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Abstract
In this paper, we investigate the solutions of boundary value problems for
second-order p-Laplacian difference equations. By using the critical point theory, the
existence and multiple results are obtained.
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1 Introduction
In this paper, we consider the following second-order p-Laplacian difference equation:

�
(
qnϕp(�xn–1)

)
+ fn(xn) = 0, n ∈ Z(1, k), (1.1)

with boundary value conditions

αx0 – β�x0 = 0 = γ xk+1 + σ�xk , (1.2)

where � is the forward difference operator �xn = xn+1 – xn, ϕp(s) is the p-Laplacian opera-
tor ϕp(s) = |s|p–2s (1 < p < ∞), qn is real-valued for each n ∈ Z, k is a given positive integer,
α, β , γ and σ are constants, f ∈ C(R2, R). Boundary value problem (1.1) with (1.2) contains
the following boundary value conditions:

x0 = 0, xk+1 = 0;

x0 = 0, �xk = 0;

�x0 = 0, xk+1 = 0;

and

�x0 = 0, �xk = 0.

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13662-017-1435-4
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-017-1435-4&domain=pdf
mailto:shp7971@163.com


Shi and Zhang Advances in Difference Equations  (2017) 2017:379 Page 2 of 9

Eq. (1.1) can be considered as a discrete analogue of the following second-order differ-
ential equation:

(
q(t)ϕp

(
x′))′ + f

(
t, x(t)

)
= 0, t ∈ R. (1.3)

Eq. (1.3) includes the following equation:

(
q(t)ψ

(
x′))′ + f

(
t, x(t)

)
= 0, t ∈ R, (1.4)

which has arose in the study of fluid dynamics, gas diffusion through porous media and
adiabatic reactor [1]. Equations similar in structure to (1.4) arise in the study of homoclinic
orbits [2–4] of differential equations [5].

In 2007, Chen and Fang [6] obtained a sufficient condition for the existence of periodic
and subharmonic solutions of second-order p-Laplacian difference equation

�
(
ϕp(�xn–1)

)
+ fn(xn+1, xn, xn–1) = 0, n ∈ Z, (1.5)

by using the critical point theory. Moreover, Shi et al. [7] investigated the existence and
multiplicity results for the Dirichlet boundary value problem (BVP) of (1.4) by using the
mountain pass lemma in combination with variational techniques.

Liu et al. [8] in 2013 considered the existence of a nontrivial homoclinic orbit of the
following second-order p-Laplacian difference equation:

�
(
ϕp(�xn–1)

)
– qn

(
ϕp(�xn)

)
= fn(xn+1, xn, xn–1), n ∈ Z, (1.6)

and gave some new results.
By using critical point theory, Chen and Tang [9] established some existence criteria to

guarantee that the second-order discrete p-Laplacian system

�
(
ϕp(�xn–1)

)
– an|xn|p–2xn + ∇Wn(xn) = 0, n ∈ Z, (1.7)

has at least one homoclinic orbit.
In this paper, we investigate the solutions of boundary value problems (1.1) with (1.2) for

a second-order p-Laplacian difference equation [6–25]. By using the critical point theory
[26–28], the existence and multiple results are obtained. The proof is based on the varia-
tional methods and linking theorem. The motivation for the present work stems from the
recent papers [22, 29].

Let

F(t, z) =
∫ z

0
f (t, s) ds ≥ 0

and

qmin = min
{

qn : n ∈ Z(1, k + 1)
}

, qmax = max
{

qn : n ∈ Z(1, k + 1)
}

.

Let Bρ denote the open ball in E about 0 of radius ρ , and let ∂Bρ denote its boundary.
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This paper is divided into four parts. First of all, Section 2 states some basic notations
and presents variational structure. Second, in Section 3, we shall state and prove our main
results by using the variational methods. Finally, in Section 4, we shall give an example to
illustrate the applicability of the main results.

2 Variational structure
Our main tool is the critical point theory. We shall establish a suitable variational structure
to study the existence of boundary value problem (1.1) with (1.2). At first, we shall state
some basic notations which will be used in the proofs of our main results.

Let Rk be a real Euclidean space with dimension k. On the one hand, we define the inner
product on Rk as follows:

〈x, y〉 =
k∑

j=1

xjyj, ∀x, y ∈ Rk , (2.1)

by which the norm ‖ · ‖ can be induced by

‖x‖ =

( k∑

j=1

x2
j

) 1
2

, ∀x ∈ Rk . (2.2)

On the other hand, we define the norm ‖ · ‖s on Rk as follows:

‖x‖s =

( k∑

j=1

|xj|s
) 1

s

for all x ∈ Rk and s > 1.
Since ‖x‖s and ‖x‖2 are equivalent, there exist constants k1, k2 such that k2 ≥ k1 > 0, and

k1‖x‖2 ≤ ‖x‖s ≤ k2‖x‖2, ∀x ∈ Rk . (2.3)

For boundary value problem (1.1) with (1.2), consider the functional J defined on Rk as
follows:

J(x) =
1
p

k+1∑

n=1

qn|�xn–1|p –
k∑

n=1

Fn(xn) + ϕp

(
γ

σ

)
qp

k+1xp
k+1

p
+ ϕp

(
α

β

)
qp

1xp
0

p
,

where

x = {xn}k
n=1 = (x1, x2, . . . , xk)∗, αx0 – β�x0 = 0 = γ xk+1 + σ�xk .

It is easy to see that J ∈ C1(Rk , R) and, for any x = {xn}k
n=1 = (x1, x2, . . . , xk)∗, by using

αx0 – β�x0 = 0 = γ xk+1 + σ�xk and the summation by parts

k∑

n=1

yn�xn–1 = ykxk – y1x0 –
k∑

n=1

�ynxn,
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we can compute the partial derivative as

∂J
∂xn

= –�
(
qnϕp(�un–1)

)
– fn(xn), ∀n ∈ Z(1, k).

Thus, x is a critical point of J on Rk if and only if

�
(
qnϕp(�un–1)

)
+ fn(xn) = 0, ∀n ∈ Z(1, k).

We reduce the existence of boundary value problem (1.1) with (1.2) to the existence of
critical points of J on Rk . That is, the functional J is just the variational framework of
boundary value problem (1.1) with (1.2).

Denote

W =
{

(x1, x2, . . . , xk)∗ ∈ Rk|xn = c, c ∈ R, n ∈ Z(1, k)
}

,

and let V be the direct orthogonal complement of Rk to W , i.e., Rk = V ⊕ W .
Let

M =

⎛

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎝

1 –1 0 · · · 0 0
–1 2 –1 · · · 0 0
0 –1 2 · · · 0 0

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 2 –1
0 0 0 · · · –1 1

⎞

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎠

be a (k + 1) × (k + 1) matrix.
It is easy to see that 0 is an eigenvalue of M and ξ = 1√

k+1
(1, 1, . . . , 1)∗ ∈ Rk+1 is an eigen-

vector of P corresponding to 0. Let λ1,λ2, . . . ,λk be the other eigenvalues of M. Applying
matrix theory, it is obvious that λj > 0 for all j ∈ Z(1, k).

Let

λmax = max{λj|j = 1, 2, . . . , k}, (2.4)

λmin = min{λj|j = 1, 2, . . . , k}. (2.5)

For convenience, we identify x ∈ Rk with x = (x1, x2, . . . , xk)∗.

3 Main results
In this section, we shall state and prove our main results by using the variational methods.

Theorem 3.1 Suppose that the following assumptions are satisfied:

(B1) α ≥ 0, β > 0, γ ≥ 0 and σ > 0;
(q1) For any n ∈ Z(1, k + 1), qn > 0;
(F1) There exist constants c1 > 0, c2 > 0 and τ > p such that

F(t, y) ≥ c1|y|τ – c2, ∀(t, y) ∈ R2.

Then boundary value problem (1.1) with (1.2) possesses at least one solution.
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Proof For any x = (x1, x2, . . . , xk)∗ ∈ Rk , combining with (F1), it is easy to see that

J(x) =
1
p

k+1∑

n=1

qn|�xn–1|p –
k∑

n=1

Fn(xn) + ϕp

(
γ

σ

)
qk+1xp

k+1
p

+ ϕp

(
α

β

)
q1xp

0
p

≤ qmax2p

p

k+1∑

n=1

(|xn|p + |xn–1|p
)

– c1

k∑

n=1

|xn|τ + c2k + ϕp

(
γ

σ

)
qmax

p
‖x‖p

p

+ ϕp

(
α

β

)
qmax

p
‖x‖p

p

≤ 3qmax2p

p
‖x‖p

p – c1kτ
2 ‖x‖τ

τ + c2k + ϕp

(
γ

σ

)
qmax

p
‖x‖p

p + ϕp

(
α

β

)
qmax

p
‖x‖p

p

≤
[

3qmax2p

p
+ ϕp

(
γ

σ

)
qmax

p
+ ϕp

(
α

β

)
qmax

p

]
kp

2‖x‖p – c1kτ
1 ‖x‖τ + c2k → –∞

as ‖x‖ → +∞. By the continuity of J(x), we have from the above inequality that there exist
upper bounds of values of functional J . Classical calculus shows that J attains its maximal
value at some point which is just the critical point of J , and the result follows. The proof
of Theorem 3.1 is finished. �

Theorem 3.2 Suppose that the following hypotheses are satisfied:

(B2) α = 0, β > 0, γ = 0 and σ > 0;
(q2) For any n ∈ Z(1, k), qn > 0;

(F2) There exist constants η1 > 0, a1 ∈ (0, qminλ

p
2
min

p ( k1
k2

)p) such that

F(t, y) ≤ a1|y|p, ∀|y| ≤ η1;

(F3) There exist constants η2 > 0, a2 ∈ ( λ

p
2
maxqmax

p ( k2
k1

)p, +∞), a3 > 0 such that

F(t, y) ≥ a2|y|p – a3, ∀|y| ≥ η2,

where λmin and λmax are constants which can be referred to in (2.4) and (2.5).

Then BVP (1.1) with (1.2) possesses at least two nontrivial solutions.

Remark 3.1 By (F3) it is easy to see that there exists a constant a4 > 0 such that

(F ′
3) F(t, y) ≥ a2|y|p – a4, ∀(t, y) ∈ R2.

Lemma 3.1 (Linking theorem [27, 28]) Let E be a real Banach space, E = E1 ⊕ E2, where
E1 is finite dimensional. Suppose that J ∈ C1(E, R) satisfies the P.S. condition and

(J1) There exist constants a > 0 and ρ > 0 such that J|∂Bρ∩E2 ≥ a;
(J2) There exist e ∈ ∂B1 ∩ E2 and a constant R0 ≥ ρ such that J|∂Q ≤ 0, where Q = (B̄R0 ∩

E1) ⊕ {se|0 < s < R0}.

Then J possesses a critical value c ≥ a, where

c = inf
h∈�

sup
u∈Q

J
(
h(u)

)
,

and � = {h ∈ C(Q̄, E) | h|∂Q = I}, where I denotes the identity operator.
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Lemma 3.2 (Clark theorem [27, 28]) Let E be a real Banach space, J ∈ C1(E, R), with J
being even, bounded from below and satisfying the P.S. condition. Suppose J(θ ) = 0, there
is a set G ⊂ E such that G is homeomorphic to Sn–1 (n-1 dimension unit sphere) by an odd
map, and supG J < 0. Then J has at least n distinct pairs of nonzero critical points.

Lemma 3.3 Suppose that (B2), (q2), (F2) and (F3) are satisfied. Then the functional J sat-
isfies the P.S. condition.

Proof It follows from (B2) that

J(x) =
1
p

k+1∑

n=1

qn|�xn–1|p –
k∑

n=1

Fn(xn).

Let {x(l)}l∈N ⊂ Rk be such that {J(x(l))}l∈N is bounded and J ′(x(l)) → 0 as l → ∞. Then
there exists a positive constant K such that

–K ≤ ∣
∣J

(
x(l))∣∣ ≤ K , ∀l ∈ N.

By (F ′
3), for any {x(l)}l∈N ⊂ Rk ,

–K ≤ J
(
x(l)) =

1
p

k+1∑

n=1

qn
∣
∣�x(n)

n–1
∣
∣p –

k∑

n=1

Fn
(
x(l)

n
)

≤ qmaxkp
2

p

[ k+1∑

n=1

(
�x(l)

n–1
)2

] p
2

–
k∑

n=1

[
a2

∣∣x(l)
n

∣∣p – a4
]

≤ qmaxkp
2

p
∥∥x(l)∥∥p – a2kp

1
∥∥x(l)∥∥p + a4k

=
(

qmaxkp
2λ

p
2
max

p
– a2kp

1

)∥∥x(l)∥∥p + a4k.

Thus, we have

(
qmaxkp

2λ
p
2
max

p
– a2kp

1

)∥
∥x(l)∥∥p ≤ K + a4k.

From a2 ∈ ( λ

p
2
maxqmax

p ( k2
k1

)p, +∞) and the above inequality, it is easy to see that {x(l)}l∈N is a
bounded sequence in Rk . Therefore, {x(l)}l∈N possesses a convergent subsequence in Rk

and the result follows. Lemma 3.3 is proved. �

Proof of Theorem 3.2 By Lemma 3.3, we have that J is bounded from above on Rk . Let
c0 = supx∈Rk J(x). It comes from the proof of Lemma 3.3 that

lim‖x‖→+∞ J(x) = –∞.

This implies that –J(x) is coercive. From the continuity of J(x), there exists x̄ ∈ Rk such
that J(x̄) = c0. It is easy to see that x̄ is a critical point of J .
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For any x ∈ V , ‖x‖ ≤ ρ , it follows from (F2) that

J(x) =
1
p

k+1∑

n=1

qn|�xn–1|p –
k∑

n=1

Fn(xn)

≥ qminkp
1

p

[ k+1∑

n=1

(�xn–1)2

] p
2

– a1

k∑

n=1

|xn|p

≥ qminkp
1λ

p
2
min

p
‖x‖p – a1kp

2‖x‖p

=
(

qminkp
1λ

p
2
min

p
– a1kp

2

)
‖x‖p.

Thus, c0 > 0. Taking

a =
(

qminkp
1λ

p
2
min

p
– a1kp

2

)
ρp,

we have

J(x) ≥ a, ∀x ∈ V ∩ ∂Bρ . (3.1)

This implies that J satisfies the condition (J1) of the linking theorem.
For all x ∈ W , it comes from

∑k+1
n=1 |�xn–1|p = 0 that

J(x) =
1
p

k+1∑

n=1

|�xn–1|p –
k∑

n=1

Fn(xn) = –
k∑

n=1

Fn(xn) ≤ 0.

Therefore, the critical point x̄ of J corresponding to the critical value c0 is a nontrivial
solution of BVP (1.1) with (1.2).

It follows from Lemma 3.3 that J satisfies the P.S. condition on Rk . So it remains to verify
the condition (J2).

Take e ∈ ∂B1 ∩ V , for any z ∈ W and r ∈ R, let x = re + z. Then

J(x) =
1
p

k+1∑

n=1

qn
∣
∣�(ren–1 + zn–1)

∣
∣p –

k∑

n=1

Fn(ren + zn)

=
1
p

k+1∑

n=1

qn
∣∣�(ren–1)

∣∣p –
k∑

n=1

(
a2|ren + zn|p – a4

)

≤ qmaxkp
2

p

( k+1∑

n=1

∣∣�(ren–1)
∣∣2

) p
2

– a2kp
1

( k∑

n=1

|ren + zn|2
) p

2

+ a4k

≤ qmaxkp
2λ

p
2
max

p
rp – a2kp

1 rp – a2kp
1‖z‖p + a4k

=
(

qmaxλ
p
2
maxkp

2
p

– a2kp
1

)
rp – a2kp

1‖z‖p + a4k

≤ –a2kp
1‖z‖p + a4k.
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Therefore, for any x ∈ ∂Q, where Q = (B̄K1 ∩ W ) ⊕ {re|0 < r < K1}, there exists a constant
K1 > ρ > 0 such that J(x) ≤ 0. By the linking theorem, J possesses a critical value c ≥ ρ > 0,
where c = infh∈� supx∈Q J(h(x)) and � = {h ∈ C(Q̄, Rk) | h|∂Q = I}.

The rest of the proof is similar to that of [7], Theorem 1.1; for the sake of simplicity, we
omit its proof. �

Theorem 3.3 Suppose that (B2), (q2), (F2), (F3) and the following hypothesis are satisfied:

(f ) f (t, –y) = –f (t, y) for all (t, y) ∈ R2.

Then BVP (1.1) with (1.2) possesses at least s distinct pairs of nontrivial solutions, where s
is the dimension of V which can be referred to in Section 2.

Remark 3.2 The proof of Theorem 3.3 is similar to that of Theorem 4.4 in [12], and we
omit its proof.

4 An example
As an application of Theorem 3.2, we give an example to illustrate our main result.

Example 4.1 Consider the BVP

�
(
ϕp(�xn–1)

)
+ μxμ–1

n = 0, n ∈ Z(1, k) (4.1)

with boundary value conditions (1.2), where μ > p. We have

qn ≡ 1

and

Fn(xn) = xμ
n .

It is easy to verify that all the conditions of Theorem 3.2 are satisfied and then BVP (4.1)
with (1.2) possesses at least two nontrivial solutions.
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