) + bvi (t)vi(t)] dt

+ [σx(t)x1
i (t) + σxδ

(t)x1
i (t – δ) + σvi (t)vi(t)] dW (t)

+ [σ̄x(t)x1
i (t) + σ̄xδ

(t)x1
i (t – δ) + σ̄vi (t)vi(t)] dW̄ (t),

–dy1
i (t) = {fx(t)x1

i (t) + fy(t)y1
i (t) + fz(t)z1

i (t) + fz̄(t)z̄1
i (t)

+ E
Ft [fyδ+ (t)y1

i (t + δ)] + fvi (t)vi(t)}dt

– z1
i (t) dW (t) – z̄1

i (t) dW̄ (t), t ∈ [0, T],

x1
i (t) = 0, t ∈ [–δ, 0],

y1
i (T) = Gx(x(T))x1

i (T), y1
i (t) = 0, t ∈ (T , T + δ] (i = 1, 2).

(3)

Next, set

φε
i (t) =

φuε
i (t) – φ(t)

ε
– φ1

i (t) for φ = x, y, z, z̄ (i = 1, 2).

Then we can get the following two lemmas by using Lemma 3.1. The technique is clas-
sical (see Chen and Wu [12]). Thus we omit the details and only state the main result for
simplicity.

Lemma 3.2 Let H1 hold. For i = 1, 2,

lim
ε→0

sup
0≤t≤T

E
∣
∣xε

i (t)
∣
∣2 = 0, lim

ε→0
sup

0≤t≤T
E

∣
∣yε

i (t)
∣
∣2 = 0,

lim
ε→0

E

∫ T

0

∣
∣zε

i (t)
∣
∣2 dt = 0, lim

ε→0
E

∫ T

0

∣
∣z̄ε

i (t)
∣
∣2 dt = 0.

Lemma 3.3 Let H1 and H2 hold. For i = 1, 2,

E

∫ T

0

[
lτix(t)x1

i (t) + lτiy(t)y1
i (t) + lτiz(t)z1

i (t) + lτiz̄(t)z̄1
i (t) + lτivi

(t)v1
i (t)

]
dt

+ E
[
	τ

ix
(
x(T)

)
x1

i (T)
]

+ γ τ
iy
(
y(0)

)
y1

i (0) ≤ 0. (4)
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We introduce the adjoint equation as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dpi(t) = [f τ
y (t)pi(t) + f τ

yδ+ (t – δ)pi(t – δ) – liy(t)] dt

+ [f τ
z (t)pi(t) – liz(t)] dW (t) + [f τ

z̄ (t)pi(t) – liz̄(t)] dW̄ (t),

–dqi(t) = {bτ
x (t)qi(t) + σ τ

x (t)ki(t) + σ̄ τ
x (t)k̄i(t) – f τ

x (t)pi(t)

+ E
Ft [bτ

xδ
(t + δ)qi(t + δ) + σ τ

xδ
(t + δ)ki(t + δ)

+ σ̄ τ
xδ

(t + δ)k̄i(t + δ)] + lix(t)}dt – ki(t) dW (t) – k̄i(t) dW̄ (t),

pi(0) = –γy(y(0)), pi(t) = 0, t ∈ [–δ, 0),

qi(T) = –Gτ
x (x(T))pi(T) + 	ix(x(T)),

qi(t) = ki(t) = k̄i(t) = 0, t ∈ (T , T + δ] (i = 1, 2).

(5)

This equation is also an AFBSDDE. By the existence and uniqueness result in [12, 13],
we know that (5) admits a unique solution (pi(t), qi(t), ki(t), k̄i(t)) (i = 1, 2).

Define the Hamiltonian function Hi (i = 1, 2) by

Hi(t, x, y, z, z̄, xδ , yδ+ , v1, v2; pi, qi, ki, k̄i)

=
〈
qi, b(t, x, xδ , v1, v2)

〉
+

〈
ki,σ (t, x, xδ , v1, v2)

〉
+

〈
k̄i, σ̄ (t, x, xδ , v1, v2)

〉

–
〈
pi, f (t, x, y, z, z̄, yδ+ , v1, v2)

〉
+ li(t, x, y, z, z̄, v1, v2).

Then (5) can be rewritten as a stochastic Hamiltonian system of the following type:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dpi(t) = [–Hiy(t) – Hiyδ+ (t – δ)] dt – Hiz(t) dW (t) – Hiz̄(t) dW̄ (t),

–dqi(t) = {Hix(t) + E
Ft [Hixδ

(t + δ)]}dt – ki(t) dW (t) – k̄i(t) dW̄ (t), t ∈ [0, T],

pi(0) = –γy(y(0)), pi(t) = 0, t ∈ [–δ, 0),

qi(T) = –Gτ
x (x(T))pi(T) + 	ix(x(T)),

qi(t) = ki(t) = k̄i(t) = 0, t ∈ (T , T + δ],

where Hi(t) = Hi(t, x(t), y(t), z(t), z̄(t), xδ(t), yδ+ (t), u1(t), u2(t); pi(t), qi(t), ki(t), k̄i(t)).

Theorem 3.1 Let H1 and H2 hold. Suppose that (u1(·), u2(·)) is an equilibrium point of
our problem and (x(·), y(·), z(·), z̄(·)) is the corresponding state trajectory. Then we have

E
[〈

Hivi (t), vi – ui(t)
〉|G i

t
] ≤ 0 (i = 1, 2) (6)

for any vi ∈ Ui a.e., where (pi(·), qi(·), ki(·), k̄i(·)) (i = 1, 2) is the solution of the adjoint equa-
tion (5).

Proof Applying Itô’s formula to 〈q1(·), x1
1(·)〉, we get

E
〈
–Gτ

x
(
x(T)

)
p1(T) + 	1x

(
x(T)

)
, x1

1(T)
〉

= E

∫ T

0

[〈
f τ
x (t)p1(t), x1

1(t)
〉
+

〈
bτ

xδ
(t)q1(t), x1

1(t – δ)
〉

–
〈
E
Ft

[
bτ

xδ
(t + δ)q1(t + δ)

]
, x1

1(t)
〉
+

〈
σ τ

xδ
(t)k1(t) + σ̄ τ

xδ
(t)k̄1(t), x1

1(t – δ)
〉
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–
〈
E
Ft

[
σ τ

xδ
(t + δ)k1(t + δ) + σ̄ τ

xδ
(t + δ)k̄1(t + δ)

]
, x1

1(t)
〉

+
〈
q1(t), bv1 (t)v1(t)

〉
+

〈
k1(t),σv1 (t)v1(t)

〉

+
〈
k̄1(t), σ̄v1 (t)v1(t)

〉
–

〈
l1x(t), x1

1(t)
〉]

dt. (7)

Noticing the initial and terminal conditions, we have

E

∫ T

0

[〈
bτ

xδ
(t)q1(t), x1

1(t – δ)
〉
–

〈
E
Ft

[
bτ

xδ
(t + δ)q1(t + δ)

]
, x1

1(t)
〉]

dt

= E

∫ T

0

〈
bτ

xδ
(t)q1(t), x1

1(t – δ)
〉
dt – E

∫ T+δ

δ

〈
bτ

xδ
(t)q1(t), x1

1(t – δ)
〉
dt

= E

∫ δ

0

〈
bτ

xδ
(t)q1(t), x1

1(t – δ)
〉
dt – E

∫ T+δ

T

〈
bτ

xδ
(t)q1(t), x1

1(t – δ)
〉
dt

= 0.

Similarly, we also have

E

∫ T

0

[〈
σ τ

xδ
(t)k1(t) + σ̄ τ

xδ
(t)k̄1(t), x1

1(t – δ)
〉

–
〈
E
Ft

[
σ τ

xδ
(t + δ)k1(t + δ) + σ̄ τ

xδ
(t + δ)k̄1(t + δ)

]
, x1

1(t)
〉]

dt = 0.

Applying Itô’s formula to 〈p1(·), y1
1(·)〉, we obtain

E
〈
p1(T), Gx

(
x(T)

)
x1

1(T)
〉
+

〈
γy

(
y(0)

)
, y1

1(0)
〉

= E

∫ T

0

[〈
f τ
yδ+ (t – δ)p1(t – δ), y1

1(t)
〉
–

〈
p1(t),EFt

[
fyδ+ (t)y1

1(t + δ)
]〉

–
〈
p1(t), fx(t)x1

1(t) + fv1 (t)v1(t)
〉
–

〈
l1y(t), y1

1(t)
〉

–
〈
l1z(t), z1

1(t)
〉
–

〈
l1z̄(t), z̄1

1(t)
〉]

dt. (8)

Noticing the initial and terminal conditions, we have

E

∫ T

0

[〈
f τ
yδ+ (t – δ)p1(t – δ), y1

1(t)
〉
–

〈
p1(t),EFt

[
fyδ+ (t)y1

1(t + δ)
]〉]

dt

= E

∫ T

0

〈
f τ
yδ+ (t – δ)p1(t – δ), y1

1(t)
〉
dt – E

∫ T+δ

δ

〈
f τ
yδ+ (t – δ)p1(t – δ), y1

1(t)
〉
dt

= E

∫ δ

0

〈
f τ
yδ+ (t – δ)p1(t – δ), y1

1(t)
〉
dt – E

∫ T+δ

T

〈
f τ
yδ+ (t – δ)p1(t – δ), y1

1(t)
〉
dt

= 0.

From (7) and (8), we have

E
〈
	1x

(
x(T)

)
, x1

1(T)
〉
+

〈
γy

(
y(0)

)
, y1

1(0)
〉

= E

∫ T

0

[〈
q1(t), bv1 (t)v1(t)

〉
+

〈
k1(t),σv1 (t)v1(t)

〉
+

〈
k̄1(t), σ̄v1 (t)v1(t)

〉
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–
〈
p1(t), fv1 (t)v1(t)

〉
–

〈
l1y(t), y1

1(t)
〉

–
〈
l1z(t), z1

1(t)
〉
–

〈
l1z̄(t), z̄1

1(t)
〉
–

〈
l1x(t), x1

1(t)
〉]

dt. (9)

Substituting (9) into (4) leads to

E

∫ T

0

〈
H1v1 (t), v1(t)

〉
dt ≤ 0

for any v1(·) such that u1(·) + v1(·) ∈ U1
ad.

We set

u1(s) + v1(s) =

⎧
⎨

⎩

u1(s), s /∈ [t, t + ε],

v̄1(s), s ∈ [t, t + ε],

for 0 ≤ t ≤ T , and v̄1(·) ∈ U1
ad. Then we have

1
ε
E

∫ t+ε

t

〈
H1v1 (s), v̄1(s) – u1(s)

〉
ds ≤ 0.

Letting ε → 0, we get

E
〈
H1v1 (t), v̄1(t) – u1(t)

〉 ≤ 0

for any admissible control v̄1(·) ∈ U1
ad.

Furthermore, we set v̄1(t) = v11A + u1(t)1�–A for any v1 ∈ U1 and A ∈ G1
t , then it is obvi-

ous that v̄1(·) defined above is an admissible control.
So E〈H1v1 (t), v̄1(t) – u1(t)〉 = E[1A〈H1v1 (t), v1 – u1(t)〉] ≤ 0 for any A ∈ G1

t . This implies

E
[〈

H1v1 (t), v1 – u1(t)
〉|G1

t
] ≤ 0, a.e.

for any v1 ∈ U1. Repeating the same process to deal with the case i = 2, we can show that
the other equality also holds for any v2 ∈ U2. �

Remark 3.1 If (u1(·), u2(·)) is an equilibrium point of non-zero sum differential game and
(u1(·), u2(·)) is an interior point of U1 × U2 for all t ∈ [0, T], then the inequality in Theo-
rem 3.1 is equivalent to the following equation:

E
[
Hivi (t)|G i

t
]

= 0, ∀vi ∈ Ui a.e. (i = 1, 2).

Proof It is obvious that the “⇐” part holds. For the “⇒” part, we assume that a Nash
equilibrium point (u1(·), u2(·)) takes values in the interior of U1 × U2, a.e. for all t ∈ [0, T].
Then, for (ω, t) ∈ �× [0, T] and i = 1, 2, there exists a closed ball B̄ui(t)(k) ⊂ Ui, where ui(t)
is the center and k > 0 denotes the radius. For any η ∈R

ki with |η| = 1, both vi = ui(t) + kη

and v′
i = ui(t) – kη belong to B̄u1(t)(k). Then, by (6), we have E[Hivi (t)|G i

t]kη = 0. From the
arbitrariness of η, we get E[Hivi (t)|G i

t] = 0, a.e. and finish the proof. �
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On the other hand, we will aim to build a sufficient maximum principle called the ver-
ification theorem for the equilibrium point under some concavity assumptions of Hi. At
this moment, assumption H2 can be relaxed to the following:

H3. Functions li, 	i, and γi are differentiable with respect to (x, y, z, z̄, v1, v2), x, and y,
respectively, satisfying the condition that for each (v1(·), v2(·)) ∈ Uad,
li(·, xv(t), yv(t), zv(t), z̄v(t), v1(t), v2(t)) ∈ L

1
F (0, T ;R), and

liφ(·, xv(·), yv(·), zv(·), z̄v(·), v1(·), v2(·)) ∈ L
2
F (0, T ;R) for φ = x, y, z, z̄, vi (i = 1, 2).

Theorem 3.2 Let H1 and H3 hold. Let (u1(·), u2(·)) ∈ U1
ad × U2

ad be given and (x(·), y(·),
z(·), z̄(·)) be the corresponding trajectory. Setting

Hv1
1 (t) = H1

(
t, x(t), y(t), z(t), z̄(t), xδ(t), yδ+ (t), v1(t), u2(t); p1(t), q1(t), k1(t), k̄1(t)

)
,

Hv2
2 (t) = H2

(
t, x(t), y(t), z(t), z̄(t), xδ(t), yδ+ (t), u1(t), v2(t); p2(t), q2(t), k2(t), k̄2(t)

)
.

Suppose

(x, y, z, z̄, xδ , yδ+ , vi) �→ Hvi
i (t) (i = 1, 2),

x �→ 	i(x) (i = 1, 2),

y �→ γi(y) (i = 1, 2)

are concave functions respectively, and G(x) = MT x, MT ∈ R
m×n, ∀x ∈ R

n. If condition (6)
holds, then (u1(·), u2(·)) is an equilibrium point.

Proof For any v1(·) ∈ U1
ad, let (xv1 (·), yv1 (·), zv1 (·), z̄v1 (·)) be the trajectory corresponding to

the control (v1(·), u2(·)) ∈ Uad. We consider

J1
(
v1(·), u2(·)) – J1

(
u1(·), u2(·)) = A + B + C,

with

A = E

∫ T

0

[
l1

(
t,�v1 (t), v1(t), u2(t)

)
– l1

(
t,�(t), u1(t), u2(t)

)]
dt,

B = E
[
	1

(
xv1 (T)

)
– 	1

(
x(T)

)]
,

C = γ1
(
yv1 (0)

)
– γ1

(
y(0)

)
,

where �(t) = (x(t), y(t), z(t), z̄(t)) and �v1 (t) = (xv1 (t), yv1 (t), zv1 (t), z̄v1 (t)).
Since γ1 is concave on y, then

C ≤ γ τ
1y

(
y(0)

)(
yv1 (0) – y(0)

)
.

Applying Itô’s formula to 〈p1(·), yv1 (·) – y(·)〉 and taking expectation, we get

C ≤ E

∫ T

0

[
–
〈
p1(t), f v1 (t) – f (t)

〉
–

〈
H1y(t) + H1yδ+ (t – δ), yv1 (t) – y(t)

〉

–
〈
H1z(t), zv1 (t) – z(t)

〉
–

〈
H1z̄(t), z̄v1 (t) – z̄(t)

〉]
dt

– E
〈
p1(T), MT

(
xv1 (T) – x(T)

)〉
, (10)
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where f (t) = f (t,�(t),EFt [yδ+ (t)], u1(t), u2(t)), and f v1 (t) = f (t,�v1 (t),EFt [yv1
δ+ (t)], v1(t),

u2(t)).
Due to 	1 being concave on x,

B ≤ E	τ
1x

(
x(T)

)(
xv1 (T) – x(T)

)
.

Applying Itô’s formula to 〈q1(·), xv1 (·) – x(·)〉 and taking expectation, we get

B ≤ E

∫ T

0

[〈
q1(t), bv1 (t) – b(t)

〉
+

〈
k1(t),σ v1 (t) – σ (t)

〉

+
〈
k̄1(t), σ̄ v1 (t) – σ̄ (t)

〉
–

〈
H1x(t) + E

Ft
[
H1xδ

(t + δ)
]
, xv1 (t) – x(t)

〉]
dt

+ E
〈
Mτ

T p1(T), xv1 (T) – x(T)
〉
, (11)

where b(t) = b(t, x(t), xδ(t), u1(t), u2(t)) and bv1 (t) = b(t, xv1 (t), xv1
δ (t), v1(t), u2(t)), etc.

Moreover, we have

A = E

∫ T

0

[
Hv1

1 (t) – H1(t)
]

dt – E

∫ T

0

[〈
q1(t), bv1 (t) – b(t)

〉

+
〈
k1(t),σ v1 (t) – σ (t)

〉
+

〈
k̄1(t), σ̄ v1 (t) – σ̄ (t)

〉

–
〈
p1(t), f v1 (t) – f (t)

〉]
dt. (12)

From (10)-(12), we can obtain

J1
(
v1(·), u2(·)) – J1

(
u1(·), u2(·))

= A + B + C

≤ E

∫ T

0

[(
Hv1

1 (t) – H1(t)
)

–
〈
H1x(t) + E

Ft
[
H1xδ

(t + δ)
]
, xv1 (t) – x(t)

〉

–
〈
H1y(t) + H1yδ+ (t – δ), yv1 (t) – y(t)

〉
–

〈
H1z(t), zv1 (t) – z(t)

〉

–
〈
H1z̄(t), z̄v1 (t) – z̄(t)

〉]
dt.

Note that

E

[∫ T

0

〈
H1xδ

(t), xv1 (t – δ) – x(t – δ)
〉
dt –

∫ T

0

〈
E
Ft

[
H1xδ

(t + δ)
]
, xv1 (t) – x(t)

〉
dt

]

= E

∫ 0

–δ

〈
H1xδ

(t + δ), xv1 (t) – x(t)
〉
dt – E

∫ T

T–δ

〈
H1xδ

(t + δ), xv1 (t) – x(t)
〉
dt

= 0,

due to the fact that xv1 (t) = x(t) = ξ (t) for any t ∈ [–δ, 0) and H1xδ
(t) = 0 for any t ∈

(T , T + δ].
Similarly, we have

E

∫ T+δ

T

〈
H1yδ+ (t – δ), yv1 (t) – y(t)

〉
dt – E

∫ δ

0

〈
H1yδ+ (t – δ), yv1 (t) – y(t)

〉
dt

= 0,
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due to the fact that yv1 (t) = y(t) = ϕ(t) for any t ∈ (T , T + δ] and H1yδ+ (t) = 0 for any t ∈
[–δ, 0).

By the concavity of H1, we derive that

J1
(
v1(·), u2(·)) – J1

(
u1(·), u2(·)) ≤ E

∫ T

0

〈
H1v1 (t), v1(t) – u1(t)

〉
dt

= E

∫ T

0
E

[〈
H1v1 (t), v1(t) – u1(t)

〉|G1
t
]

dt.

From the necessary condition (6), it follows that

J1
(
u1(·), u2(·)) = sup

v1∈U1

J1
(
v1(·), u2(·)).

Repeating the same process to deal with the case i = 2, we can draw the desired conclu-
sion. �

In conclusion, with the help of Theorems 3.1 and 3.2, we can formally solve the Nash
equilibrium point (u1(·), u2(·)). We can first use the necessary principle to get the candidate
equilibrium point and then use the verification theorem to check whether the candidate
point is the equilibrium one. Let us discuss a linear-quadratic case.

4 A linear-quadratic case
In this section, we study a linear-quadratic case, which can be seen as a special case of the
general system discussed in Section 3, and aim to give a unique Nash equilibrium point
explicitly. For notational simplification, we suppose the dimension of Brownian motion
d = d̄ = 1 and notations are the same as in the above sections if there is no specific illus-
tration.

Consider a linear game system with delayed and anticipated states:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxv(t) = [A(t)xv(t) + Ā(t)xv
δ(t) + B1(t)v1(t) + B2(t)v2(t)] dt

+ [C(t)xv(t) + C̄(t)xv
δ(t) + D1(t)v1(t) + D2(t)v2(t)] dW (t),

–dyv(t) = [E(t)xv(t) + F(t)yv(t) + G(t)zv(t) + Ḡ(t)z̄v(t)

+ F̄(t)yv
δ+ (t) + H1(t)v1(t) + H2(t)v2(t)] dt – zv(t) dW (t)

– z̄v(t) dW̄ (t), t ∈ [0, T],

xv(t) = ξ (t), t ∈ [–δ, 0],

yv(T) = MT xv(T), yv(t) = ϕ(t), t ∈ (T , T + δ],

(13)

where all the coefficients are bounded, deterministic matrices defining on [0, T], ξ (·) ∈
C([–δ, 0];Rn), ϕ(·) ∈ L

2
F (T , T + δ;Rm). For any given (v1(·), v2(·)) ∈ Uad, it is easy to know

that (13) admits a unique solution (xv(·), yv(·), zv(·), z̄v(·)). Here, we only consider the case
that xv(·) is driven by one Brownian motion W (·) just for notational simplicity. All the
techniques and proof are similar.

In addition, two players aim to maximize their index functionals for i = 1, 2:

Ji
(
v1(·), v2(·)) =

1
2
E

[∫ T

0

[〈
Oi(t)xv(t), xv(t)

〉
+

〈
Pi(t)yv(t), yv(t)

〉
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+
〈
Qi(t)zv(t), zv(t)

〉
+

〈
Q̄i(t)z̄v(t), z̄v(t)

〉
+

〈
Ri(t)vi(t), vi(t)

〉]
dt

+
〈
Mixv(t), xv(t)

〉
+

〈
Niyv(0), yv(0)

〉
]

,

where Oi(·), Pi(·), Qi(·), Q̄i(·) are bounded deterministic non-positive symmetric matrices,
Ri(·) is a bounded deterministic negative symmetric matrix, R–1

i (·) is bounded, Mi, Ni are
deterministic non-positive symmetric matrices for i = 1, 2.

According to Theorem 3.1, the Hamiltonian function is given by

Hi(t, x, y, z, z̄, xδ , yδ+ , v1, v2; pi, qi, ki)

=
〈
qi, A(t)x + Ā(t)xδ + B1(t)v1 + B2(t)v2

〉

+
〈
ki, C(t)x + C̄(t)xδ + D1(t)v1 + D2(t)v2

〉
–

〈
pi, E(t)x + F(t)y + G(t)z + Ḡ(t)z̄

+ F̄(t)yδ+ + H1(t)v1 + H2(t)v2
〉
+

1
2
[〈

Oi(t)x, x
〉
+

〈
Pi(t)y, y

〉
+

〈
Qi(t)z, z

〉

+
〈
Q̄i(t)z̄, z̄

〉
+

〈
Ri(t)vi, vi

〉]
.

If (u1(·), u2(·)) is the Nash equilibrium point, then

ui(t) = –R–1
i (t)

[
Bτ

i (t)q̂i(t) + Dτ
i (t)k̂i(t) – Hτ

i (t)p̂i(t)
]
, t ∈ [0, T], (14)

where q̂i(t) = E[qi(t)|Gt] for i = 1, 2, etc., and (pi(·), qi(·), ki(·)) is the solution of the following
adjoint equation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dpi(t) = [Fτ (t)pi(t) + F̄τ (t – δ)pi(t – δ) – Pi(t)y(t)] dt + [Gτ (t)pi(t)

– Qi(t)z(t)] dW (t) + [Ḡτ (t)pi(t) – Q̄i(t)z̄(t)] dW̄ (t),

–dqi(t) = {Aτ (t)qi(t) + Cτ (t)ki(t) – Eτ (t)pi(t) + E
Ft [Āτ (t + δ)qi(t + δ)

+ C̄τ (t + δ)ki(t + δ)] + Oi(t)x(t)}dt – ki(t) dW (t), t ∈ [0, T],

pi(0) = –Niy(0), pi(t) = 0, t ∈ [–δ, 0),

qi(T) = –MT pi(T) + Mix(T), qi(t) = 0, t ∈ (T , T + δ] (i = 1, 2).

(15)

We note that the setting Gt ⊆Ft is very general. In order to get an explicit expression of
the equilibrium point, we suppose Gt = σ {W (s); 0 ≤ s ≤ t} in the rest of this section.

We denote the filtering of state process x(t) by x̂(t) = E[x(t)|Gt], etc., and note that
E[y(t + δ)|Gt] = E{[y(t + δ)|Gt+δ]|Gt} = E[ŷ(t + δ)|Gt]. By Theorem 8.1 in Lipster and Shi-
ryayev [29] and Theorem 5.7 (Kushner-FKK equation) in Xiong [30], we can get the state
filtering equation for (13):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx̂(t) = [A(t)x̂(t) + Ā(t)x̂δ(t) –
∑2

i=1 Bi(t)R–1
i (t)Bi(t)] dt

+ [C(t)x̂(t) + C̄(t)x̂δ(t) –
∑2

i=1 Di(t)R–1
i (t)Bi(t)] dW (t),

–dŷ(t) = {E(t)x̂(t) + F(t)ŷ(t) + G(t)ẑ(t) + Ḡ(t) ˆ̄z(t) + F̄(t)EGt [ŷ(t + δ)]

–
∑2

i=1 Hi(t)R–1
i (t)Bi(t)}dt – ẑ(t) dW (t), t ∈ [0, T],

x̂(t) = ξ (t), t ∈ [–δ, 0],

ŷ(T) = MT x̂(T), ŷ(t) = ϕ̂(t), t ∈ (T , T + δ],

(16)
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where Bi(t) = Bτ
i (t)q̂i(t) + Dτ

i (t)k̂i(t) – Hτ
i (t)p̂i(t), and the adjoint filtering equation for (15)

satisfying

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dp̂i(t) = [Fτ (t)p̂i(t) + F̄τ (t – δ)p̂i(t – δ) – Pi(t)ŷ(t)] dt

+ [Gτ (t)p̂i(t) – Qi(t)ẑ(t)] dW (t),

–dq̂i(t) = {Aτ (t)q̂i(t) + Cτ (t)k̂i(t) – Eτ (t)p̂i(t) + E
Gt [Āτ (t + δ)q̂i(t + δ)

+ C̄τ (t + δ)k̂i(t + δ)] + Oi(t)x̂(t)}dt – k̂i(t) dW (t), t ∈ [0, T],

p̂i(0) = –Niy(0), p̂i(t) = 0, t ∈ [–δ, 0),

q̂i(T) = –MT p̂i(T) + Mix̂(T), q̂i(t) = 0, t ∈ (T , T + δ] (i = 1, 2).

(17)

From Theorems 3.1 and 3.2, it is easy to know that (u1(·), u2(·)) is an equilibrium point
for the above linear-quadratic game problem if and only if (u1(·), u2(·)) satisfies the expres-
sion of (14) with (x̂, ŷ, ẑ, p̂i, q̂i, k̂i) (i = 1, 2) being the solution of the coupled triple dimen-
sions filtering AFBSDDE (16)-(17) (TFBSDDE). Then the existence and uniqueness of the
equilibrium point is equivalent to the existence and uniqueness of the TFBSDDE.

However, we note that TFBSDDE (16)-(17) is so complicated. Fortunately, in some par-
ticular cases, we can make some transactions to link it with a double dimensions filtering
AFBSDDE, called DFBSDDE. Now we present our result in the following.

H4. The dimension of x is equal to that of y: n = m, Ḡ(t) ≡ 0 and coefficients Bi(t) = Bi,
Di(t) = Di, Hi(t) = Hi are independent of time t for any i = 1, 2.

Theorem 4.1 Under H4, we assume that one of the following conditions holds true:
(a) D1 = D2 = H1 = H2 ≡ 0 and BiR–1

i Bτ
i S = SBiR–1

i Bτ
i (i = 1, 2);

(b) B1 = B2 = H1 = H2 ≡ 0 and DiR–1
i Dτ

i S = SDiR–1
i Dτ

i (i = 1, 2);
(c) B1 = B2 = D1 = D2 ≡ 0 and HiR–1

i Hτ
i S = SHiR–1

i Hτ
i (i = 1, 2),

where Sτ = A(·), Ā(·), C(·), C̄(·), E(·), F(·), F̄(·), G(·), MT , Oi(·), Pi(·), Qi(·), Mi, Ni. Then (u1(·),
u2(·)) given by (14) is a unique Nash equilibrium point.

Proof We only prove (a). The same method can be used to get (b) and (c). From the above
discussion, we need to prove only that there exists a unique solution of the coupled TFB-
SDDE (16)-(17). In the case that D1 = D2 = H1 = H2 ≡ 0, it becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx̂(t) = [A(t)x̂(t) + Ā(t)x̂δ(t) –
∑2

i=1 BiR–1
i Bτ

i q̂i(t)] dt

+ [C(t)x̂(t) + C̄(t)x̂δ(t)] dW (t),

–dŷ(t) = {E(t)x̂(t) + F(t)ŷ(t) + G(t)ẑ(t) + F̄(t)EGt [ŷ(t + δ)]}dt – ẑ(t) dW (t),

dp̂i(t) = [Fτ (t)p̂i(t) + F̄τ (t – δ)p̂i(t – δ) – Pi(t)ŷ(t)] dt

+ [Gτ (t)p̂i(t) – Qi(t)ẑ(t)] dW (t),

–dq̂i(t) = {Aτ (t)q̂i(t) + Cτ (t)k̂i(t) – Eτ (t)p̂i(t) + E
Gt [Āτ (t + δ)q̂i(t + δ)

+ C̄τ (t + δ)k̂i(t + δ)] + Oi(t)x̂(t)}dt – k̂i(t) dW (t), t ∈ [0, T],

x̂(t) = ξ (t), t ∈ [–δ, 0]; ŷ(T) = MT x̂(T), ŷ(t) = ϕ̂(t), t ∈ (T , T + δ],

p̂i(0) = –Niy(0), p̂i(t) = 0, t ∈ [–δ, 0),

q̂i(T) = –MT p̂i(T) + Mix̂(T), q̂i(t) = k̂i(t) = 0, t ∈ (T , T + δ].

(18)
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Now we consider another DFBSDDE:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx̃(t) = [A(t)x̃(t) + Ā(t)x̃δ(t) – q̃(t)] dt + [C(t)x̃(t) + C̄(t)x̃δ(t)] dW (t),
–dỹ(t) = {E(t)x̃(t) + F(t)ỹ(t) + G(t)z̃(t) + F̄(t)EGt [ỹ(t + δ)]}dt – z̃(t) dW (t),
dp̃(t) = [Fτ (t)p̃(t) + F̄τ (t – δ)p̃(t – δ) –

∑2
i=1 BiR–1

i Bτ
i Pi(t)ỹ(t)] dt

+ [Gτ (t)p̃(t) –
∑2

i=1 BiR–1
i Bτ

i Qi(t)z̃(t)] dW (t),
–dq̃(t) = {Aτ (t)q̃(t) + Cτ (t)k̃(t) – Eτ (t)p̃(t) + Āτ (t + δ)EGt [q̃(t + δ)]

+ C̄τ (t + δ)EGt [k̃(t + δ)] +
∑2

i=1 BiR–1
i Bτ

i Oi(t)x̃(t)}dt – k̃(t) dW (t),
x̃(t) = ξ (t), t ∈ [–δ, 0]; ỹ(T) = MT x̃(T), ỹ(t) = ϕ̂(t), t ∈ (T , T + δ],
p̃(0) = –

∑2
i=1 BiR–1

i Bτ
i Niỹ(0), p̃(t) = 0, t ∈ [–δ, 0),

q̃(T) =
∑2

i=1 BiR–1
i Bτ

i Mix̃(T) – MT p̃(T), q̃(t) = k̃(t) = 0, t ∈ (T , T + δ].

(19)

From the commutation relation between matrices, we notice that, if (x̂, ŷ, ẑ, p̂i, q̂i, k̂i) (i =
1, 2) is a solution of (18), then (x̃, ỹ, z̃, p̃, q̃, k̃) solves (19), where

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x̃(t) = x̂(t), ỹ(t) = ŷ(t), z̃(t) = ẑ(t),
p̃(t) = B1R–1

1 Bτ
1 p̂1(t) + B2R–1

2 Bτ
2 p̂2(t),

q̃(t) = B1R–1
1 Bτ

1 q̂1(t) + B2R–1
2 Bτ

2 q̂2(t),
k̃(t) = B1R–1

1 Bτ
1 k̂1(t) + B2R–1

2 Bτ
2 k̂2(t).

On the other hand, if (x̃, ỹ, z̃, p̃, q̃, k̃) is a solution of (19), we can let x̂(t) = x̃(t), ŷ(t) = ỹ(t),
ẑ(t) = z̃(t). From the existence and uniqueness result of SDDE and ABSDE (see [12, 13]),
we can get (p̂i(t), q̂i(t), k̂i(t)) from the following filtering AFBSDDE:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dp̂i(t) = [Fτ (t)p̂i(t) + F̄τ (t – δ)p̃i(t – δ) – Pi(t)ŷ(t)] dt + [Gτ (t)p̂i(t)
– Qi(t)ẑ(t)] dW (t),

–dq̂i(t) = {Aτ (t)q̂i(t) + Cτ (t)k̂i(t) – Eτ (t)p̂i(t) + Āτ (t + δ)EFt [q̂i(t + δ)]
+ C̄τ (t + δ)EFt [k̂i(t + δ)] + Oi(t)x̂(t)}dt
– k̂i(t) dW (t), t ∈ [0, T],

p̂i(0) = –Niŷ(0), p̂i(t) = 0, t ∈ [–δ, 0),
q̂i(T) = –MT p̂i(T) + Mix̂(T), q̂i(t) = k̂i(t) = 0, t ∈ (T , T + δ].

We let
⎧
⎪⎪⎨

⎪⎪⎩

p̄(t) = B1R–1
1 Bτ

1 p̂1(t) + B2R–1
2 Bτ

2 p̂2(t),
q̄(t) = B1R–1

1 Bτ
1 q̂1(t) + B2R–1

2 Bτ
2 q̂2(t),

k̄(t) = B1R–1
1 Bτ

1 k̂1(t) + B2R–1
2 Bτ

2 k̂2(t).

(20)

By Itô’s formula and the uniqueness result of the solution of the SDDE and ABSDE for
fixed (x̂(·), ŷ(·), ẑ(·)), we have

⎧
⎪⎪⎨

⎪⎪⎩

p̃(t) = p̄(t) = B1R–1
1 Bτ

1 p̂1(t) + B2R–1
2 Bτ

2 p̂2(t),
q̃(t) = q̄(t) = B1R–1

1 Bτ
1 q̂1(t) + B2R–1

2 Bτ
2 q̂2(t),

k̃(t) = k̄(t) = B1R–1
1 Bτ

1 k̂1(t) + B2R–1
2 Bτ

2 k̂2(t).

(21)
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Then (x̂, ŷ, ẑ, p̂i, q̂i, k̂i) (i = 1, 2) is a solution of (18). Moreover, the existence and unique-
ness of (19) is equivalent to the existence and uniqueness of (18). According to the mono-
tonicity condition in [19, 28], it is easy to check that DFBSDDE (19) satisfies the condition
and it has a unique solution. So TFBSDDE (18) admits a unique solution. We complete
the proof. �

5 An example in finance
This section is devoted to studying a pension fund management problem under partial
information with time-delayed surplus arising from the financial market, which natu-
rally motivates the above theoretical research. The financial market is the Black-Scholes
market, while the pension fund management framework comes from Federico [31]. To
get close to reality, we study this problem in the case when the performance criterion
Ji(v1(·), v2(·)) is measured by a criterion involving risk. If we interpret risk in the sense of a
convex risk measure, it can be performed by a nonlinear expectation called g-expectation,
which can also be used to represent a nonlinear human preference in behavioral eco-
nomics (see [3, 32–35] and recent articles [25, 36, 37]). Now we introduce it in de-
tail.

In the following, we only consider the one-dimensional case just for simplicity of no-
tations. First, we give the definition of convex risk measure and its connection with g-
expectation.

Definition 5.1 ([32]) Let F be the family of all lower bounded FT -measurable random
variables. A convex risk measure on F is a functional ρ : F→R such that

(a) (convexity) ρ(λX1 + (1 – λ)X2) ≤ λρ(X1) + (1 – λ)ρ(X2), X1, X2 ∈ F, λ ∈ (0, 1),
(b) (monotonicity) if X1 ≤ X2 a.e., then ρ(X1) ≥ ρ(X2), X1, X2 ∈ F,
(c) (translation invariance) ρ(X + m) = ρ(X) – m, X ∈ F, m ∈R.

The convex risk measure is a useful tool widely applied in the measurement of financial
positions. For the financial interpretation (see, e.g., [34]), the property (a) in Definition 5.1
means that the risk of a diversified position is not more than the weighted average of the
individual risks; (b) means that if portfolio X2 is better than X1 under almost all scenarios,
then the risk of X2 should be less than the risk of X1; (c) implies that the addition of a sure
amount of capital reduces the risk by the same amount. It is also a generalization of the
concept of coherent risk measure in [38]. Here, if ρ(X) ≤ 0, then position X is called ac-
ceptable, and ρ(X) represents the maximal amount that investors can withdraw without
changing the acceptability of X. If ρ(X) ≥ 0, then X is called unacceptable and ρ(X) rep-
resents the minimal extra wealth that investors have to add into the position X to make it
acceptable.

Consider the following BSDE:

⎧
⎨

⎩

–dy(t) = g(t, y(t), z(t)) dt – z(t) dW (t),

y(T) = ξ .
(22)

Under certain assumptions, (22) has a unique solution (y(·), z(·)). If we also set g(t, y,
z)|z=0 ≡ 0, we can make the definition as follows.
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Definition 5.2 ([3, 35]) For each ξ ∈FT , we call

Eg(ξ ) � y(0)

the generalized expectation (g-expectation) of ξ related to g .

The well-known Allais [39] and Ellsberg [40] paradox indicates that the classical von-
Neumann-Morgenstern linear expected utility theory (here we mean that the linear ex-
pectation E is used) cannot exactly express people’s subjective preferences or criterion in-
volving risk. Then one naturally tries to replace E by some kind of nonlinear expectation.
From Definition 5.2, the g-expectation Eg(·) based on the BSDE possesses all the properties
that E has, except the linearity (see [3]). It can be seen as a (subject) nonlinear preference
and is closely related to the stochastic differential utility (see, e.g., [4]). It is obvious that
when g(·) = 0, Eg is reduced to the classical expectation E.

Here, we present the g-expectation as a nonlinear measurement of risk and give the
connection between the convex risk measure and the g-expectation as follows (see [33,
41] for more details).

Definition 5.3 The risk ρ(ξ ) of the random variable ξ ∈ L2
F (�;R) (ξ can be regarded as

a financial position in the financial market) is defined by

ρ(ξ ) � Eg[–ξ ] = y(0),

where Eg[·] is defined in Definition 5.2 with ξ replaced by –ξ . Here, g is independent of y
and is convex with respect to z.

Assuming that there are two assets in the financial market for the pension fund managers
to invest:

⎧
⎪⎪⎨

⎪⎪⎩

dS0(t) = r(t)S0(t) dt,

dS1(t) = μ(t)S1(t) dt + σ (t)S1(t) dW (t),

S0(0) = 1, S1(0) > 0,

where S1(·) is a risky finance asset price and S0(·) is one risk-free asset price. μ(·) is an
appreciation rate of the asset process, and σ (·) is the volatility coefficient. We assume that
μ(·), r(·) and σ (·) are deterministic bounded coefficients, and σ –1(·) is bounded.

Suppose that there are two pension fund managers (players) working together to invest
the risk-free and risky assets. In the real financial market, it is reasonable for the investors
to make decisions based on the historical price of the risky asset S1(·). So the observable
filtration can be set as Gt = σ {S1(s)|0 ≤ s ≤ t}, and it is clear that Gt = FW

t = σ {W (s)|0 ≤
s ≤ t}. The pension fund wealth x(·) can be modeled by

⎧
⎪⎪⎨

⎪⎪⎩

dx(t) = (r(t)x(t) + (μ(t) – r(t))π (t) – α(x(t) – x(t – δ)) – c1(t) – c2(t)) dt

+ π (t)σ (t) dW (t) + σ̄ (t) dW̄ (t),

x(0) = x0 > 0, x(t) = 0, t ∈ [–δ, 0).

(23)
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Here, we denote by π (t) the amount of portfolio invested in the risky asset at time t, and
α(x(t) – x(t – δ)) represents the surplus premium to fund members or their capital trans-
fusions depending on the performance of fund growth during the past period with pa-
rameter α > 0 (see, e.g., [16, 17]). Meanwhile, there is an instantaneous consumption rate
ci(t) for manager i (i = 1, 2). We assume that the value of x(·) is not only affected by the
risky asset, but also by some practical phenomena like the physical inaccessibility of some
economic parameters, inaccuracies in measurement, insider trading or the information
asymmetry, etc. (see, e.g., [42, 43]). Here, σ̄ (·) represents the instantaneous volatility af-
fected by these unobservable factors, F W̄

t represents the unobservable filtration gener-
ated by W̄ (·). We set x(t) be adapted to the filtration Ft generated by Brownian motion
(W (·), W̄ (·)), and the control processes ci(t) (i = 1, 2) be adapted to the observation filtra-
tion Gt ⊆Ft .

The controlled process ci(·) (i = 1, 2) is called admissible for manager i if ci(t) > 0 is
adapted to the filtrationGt at time t, ci(t) ∈ L

2(0, T ;R), and the family of admissible control
(c1(·), c2(·)) is denoted by C1 × C2.

We assume that the insurance company hopes for more terminal capital with less risks
and more consumption ci(·). According to Definitions 5.1 and 5.3, we can define the cost
functional as

Jg
i
(
c1(·), c2(·)) = –KiEg

[
–x(T)

]
+ E

∫ T

0
e–βtLi

ci(t)γ

γ
dt, i = 1, 2, (24)

where Ki, Li are positive constants representing the different extent of preferences of two
managers. β is a discount factor and 1 – γ ∈ (0, 1) is a constant called the Arrow-Pratt
index of risk aversion. Here, we set g be a linear form as g(·, y(·), z(·)) = g(·)z(·), where g(·)
is a deterministic bounded coefficient.

Then our problem is naturally to find an equilibrium point (c∗
1(·), c∗

2(·)) ∈ C1 × C2 such
that

⎧
⎨

⎩

Jg
1 (c∗

1(·), c∗
2(·)) = supc1∈C1 Jg

1 (c1(·), c∗
2(·)),

Jg
2 (c∗

1(·), c∗
2(·)) = supc2∈C2 Jg

2 (c∗
1(·), c2(·)).

Then our problem can be reformulated as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t) = (r(t)x(t) + (μ(t) – r(t))π (t) – α(x(t) – x(t – δ))

– c1(t) – c2(t)) dt + π (t)σ (t) dW (t) + σ̄ (t) dW̄ (t),

–dy(t) = g(t)z(t) dt – z(t) dW (t), t ∈ [0, T],

x(0) = x0, x(t) = 0, t ∈ [–δ, 0),

y(T) = –x(T),

(25)

and

Jg
i
(
c1(·), c2(·)) = E

∫ T

0
e–βtLi

ci(t)γ

γ
dt – Kiy(0), i = 1, 2. (26)
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Now we will apply the theoretical results obtained in Section 3 to solve the above game
problem. The Hamiltonian function is in the form of

Hi
(
t, x(t), y(t), z(t), xδ(t), c1(t), c2(t); pi(t), qi(t), ki(t), k̄i(t)

)

= qi(t)
[
r(t)x(t) +

(
μ(t) – r(t)

)
π (t) – α

(
x(t) – x(t – δ)

)
– c1(t) – c2(t)

]

+ ki(t)π (t)σ (t) + k̄i(t)σ̄ (t) – pi(t)g(t)z(t) + e–βtLi
ci(t)γ

γ
,

where the adjoint process (pi(·), qi(·), ki(·), k̄i(·)) satisfies

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dpi(t) = g(t)pi(t) dW (t),

–dqi(t) = {(r(t) – α)qi(t) + αEFt [qi(t + δ)]}dt – ki(t) dW (t) – k̄i(t) dW̄ (t),

pi(0) = Ki,

qi(T) = pi(T), qi(t) = ki(t) = k̄i(t) = 0, t ∈ (T , T + δ] (i = 1, 2).

Then we use the necessary maximum principle (Theorem 3.1) to find a candidate equi-
librium point:

c∗
1(t) =

(
L–1

1 eβt q̂1(t)
) 1

γ –1 ,

c∗
2(t) =

(
L–1

2 eβt q̂2(t)
) 1

γ –1 ,
(27)

where q̂i(t) = E[qi(t)|Gt] (i = 1, 2).
Now we have to deal with q̂i(t), the optimal filtering of qi(t) on the observation Gt . We

also set p̂i(t) = E[pi(t)|Gt]. Note that

E
{
E

[
qi(t + δ)|Ft

]|Gt
}

= E
[
qi(t + δ)|Gt

]
= E

{
E

[
qi(t + δ)|Gt+δ

]|Gt
}

= E
[
q̂i(t + δ)|Gt

]
.

Then, by Theorem 8.1 in [30], we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dp̂i(t) = g(t)p̂i(t) dW (t),

–dq̂i(t) = {(r(t) – α)q̂i(t) + αEGt [q̂i(t + δ)]}dt – k̂i(t) dW (t), t ∈ [0, T],

p̂i(0) = Ki,

q̂i(T) = p̂i(T), q̂i(t) = k̂i(t) = 0, t ∈ (T , T + δ] (i = 1, 2).

(28)

From (28), we can derive the explicit expression of p̂i(t) as

p̂i(t) = Ki exp

{∫ t

0
g(s) dW (s) –

1
2

∫ t

0
g2(s) ds

}

> 0, t ∈ [0, T],

which is a Gt-exponential martingale.
By Theorem 5.1 in [13], we can prove q̂i(t) ≥ 0, t ∈ [0, T]. Thus c∗

i (t) > 0 for all t ∈ [0, T].
Next, we will solve the anticipated BSDE of q̂i(t) recursively. This method can also be
found in [44, 45].
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(1) When t ∈ [T – δ, T], the ABSDE in (28) becomes a standard BSDE (without antici-
pation):

q̂i(t) = p̂i(T) +
∫ T

t

(
r(s) – α

)
q̂i(s) ds –

∫ T

t
k̂i(s) dW (s), t ∈ [T – δ, T].

Obviously, we have

q̂i(t) = exp

{∫ T

t

(
r(s) –α

)
ds

}

E
Gt

[
p̂i(T)

]
= exp

{∫ T

t

(
r(s) –α

)
ds

}

p̂i(t), t ∈ [T – δ, T].

From Proposition 5.3 in [4], (q̂i(t), k̂i(t)) is Malliavin differentiable and {Dtq̂i(t); T – δ ≤
t ≤ T} provides a version of {k̂i(t); T – δ ≤ t ≤ T}, i.e.,

k̂i(t) = Dtq̂i(t) = exp

{∫ T

t

(
r(s) – α

)
ds

}

Dtp̂i(t), t ∈ [T – δ, T].

(2) If we have solved ABSDE (28) on the interval [T – nδ, T – (n – 1)δ] (n = 1, 2, . . .), and
the solution {(q̂i(t), k̂i(t)); T – nδ ≤ t ≤ T – (n – 1)δ} is Malliavin differentiable, then we
continue to consider the solvability on the next interval [T – (n + 1)δ, T – nδ], where we
can rewrite ABSDE (28) as follows:

q̂i(t) = q̂i(T – nδ) +
∫ T–nδ

t

{(
r(s) – α

)
q̂i(s) + αEGs

[
q̂i(s + δ)

]}
ds –

∫ T–nδ

t
k̂i(s) dW (s).

We note that {(q̂i(s + δ), k̂i(s + δ)); t ≤ s ≤ T – nδ} has been solved and is Malliavin differ-
entiable. So the same discussion leads to {(q̂i(t), k̂i(t)); T –(n+1)δ ≤ t ≤ T –nδ} is Malliavin
differentiable, and

q̂i(t) = exp

{∫ T–nδ

t

(
r(s) – α

)
ds

}

E
Gt

[
q̂i(T – nδ)

]

+ α

∫ T–nδ

t
exp

{∫ s

t

(
r(η) – α

)
dη

}

E
Gt

[
q̂i(s + δ)

]
ds,

k̂i(t) = exp

{∫ T–nδ

t

(
r(s) – α

)
ds

}

E
Gt

[
Dtq̂i(T – nδ)

]

+ α

∫ T–nδ

t
exp

{∫ s

t

(
r(η) – α

)
dη

}

E
Gt

[
Dtq̂i(s + δ)

]
ds

for any t ∈ [T – (n + 1)δ, T – nδ], i = 1, 2.
We notice that all the conditions in the verification theorem (Theorem 3.2) are satisfied,

then Theorem 3.2 implies that (c∗
1(·), c∗

2(·)) given by (27) is an equilibrium point.

Proposition 5.1 The investment problem (23)-(24) admits an equilibrium point (c∗
1(·),

c∗
2(·)) which is defined by (27).

6 Conclusions
To the author’s best knowledge, this article is the first attempt to study the non-zero sum
differential game problem of AFBSDDE under partial information. Throughout this paper,
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there are four distinguishing features worthy of being highlighted. First, we considered the
time-delayed system, which has wide applications and can explain various past-dependent
situations. Second, we studied the game problem with multiple players and aimed to find
the Nash equilibrium point other than the optimal control. We established a necessary
condition (maximum principle) and a sufficient condition (verification theorem) by virtue
of the duality and convex variation approach. Third, we discussed an LQ system under the
partial information condition. Applying the stochastic filtering formula, we derived the fil-
tering equation and proved the existence and uniqueness of the filtering equation and the
corresponding Nash equilibrium point. Fourth, we solved a pension fund management
problem with a nonlinear expectation to measure the risk (convex risk measure) and ob-
tained the explicit solution.
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