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Abstract
In this paper, the dynamic output feedback control problem of discrete-time
singularly perturbed systems is considered based on the reduced-order technique.
We first show that a proper but not strictly proper dynamic output feedback
controller designed for the reduced-order model generally is not a stabilizing
compensator for the original system, even though the fast subsystem is stable. To
obtain the robustness of the dynamic output feedback controller, an auxiliary system
is designed. Based on this, the design of the dynamic output feedback for the
reduced-order subsystem is reduced to the simultaneous design of a static output
feedback controller for the fast subsystem and a strictly proper dynamic output
feedback controller for the auxiliary system, respectively. Based on the obtained
results, we confirm that it is possible to generate the robustness for the proposed
dynamic output feedback control. Thus, the restriction on the strict properness can
be alleviated. Finally, a realistic practical example for the nuclear reactor model is
provided to show the effectiveness of the obtained theoretical results.

Keywords: discrete-time singularly perturbed systems; hybrid systems; output
feedback control; linear matrix inequality

1 Introduction
The problem of controller design for singularly perturbed systems has attracted the atten-
tion of many researchers for many years [1–4]. A common method adopted to deal with
such systems is based on the two-time-scale decomposition technique, which can effec-
tively alleviate the ill condition and high dimensionality resulting from the interaction of
slow and fast subsystems [1]. Due to the great development of information technique, the
design of the feedback controller for discrete-time singularly perturbed systems has been
investigated by many studies, and some important results have also been obtained despite
being in much fewer numbers than the continuous case [5–15].

In the past years, the linear matrix inequality (LMI) technique has been widely proposed
to solve control problems [16]. In contrast to the Riccati approach, the LMIs that arise in
a system and control theory can be formulated as convex optimization problems that are
amenable to compute a solution and can be solved effectively. Another advantage of the
LMI is the ability to add constraints to the parametrical optimization problem provided
they are linear with respect to unknowns. Recently, many important results for discrete-
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time singularly perturbed systems have been obtained by using the LMI technique [17–
22]. It is shown in [19] and [20] that an LMI approach has been proposed to solve the
H∞ control problems for the discrete-time singularly perturbed systems. However, some
inequalities were used in the derivation of solvability conditions, which would lead to some
conservatism. For this, references [21] and [22] present new LMI sufficient conditions to
improve the results.

On the other hand, it can be seen that most of the above results are based on the state
feedback. However, in most practical control systems, not all the state variables are di-
rectly measurable. In this case, it is necessary to design an output feedback controller.
In general, the output feedback control is addressed by the following ways: static out-
put feedback, observer-based output feedback and dynamic output feedback. Compared
with the first two cases, the dynamic output feedback is more effective to improve the
closed-loop transient response. However, in exchange, the design of the dynamic output
feedback controller is more complex and difficult. Thus, there are few works reported
on this topic [23–27]. It is shown in [27] that the dynamic output feedback controller de-
signed for the slow subsystems and the fast subsystems must be strictly proper. Otherwise,
a proper dynamic output feedback may destabilize the stable boundary system unless the
system has a particular structure. Moreover, only the theoretical results are given in [23–
26], how to search an effective approach to solve the gain matrices of the dynamic out-
put feedback controller has not been discussed. Therefore, when revisiting this problem,
we find that there is still much room left for improvement, which motivates the present
study.

In this paper, we focus on the problem of designing a proper but not strictly proper
dynamic output feedback controller for a class of fast sampling discrete-time singularly
perturbed systems using the reduced-order model. By constructing an auxiliary system
for the slow subsystem, the design of the dynamic output feedback controller for the slow
subsystem is reduced to the simultaneous design of the static output feedback controller
for the fast subsystem and the strictly proper dynamic output feedback controller for the
auxiliary system, respectively. Thus, asymptotic stability of the resulting closed-loop sys-
tem is guaranteed when the perturbation parameter is sufficiently small. Finally, a realistic
practical example for the nuclear reactor model is provided to illustrate the derived re-
sults. Compared with the existing results, the developed method in this paper has the
following advantages: (1) the proposed method links the reduced technique and the LMI
together, which not only alleviates the high dimensionality and ill condition resulting from
the interaction of slow and fast dynamics models, but also avoids the regularity restrictions
attached to the Riccati-based solutions; (2) the developed results show that the proposed
sufficient condition has alleviated the requirement on the strict properness; (3) the pre-
sented condition can be easily verified because it only depends on the solution of a linear
matrix inequality.

Notation: Throughout this paper the superscripts ‘T ’ and ‘–1’ stand for the transpose
of a matrix and the inverse of a matrix, respectively; the notation P > 0 (or P ≥ 0) means
that P is symmetric and positive definite (or semi-positive definite); λ(A) stands for the
eigenvalues of the matrix A; I denotes the identity matrix with appropriate dimensions;
Re(·) denotes the real part of a complex number.
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2 Problem formulation
In this paper, we are concerned with the dynamic output feedback problem for the follow-
ing discrete-time singularly perturbed system:

x1(k + 1) = (I + εA11)x1(k) + εA12x2(k) + εB1u(k), (1a)

x2(k + 1) = A21x1(k) + A22x2(k) + B2u(k), (1b)

y(k) = C1x1(k) + C2x2(k), (2)

where x1 ∈ Rn1 and x2 ∈ Rn2 (n1 + n2 = n) denote the state vectors of the slow and fast dy-
namics, respectively; u ∈ Rq is the control input; y ∈ Rp is the output; the small parameter
ε > 0 is positive; all matrices in system (1)-(2) are constant matrices with appropriate di-
mensions. It is shown in [6] that this model can be obtained by the discrete-time analogue
for a continuous system under the fast sampling rate.

As a precondition for implementing the two-time-scale technique, we first give the fol-
lowing assumption for system (1)-(2).

Assumption 1 I – A22 is invertible.

Noticing the two-time-scale property of (1), the slow and fast subsystems for (1) can be
decomposed by the reduced technique in [6]:

ẋs(t) = Asxs(t) + Bsus(t), xs(0) = x10, (3a)

ys(t) = Csxs(t) + Dsus(t), (3b)

x̄2(t) = (I – A22)–1(A21xs(t) + Bsus(t)
)
, (4)

and

xf (k + 1) = A22xf (k) + B2uf (k), xf (0) = x20 – x̄2(0), (5a)

yf (k) = C2xf (k), (5b)

where

As = A11 + A12(I – A22)–1A21, Bs = B1 + A12(I – A22)–1B2,

Cs = C1 + C2(I – A22)–1A21, Ds = C2(I – A22)–1B2.

Remark 1 This hybrid state arises from the definition of the slow and fast subsystems,
where the evolution of continuous-time slow subsystems is justified although there is little
else which is surprising in the theory. A more detailed description can be found in [5] and
[6].

Since (3) is only an approximate model of system (1), can a dynamic output feedback
designed for the reduced-order subsystem stabilize the original full-order system? Next,
we will address this problem.
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We consider the following dynamic output feedback controller for reduced-order sub-
system (3):

ζ̇ (t) = Mζ (t) + Nys(t), us(t) = Gζ (t) + Hys(t), (6)

where ζ (t) ∈ Rn1 is the controller state. M, N , G and H are unknown constant matrices
to be determined. Because (3b) has a direct transmission item, it is required that I – DsH
is invertible. Thus, this guarantees that ys can be determined uniquely. Submitting this
controller to the reduced-order subsystem (3) gives the following closed-loop system:

(
ẋs(t)
ζ̇ (t)

)

= �s

(
xs(t)
ζ (t)

)

, (7)

where

�s =

(
As + BsH(I – DsH)–1Cs BsG + BsH(I – DsH)–1DsG

N(I – DsH)–1Cs M + N(I – DsH)–1DsG

)(
xs(t)
ζ (t)

)

.

By applying a discrete version of the dynamic output feedback (6)

u(k) = Gξ (k) + Hy(k), (8)

where ξ (k) ∈ Rn1 , the controller state is defined by

ξ (k + 1) = (I + εM)ξ (k) + εNy(k), (9)

the actual closed-loop system of (1) can be obtained as

(
v(k + 1)
x2(k + 1)

)

= �

(
v(k)
x2(k)

)

=

(
I + ε�11 ε�12

�21 �22

)(
v(k)
x2(k)

)

, (10)

where

v =

(
x1

ξ

)

, �11 =

(
A11 + B1HC1 B1G

NC1 M

)

, �12 =

(
A12 + B1HC2

NC2

)

,

�21 =
(

A21 + B2HC1 B2G
)

, �22 = A22 + B2HC2.

In order to show the relation between systems (7) and (10), using the nonsingular transfor-
mation [8], the slow and fast parts of closed-loop system (10) can be separated by defining

(
σ (k)
τ (k)

)

= T

(
v(k)
x2(k)

)

, T =

(
I2n1 + εHR εH

R In2

)

, T–1 =

(
I2n1 –εH
–R In2 + εRH

)

,

where

R = –(I – �22)–1�21 + O(ε), H = �12(I – �22)–1 + O(ε). (11)
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This results in
(

σ (k + 1)
τ (k + 1)

)

=

(
I + εEs O

O Ef

)(
σ (k)
τ (k)

)

, (12)

where

Es = �11 – �12R = �11 + �12(I – �22)–1�21 + O(ε), (13)

Ef = �22 + εR�12 = �22 + O(ε) = A22 + B2HC2 + O(ε). (14)

It can be seen from (11) that the nonsingularity of the matrix I – �22 is needed. Next, let
us verify that I – �22 is nonsingular. Use of the identity

(I – A22 – B2HC2)(I – �22)–1 = I

yields

(I – �22)–1 = (I – A22)–1[I + B2HC2(I – �22)–1]. (15)

Rearranging (15), we have

(I – A22)–1 =
[
I – (I – A22)–1B2HC2

]
(I – �22)–1,

so that

C2(I – A22)–1 = [I – DsH]C2(I – �22)–1. (16)

Pre-multiplication of both sides of (16) by (I – DsH)–1 results in

(I – DsH)–1C2(I – A22)–1 = C2(I – �22)–1. (17)

Hence, substituting (17) into (15), we have

(I – �22)–1 = (I – A22)–1[I + B2(I – DsH)–1C2(I – A22)–1].

Thus, (13) is well defined.
Similarly, for Es, it can be shown after lengthy manipulation that

Es = �11 + �12(I – �22)–1�21 + O(ε) = �s + O(ε). (18)

Then the asymptotic stability of closed-loop system (10) requires that the following con-
ditions hold:

(1) Re
{
λ(Es)

}
< 0, (2)

∣∣λ(Ef )
∣∣ < 1. (19)

From inequality (18), it is easy to see that condition (1) can be satisfied if closed-loop
system (7) is asymptotically stable. However, condition (2) cannot be generally guaranteed
even if the matrix A22 is stable, unless one of the following conditions is satisfied:
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i. |λ(A22)| < 1, B2 = 0 or |λ(A22)| < 1, C2 = 0, i.e., the asymptotically stable fast
subsystem is either not directly fed from the input or not directly sensed at the
output.

ii. |λ(A22)| < 1, H = 0, i.e., the output feedback control (8)-(9) does not have a static
output feedback.

iii. (A22, B2) is controllable and C2 is full-rank.
For the first two cases, the results show that the dynamic output feedback designed for

the reduced-order system is strictly proper or the system has a particular structure. For the
third case, the proposed condition is general; however, only the theoretical result is given,
the design of gain matrices has not been discussed in [23–26]. How to design these pa-
rameters is very important. Next, we will investigate a non-strictly proper dynamic output
feedback controller for system (1)-(2).

3 Main results
Consider the following auxiliary system:

˙̃xs = Ãsx̃s + B̃sũs, ỹs = C̃sx̃s + D̃sũs, (20)

where

Ãs = As + BsH(I – DsH)–1Cs, B̃s = Bs + BsH(I – DsH)–1Ds,

C̃s = (I – DsH)–1Cs, D̃s = (I – DsH)–1Ds.

It is easy to see that the design of the proper dynamic output feedback controller for
reduced-order system (3)-(4) is equivalent to the strictly proper one for auxiliary system
(19) with the following form:

˙̃
ζ (t) = Mζ̃ (t) + Nỹs(t), ũs(t) = Gζ̃ (t), (21)

where M, N and G are defined in (6).
Combining (19) and (20), we can see that the robustness problem considered here is to

find some sufficient conditions such that the static output feedback gain matrix H and the
strictly proper dynamic output feedback gain matrices M, N and G can assign the desired
stable poles to the auxiliary systems and fast subsystem (5)-(6), respectively.

For the static output feedback of fast subsystem (5)-(6), using the pole-assignment tech-
nique, the gain matrix H can be designed to place min(n1, p) eigenvalues arbitrarily close
to their desired locations [10]. In fact, there are a lot of existing works addressing this
problem, and various methods have been proposed, e.g., Riccati equation approach, rank-
constrained condition, approach based on structural properties, bilinear matrix inequality
(BMI) approaches, min-max optimization techniques, and linear matrix inequality ap-
proaches [28, 29]. Among them, the LMI approaches are much more efficient in dealing
with synthesis problems [30–32], thus many results have also been obtained. In addition,
the survey on the development of static output feedback can be found in [33].

For the strictly proper dynamic output feedback design of auxiliary system (20), a suffi-
cient and necessary condition in terms of LMIs is given in the following theorem.
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Theorem 1 Consider auxiliary system (20). There exists a strictly proper dynamic output
feedback in the form of (21) such that the resulting closed system is asymptotically stable if
and only if there exist matrices X > 0, Y > 0, 
 and � satisfying the following LMIs:

(
X I
I Y

)

≥ 0, (22)

ÃT
s X + XT Ãs + 
C̃s + C̃T

s 
T < 0, (23)

ÃsY + Y T ÃT
s – B̃s� – �T B̃T

s < 0. (24)

If (22)-(24) hold, then the dynamic output feedback controller gain matrices in (21) can be
chosen as

M =
(
X – Y –1)–T(

ÃT
s Y –1 + XT Ãs – XT B̃s�Y –1 + 
C̃s – 
D̃s�Y –1),

N =
(
Y –1 – X

)–T

, G = –�Y –1.

(25)

Proof (Sufficiency) When (22)-(24) is satisfied, we first show that there exist matrices X,
Y , 
 and � such that Y –1 – X is nonsingular. In fact, if Y –1 – X is singular, then we can
choose any positive definite matrix X̄ and let θ ∈ (0, 1) satisfying that θ is not an eigenvalue
of (Y –1 – X)X̄–1 and is small enough such that X is replaced by X + θ X̄, the inequality in
(22)-(24) still holds. Then it is not difficult to see that X +θ X̄ –Y –1 is nonsingular. Applying
the dynamic output feedback controller with the parameters given in (25), we obtain the
following closed-loop system:

(
ẋs(t)
ζ̇ (t)

)

=

(
Ãs –B̃s�Y –1

(Y –1 – X)–T
C̃s 


)(
xs(t)
ζ (t)

)

, (26)

where 
 = (X – Y –1)–T (ÃT
s Y –1 + XT Ãs – XT B̃s�Y –1 + 
C̃s). Set

Ps =

(
X Y –1 – X

Y –1 – X X – Y –1

)

.

Considering that X – (Y –1 – X)(X – Y –1)–1(Y –1 – X) = X + Y –1 – X > 0. According to the
Schur complement lemma, one has Ps > 0. Furthermore, after some algebraic operations,
it can be verified

�T
s Ps + PT

s �s =

(
�11 –�11

–�11 �22

)

,

where

�11 = ÃT
s X + XT Ãs + 
C̃s + C̃T

s 
T ,

�22 = �11 + ÃT
s Y –1 + Y –T Ãs – Y –T(

B̃s� + �T B̃T
s
)
Y –1.

Pre- and post-multiplying both sides of (24) with Y –T and Y –1, we get

ÃT
s Y –1 + Y –T Ãs – Y –T(

B̃s� + �T B̃T
s
)
Y –1 < 0.
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It follows from (23) that �22 < 0. Noticing �11 < 0, �22 – �11 < 0, and using the Schur
complement lemma again, we obtain

(
�11 –�11

–�11 �22

)

< 0.

Thus, �T
s Ps + PT

s �s < 0. That is, closed-loop system (20) is asymptotically stable.
(Necessity) Suppose that there exists a dynamic output feedback controller in (21) such

that closed-loop system (20) is asymptotically stable. Then there exists a positive definite
matrix Qs > 0 such that

�T
s Qs + QT

s �s < 0. (27)

Denote

Qs =

(
Qs1 Qs2

Qs3 Qs4

)

.

Then it is easy to see that Qs1 > 0, Qs2 > 0 and � = Qs1 – Qs2Q–1
s4 Qs3 > 0. By the 1-1 block

of (27), we have

ÃT
s Qs1 + QT

s1Ãs + QT
s3NC̃s + C̃T

s NT Qs3 < 0.

Set X = Qs1, 
 = QT
s3N . Then it can be seen that (23) holds. Now, let

ϒ =

(
I O

–Q–1
s4 Qs3 I

)

.

Pre- and post-multiplying (27) by ϒT and ϒ , respectively, we have

�T Ãs + ÃT
s � – �T B̃sGQ–1

s4 Qs3 – QT
s3Q–T

s4 GT B̃T
s � < 0.

Set Y = �–1, � = GQ–1
s4 Qs3Y , and pre- and post-multiplying the above inequality by Y T

and Y , respectively, one has that (24) holds.
Observe that X > 0 and X – Y –1 = Qs2Q–1

s4 Qs3 ≥ 0. By the Schur complement, we have
that (22) is satisfied. This completes the proof. �

Remark 2 Theorem 1 presents a sufficient and necessary condition for the existence of
the dynamic output feedback controller of the reduced-order subsystem. Furthermore, a
workable way for solving the gain matrices M, N and G is also given. It is worth mentioning
that, under this condition, there is no other restriction for the dynamic output feedback
controller design, except the system itself.

Remark 3 The proposed method in this paper guarantees that the proper dynamic output
feedback controller designed for the reduced-order subsystem is a stabilizing one for the
full-order system. In particular, it is not difficult to see that the stability of the limit case
(i.e., slow subsystems and fast subsystems) of the resulting closed-loop systems is still pre-
served as ε → 0. It is worth pointing out that the singular perturbation approach is not yet
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fully adopted in many literature works. Instead, the singular system approach is adopted,
in which the singular perturbation parameter ε > 0 is viewed as a static scalar. This brings
some simplification to system analysis and synthesis. However, the performance of the
limit case of the closed-loop systems may not be guaranteed as ε → 0, and even more, the
basic requirement for poles placement cannot be satisfied.

4 A numerical example
Consider a nuclear reactor model whose physical model can be found in [20], which can
be described by the following state equations:

ẋ1 = –λx1 + λx2, (28)

ẋ2 =
β

ν
x1 +

β

ν
x2 +

ρ

ν
, (29)

where x1 and x2 represent the normalized precursors’ concentration and neutron density,
respectively. The parameters ρ , λ, β and ν represent the reactivity, precursors’ decay con-
stant, delayed-neutron yield and neutron generation-time, respectively, where λ = 0.001,
β = 0.0064 and ν = 0.08. By discretizing the model with a sampling period T = 0.05s and a
zero-order holder, we can obtain the discrete model with a controlled output considered
in the following form:

x1(k + 1) = (1 – 0.3417ε)x1(k) + 0.3417εx2(k) + 9.0021εu(k), (30a)

x2(k + 1) = 0.2733x1(k) + 0.7267x2(k) + 42.7983u(k), (30b)

y(k) = 2x1(k) + x2(k). (31)

From (30)-(31), the slow and fast subsystems are obtained as

ẋs(t) = 62.5117us(t), (32a)

ys(t) = 3xs(t) + 156.5982us(t) (32b)

and

xf (k + 1) = 0.7267xf (k) + 42.7983uf (k), (33a)

yf (k) = xf (k). (33b)

We first give the following controller for the slow subsystem:

ζ̇ (t) = 0.3ζ (t) – 0.2ys(t),

us(t) = –0.008ζ (t) + 0.05ys(t),

which locates the poles at {–0.5548 + 2.3812i, –0.5548 – 2.3812i}, thus system (32) with
the above dynamic output feedback control is stable. When this controller is applied to
the full-order system, it results in the following closed-loop system:

⎛

⎜
⎝

x1(k + 1)
ξ (k + 1)
x2(k + 1)

⎞

⎟
⎠ =

⎛

⎜
⎝

1 + ε0.5585 –0.072 0.7918
–0.4 1 + ε0.3 –0.2

4.5531 –0.3424 2.8666

⎞

⎟
⎠

⎛

⎜
⎝

x1(k)
ξ (k)
x2(k)

⎞

⎟
⎠ .
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We find that the closed-loop system is unstable for sufficiently small parameter ε because
�22 = A22 + B2HC2 = 2.8667 > 1. In order to guarantee that a non-strictly dynamic output
feedback with the gain matrices M, N , G and H designed for reduced-order subsystem
(32) can stabilize system (30), the proposed method in this paper is considered.

First, by resorting to Theorem 1 in [32], the static output feedback controller gain matrix
for the fast subsystem is obtained as H = –0.017.

Using Theorem 1 with the aid of LMI toolbox, the following solutions for the auxiliary
system can be obtained from (22)-(24):

X = 5.2782 × 108, Y = 5.2782 × 108,


 = 2.3875 × 108, � = –1.1458 × 107.

Thus, one has

M = –0.1214, N = –0.4523, G = 0.0217.

From Theorem 1, we can conclude that the dynamic output feedback controller de-
signed for the reduced-order subsystem stabilizes the original full-order system (30) for
a sufficiently small ε. For the small parameter ε, Li et al. in [14] proposed the latest re-
sult to compute the upper bound. Applying the method to system (30)-(31), we obtain
the exact ε upper bound as ε∗ = 1.1906. Given the initial condition (x1(0) ξ (0) x2(0))T =
(–1.5 –1.5 1.5)T , the simulation results for the response of closed-loop system (5) are
shown in Figures 1-2, from which it can be seen that the presented proper but not strictly
proper dynamic output feedback control scheme can effectively guarantee the stability of
the closed-loop system. Thus, the requirement for the strict properness can be alleviated.

Figure 1 The state response of closed-loop system (5) with ε = 0.1.
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Figure 2 The state response of closed-loop system (5) with ε = 1.18.

5 Conclusion
In this paper, the proper dynamic output feedback controller for the fast sampling discrete-
time singularly perturbed system is addressed using the reduced-order model. The design
of a proper but not strictly proper dynamic output feedback controller is reduced to the
simultaneous design of the static output feedback controller for the fast subsystem and the
strictly proper dynamic output feedback controller for the auxiliary system, respectively.
Thus, the requirement for the strict properness of the dynamic output feedback controller
has been removed successfully. This is the main difference from the existing works. Finally,
the given example has illustrated the effectiveness of the obtained method.
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