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Abstract
The main purpose of this study is to investigate a fractional discontinuous
Sturm-Liouville problem with transmission conditions. We shall consider a fractional
boundary value problem involving an operator with two parts. It is shown that the
eigenvalues and corresponding eigenfunctions of the main problem coincide with
the eigenvalues and corresponding eigenfunctions of the constructed operator in
Hilbert spaces.
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1 Introduction
Fractional calculus has been a well-known topic since it was initiated in the seventeenth
century and studied by many great mathematicians of the time. The history of fractional
calculus can be found in [, ]. It has been shown that in many applications, fractional
derivatives based models provide more accurate solutions for real processes of anoma-
lous systems than the integer order derivatives based models do [–]. After realizing the
success of fractional differential equations in modeling real world problems, much work
has been done in this branch of mathematics in recent decades. For some recent contri-
butions about fractional differential equations and fractional dynamic systems, see [–]
and the references therein.

The studies of Sturm-Liouville (S-L) problems have attracted the attention of many
mathematicians and physicists since they have many useful applications in branches of
science, theoretical and applied mathematics. In particular, [–] contains many refer-
ences to problems in physics and mechanics.

On the other hand, the general theory and methods of boundary value problems with
continuous coefficients are highly developed, very little is known about a general char-
acter of similar problems with discontinuities. In view of demands of modern technol-
ogy, engineering and physics, Sturm-Liouville type problems with transmission condi-
tions have become a very important place of research in recent years. Discontinuous
boundary value problems with transmission conditions and their applications to the cor-
responding initial-boundary value problems for parabolic equations have been investi-
gated by Mukthrov et al. in [–]. Also, some problems with transmission conditions
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which arise in mechanics (thermal conduction problem for a thin laminated plate) were
studied in the article []. Akdogan et al. and Demirci et al. [–] studied a Sturm-
Liouville problem with discontinuities in the case when an eigenparameter appears not
only in the differential equation but also in both the boundary and transmission condi-
tions.

As can be seen in the references cited above, there have been a lot of research papers
on Sturm-Liouville problems but the authors generally take into account the case where
classical integer order derivatives exist. In recent years, some previous works involving
fractional operators for S-L problems have been published. Riverouse et al. [] use some
fractional composition operators to propose a fractional approach to the ordinary Sturm-
Liouville problem and investigate the eigenvalues and eigenfunctions associated to these
operators. In [], the authors consider a new conformable fractional derivative and ap-
ply a functional compression-expansion fixed point theorem to prove the existence of a
positive solution for fractional boundary value problem with S-L boundary conditions.
In [], utilizing the Legendre integral transform, the authors demonstrate some applica-
tions of their results by solving both fractional ordinary and partial differential equations.
Zayernouri and Karniadakis [] investigated two classes of fractional Sturm-Liouville
eigenvalue problems on a compact interval [a, b] in more detail. They both obtained some
explicit forms for the eigensolutions of these problems and derived some useful spec-
tral properties of the obtained eigensolutions. In [], Klimek et al. apply the methods
of fractional variational analysis and prove the existence of a countable set of orthogonal
solutions and corresponding eigenvalues for a regular fractional Sturm-Liouville prob-
lem.

The main aim of this paper is to extend some results of fractional Sturm-Liouville prob-
lems to the case of discontinuous fractional Sturm-Liouville problems. Namely, we deal
with a discontinuous fractional Sturm-Liouville problem with transmission conditions. To
do so, we define an operator A in the Hilbert space L[–, ], the eigenvalues and corre-
sponding eigenfunctions of which coincide with the eigenvalues and corresponding eigen-
functions of the boundary value problem respectively. Then, we establish the character-
istic function and prove that the eigenvalues of the considered problem coincide with the
roots of this characteristic function.

The paper is organized as follows: In Section , some of the basic properties of the
Riemann-Liouville and Caputo fractional derivatives are given, and we also prove a useful
lemma. Section  presents the construction of a discontinuous fractional S-L problem.
We introduce the operator theoretical form in the Hilbert space L[–, ] and discuss the
characteristic function in the subsequent sections.

2 Some auxiliary definitions and results
In this section, we shall recall some basic definitions and facts which are necessary for the
development of the paper (see also [, ]).

Definition  (Left and right Riemann-Liouville fractional integrals) Let [a, b] ⊂ �,
Re(α) >  and f ∈ L[a, b]. Then the left and right Riemann-Liouville fractional integrals
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Iα
a+ and Iα

b– of order α are given by

Iα
a+f (x) =


�(α)

∫ x

a

f (t) dt
(x – t)–α

, x ∈ (a, b],

Iα
b– f (x) =


�(α)

∫ b

x

f (t) dt
(t – x)–α

, x ∈ [a, b).

Definition  (Left and right Riemann-Liouville (R-L) fractional derivatives) Let [a, b] ⊂
�, Re(α) ∈ (, ) and f ∈ L[a, b]. The left R-L fractional derivative of order α of function
f , denoted by Dα

a+f , is defined as

∀x ∈ (a, b], Dα
a+f (x) := DI–α

a+ f (x).

Similarly, the right Riemann-Liouville fractional derivative of order α of function f , de-
noted by Dα

b– f , is

∀x ∈ [a, b), Dα
b– f (x) := –DI–α

b– f (x),

where D = d
dx is the usual differential operator.

Definition  (Left and right Caputo fractional derivatives) Let [a, b] ⊂ �, Re(α) ∈ (, )
and f ∈ L[a, b]. The left and right Caputo fractional derivatives of order α are

∀x ∈ (a, b], cDα
a+f (x) := I–α

a+ Df (x)

and

∀x ∈ [a, b), cDα
b– f (x) := –I–α

b– Df (x),

respectively.

Property  The following property shows that the Riemann-Liouville derivative is the left
inverse of the Riemann-Liouville integral, but we cannot claim that it is the right inverse.

Dα
a+Iα

a+f (x) = f (x),

Dα
b– Iα

b– f (x) = f (x)

and

Iα
a+Dα

a+f (x) = f (x) –
(x – a)α–

�(α)
I–α

a+ f (a),

Iα
b– Dα

b– f (x) = f (x) –
(b – x)α–

�(α)
I–α

a+ f (b),

where α ∈ (, ).
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Property  For certain classes of functions, the Caputo fractional derivatives are the in-
verse operators of the Riemann-Liouville fractional integrals.

cDα
a+Iα

a+f (x) = f (x),
cDα

b– Iα
b– f (x) = f (x)

and

Iα
a+

cDα
a+f (x) = f (x) – f (a),

Iα
b–

cDα
b– f (x) = f (x) – f (b).

In classical calculus, the integration by parts formula relates the integral of a product
of functions to the integral of their derivative and antiderivative. As we can see below,
this formula also works for fractional derivatives; however, it changes the type of differ-
entiation: left Riemann-Liouville fractional derivatives are transformed to right Caputo
fractional derivatives. For more detail see, for example, [].

Property  Assume that  < α < , f ∈ AC[a, b] and g ∈ Lp(a, b) ( ≤ p ≤ ∞). Then the
following integration by parts formula holds:

∫ b

a
f (x)Dα

a+g(x) dx =
∫ b

a
g(x)cDα

b– f (x) dx + f (x)I–α
a+ g(x)

∣∣x=b
x=a.

Now, we state and prove the following lemma which is going to be used in the next
section.

Lemma  Let f ∈ L(a, b) and α ∈ (, ), then
. Iα

a+
cDα

b– f (x) = Mg(x) + (–)α(f (x) – f (b)),
. Iα

a+
cDα

b– f (x) = (–)α–Iα
a+ Nf (x) + (–)α(f (x) – f (a)),

where Mg(x) = 
�(α)

∫ b
a (x – t)α–g(t) dt, Nf (x) = 

�(–α)
∫ b

a (x – t)–αf ′(t) dt and g(x) = cDα
b– f (x).

Proof In view of Definition , we have

Mg(x) =


�(α)

∫ x

a
(x – t)α–g(t) dt +


�(α)

∫ b

x
(x – t)α–g(t) dt

= Iα
a+ g(x) + (–)α–Iα

b– g(x).

Then it leads to

Iα
a+ g(x) = Mg(x) + (–)αIα

b– g(x).

To prove (), by Definition , we obtain

Nf (x) =


�( – α)

∫ x

a
(x – t)–αf ′(t) dt +


�( – α)

∫ b

x
(x – t)–αf ′(t) dt

= cDα
a+ f (x) +


�( – α)

∫ b

x
(t – x)–α(–)–α+(–f ′)(t) dt

= cDα
a+ f (x) + (–)–αcDα

b– f (x),
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which gives

cDα
b– f (x) =

(
Nf (x) – cDα

a+ f (x)
)
(–)α–. ()

By applying the fractional operator Iα
a+ to both sides, we get

Iα
a+

cDα
b– f (x) = Iα

a+
(
Nf (x) – cDα

a+ f (x)
)
(–)α–

= (–)α–Iα
a+ Nf (x) + (–)αIα

a+
cDα

a+ f (x)

= (–)α–Iα
a+ Nf (x) + (–)α

(
f (x) – f (a)

)
,

which completes the proof. �

3 Fractional Sturm-Liouville problem with transmission conditions
Let the operator Lα,x be defined as

Lα,x :=

⎧⎨
⎩

cDα
– p(x)Dα

–+ + q(x), x ∈ [–, );
cDα

– p(x)Dα
+ + q(x), x ∈ (, ].

Lα,xu + λu = 

()

on x ∈ [–, ) ∪ (, ] with fractional boundary conditions

L(u) := cI–α
–+ u(–) + cDα

–+ u(–) = , ()

L(u) := dI–α
+ u() + dDα

+ u() =  ()

and fractional transmission conditions at the inner point x = 

L(u) := hI–α
–+ u(–) + I–α

+ u(+) = , ()

L(u) := Dα
–+ u(–) + hDα

+ u(+) = , ()

where 
 < α ≤ , λ is complex eigenparameter;

p(x) =

⎧⎨
⎩

p, x ∈ [–, );

p, x ∈ (, ].

q(x) is real-valued and continuous in both [–, ) and (, ], it also has finite limits q(±) :=
limx→± q(x), c

 + c
 �= , d

 + d
 �= , and p, p, h, h are positive real numbers.

4 The operator formulation of the problem
Let us consider the inner-product in the Hilbert space L(–, ) as follows:

〈f , g〉 =
h

p

∫ 

–
f (x)g(x) dx +

h

p

∫ 


f (x)g(x) dx, ()
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where F := f (x), G := g(x) ∈ L(–, ). In this Hilbert space we define the operator A with
domain

D(A) :=

⎧⎪⎨
⎪⎩

f : f (x) and Dαf (x), cDαf (x) are absolutely continuous
on [–, ) ∪ (, ], and f (±), Dαf (±), I–αf (±) have
finite limits, Lif = , i = , , , .

⎫⎪⎬
⎪⎭

and action law

Af := Lα,xf . ()

Thus, problem ()-() can be written in the operator form as

Au = λu.

Note that by eigenvalues and eigenfunctions of problem ()-() we mean eigenvalues and
eigenelements of the operator A, respectively.

Theorem  The linear operator A is symmetric.

Proof For each f , g ∈ Dom(A), using () we write

〈Af , g〉 =
h

p

∫ 

–
Af (x)g(x) dx +

h

p

∫ 


Af (x)g(x) dx

=
h

p

∫ 

–

(cDα
– pDα

–+ f (x)
)
g(x) dx +

h

p

∫ 

–
q(x)f (x)g(x) dx

+
h

p

∫ 



(cDα
– pDα

+ f (x)
)
g(x) dx +

h

p

∫ 


q(x)f (x)g(x) dx.

By applying Property , we get

〈Af , g〉 = h

{∫ 

–
f (x)cDα

– Dα
–+ g(x) dx + Dα

–+ g(x)I–α
–+ f (x)

∣∣
– – Dα

–+ f (x)I–α
–+ g(x)

∣∣
–

}

+ h

{∫ 


f (x)cDα

– Dα
+ g(x) dx + Dα

+ g(x)I–α
+ f (x)

∣∣
 – Dα

+ f (x)I–α
+ g(x)

∣∣


}

+
h

p

∫ 

–
q(x)f (x)g(x) dx +

h

p

∫ 


q(x)f (x)g(x) dx

= 〈f , Ag〉 + h
{

Dα
–+ g(x)I–α

–+ f (x)
∣∣
– – Dα

–+ f (x)I–α
–+ g(x)

∣∣
–

}

+ h
{

Dα
+ g(x)I–α

+ f (x)
∣∣
 – Dα

+ f (x)I–α
+ g(x)

∣∣


}
.

By considering the fractional transmission conditions ()-(), we have

〈Af , g〉 = 〈f , Ag〉

that the operator A is symmetric. �
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Corollary  All eigenvalues of problem ()-() are real.

Corollary  Let λ and λ be two different eigenvalues of problem ()-(). Then the corre-
sponding eigenfunctions f and g of this problem satisfy the following equality:

h

p

∫ 

–
Af (x)g(x) dx +

h

p

∫ 


Af (x)g(x) dx = .

As a consequence, the eigenfunctions of problem ()-() corresponding to the different
eigenvalues are orthogonal to the inner product () in the Hilbert space L(–, ).

Naturally, we can now assume that all eigenfunctions of problem ()-() are real-
valued.

Lemma  The equivalent integral form of equation () with fractional conditions ()-()
is given as

u(x) = u(x) +


p�(α)

∫ x



[
Nu(y) + (–)–α(x – y)α–(λ + q(y)

)
u(y)

]
dy, ()

where u(x) = xα–

�(α) (–hI–α
–+ u(–)) + Iα

+ (– 
h

Dα
–+ u(–)).

Proof Let us consider equation ()

cDα
– pDα

+ u(x) +
(
λ + q(x)

)
u(x) = , x ∈ (, ],

integral operators Iα
+ acting on this equation and by Lemma , we obtain

Iα
+

(cDα
– pDα

+ u(x)
)

+ Iα
+

(
λ + q(x)

)
u(x) =  ()

and

pDα
+ u(x) = Iα

+ Nu(x) + pDα
+ u(+) + (–)–αIα

+
(
λ + q(x)

)
u(x). ()

Applying Iα
+ on both sides of () and using conditions ()-(), we find

u(x) =
xα–

�(α)
(
–hI–α

–+ u(–)
)

+ Iα
+

(
–


h

Dα
–+ u(–)

)
+


p

Iα
+ Nu(x)

+
(–)–α

p
Iα

+
(
λ + q(y)

)
u(x).

Then we reach

u(x) = u(x) +


p
Iα

+
[
Nu(x) + (–)–α

(
λ + q(x)

)
u(x)

]
, ()

which completes the proof. �
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We next define um(x,λ) to construct the successive approximations

um(x,λ) = u(x,λ) +


p�(α)

∫ x


(x – y)α–[Num– (y) + (–)–α

(
λ + q(y)

)
um–(y)

]
dy.

Remark  The corresponding classical Sturm-Liouville problem with integer orders is
covered by the case α = .

Lemma  Let Q := maxx∈(,] |q(x)|, PR := max|λ|≤R P(λ) and P(λ) := maxx∈(,] |u(x,λ)|,
kα := /[( – α)�( – α)]. Then the following estimate

∥∥um(x,λ) – um–(x,λ)
∥∥ ≤ PR

{ |λ| + kα + Q
p�(α + )

}m

()

holds for all m.

Proof Let us apply the mathematical induction for m. In what follows, for convenience we
shall use the notation K = /�(α + ).

For m = , we have

∥∥u(x,λ) – u(x,λ)
∥∥ =

∥∥∥∥ 
p

Iα
+

(
Nu (x) + (–)–α

(
λ + q(x)

)
u(x,λ)

)∥∥∥∥.

By using Lemma . in [], we have

∥∥u(x,λ) – u(x,λ)
∥∥ ≤ 

p
K

∥∥Nu (x) + (–)–α
(
λ + q(x)

)
u(x,λ)

∥∥

≤ 
p

K
[∥∥Nu (x)

∥∥ +
∥∥(

λ + q(x)
)
u(x,λ)

∥∥]
.

By using Corollary . in [], we have

∥∥u(x,λ) – u(x,λ)
∥∥ ≤ K

p

[
kα

∥∥u(x,λ)
∥∥ +

(|λ| + Q
)∥∥u(x,λ)

∥∥]

≤ KPR

p

(
kα + |λ| + Q

)
.

Suppose that () holds for m – , i.e.,

∥∥um–(x,λ) – um–(x,λ)
∥∥ ≤ PR

{
K
p

(|λ| + kα + Q
)}m–

.

Then we have

∥∥um(x,λ) – um–(x,λ)
∥∥

=
∥∥∥∥ 

p
Iα

+
[
Num––um– (x) + (–)α

(
λ + q(x)

)(
um–(x,λ) – um–(x,λ)

)]∥∥∥∥
≤ K

p

[∥∥Num––um– (x)
∥∥ +

∥∥(
λ + q(x)

)(
um–(x,λ) – um–(x,λ)

)∥∥]
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≤ K
p

[
kα

∥∥(
um–(x,λ) – um–(x,λ)

)∥∥ +
(|λ| + Q

)∥∥(
um–(x,λ) – um–(x,λ)

)∥∥]

=
K
p

(
kα + |λ| + Q

)∥∥(
um–(x,λ) – um–(x,λ)

)∥∥

≤ PR

{
K
p

(|λ| + kα + Q
)}m

.

The proof is completed. �

Lemma  The following IVP

cDα
– pDα

–+ u(x) +
(
q(x) + λ

)
u(x) = , x ∈ [–, ], ()

I–α
–+ u(–) = c, ()

Dα
–+ u(–) = –c ()

has a unique solution on [–, ] provided that

K
p

(|λ| + kα + Q
)

< . ()

Proof If we use a similar way in Lemma , we get a corresponding integral equation of the
problem as follows:

u(x) = u(x) +

p

Iα
–+

[
Nu(x) + (–)–α

(
λ + q(x)

)
u(x)

]
, ()

where u(x) = (x+)α
�(+α) (–c) + (x+)α–

�(α) c.
Let us construct the integral equation by

φ = Tφ, ()

where the mapping T is defined as

Tf = u +

p

Iα
–+

[
Nf + (–)–α(λ + q)f

]
,

then we have

‖Tf – Tg‖ =
∥∥∥∥ 

p
Iα

–+
[
(Nf – Ng) + (–)–α(λ + q)(f – g)

]∥∥∥∥.

By applying Lemma . in [], we get

‖Tf – Tg‖ ≤ K
p

∥∥(Nf – Ng) + (–)–α(λ + q)(f – g)
∥∥

≤ K
p

∥∥(Nf – Ng)
∥∥ +

∥∥(λ + q)(f – g)
∥∥. ()
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By relation () we have

Nf – Ng = cDα
–+ (f – g) + (–)–αcDα

– (f – g),

then

‖Nf – Ng‖ ≤ kα‖f – g‖ + kα‖f – g‖
= kα‖f – g‖,

where we have used Corollary . in []. If we substitute the last inequality into (), we
find

‖Tf – Tg‖ ≤ K
p

(|λ| + kα + Q
)‖f – g‖.

By condition (), the mapping T is a contraction on the space 〈C[–, ],‖·‖〉. Conse-
quently, there exists a unique solution of equation (). The proof is complete. �

Theorem  For any λ ∈C satisfying Kp–
i (|λ| + kα + Q) <  (i = , ), the differential equa-

tion () has a unique solution which satisfies fractional boundary condition () and frac-
tional transmission conditions ()-().

Proof Consider the following problem for each λ ∈C:

Lα,xu(x) + λu(x) = , x ∈ [–, ), ()

cDα
– pDα

–+ u(x) +
(
q(x) + λ

)
u(x) = , x ∈ [–, ), ()

I–α
–+ u(–) = c, ()

Dα
–+ u(–) = –c. ()

By considering Lemma , the initial value problem has a unique solution φ(x,λ).
Next, take into account the differential equation

Lα,xu(x) + λu(x) = , x ∈ (, ], ()

cDα
– pDα

+ u(x) +
(
q(x) + λ

)
u(x) = , x ∈ (, ], ()

I–α
+ u(+) = –hI–α

–+ φ(–), ()

Dα
+ u(+) = –


h

Dα
–+φ(–). ()

We establish the sequence {un(x,λ)} for x ∈ (, ] and n = , , . . . such that

un(x,λ) = u(x,λ)

+


p�(α)

∫ x


(x – y)α–[Nun– (y) + (–)–α

(
λ + q(y)

)]
un–(y,λ) dy, ()
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where

u(x,λ) = Iα
–+

(
kDα

–+φ(–,λ)
)
, x ∈ (, ]. ()

Obviously, each of the functions un(x,λ) is an entire function of λ for each x ∈ (, ].
Now let us consider the series

u∗(x,λ) = lim
n→∞

(
un(x,λ) – u(x,λ)

)
=

∞∑
j=

(
uj(x,λ) – uj–(x,λ)

)
. ()

According to estimate () in Lemma , for  < x ≤ , the absolute value of its terms is
less than the corresponding terms of the convergent numeric series

PR

∞∑
j=

{
K
p

(|λ| + kα + Q
)}j

.

Hence, series () converges uniformly. Obviously, each term (uj(x,λ) – uj–(x,λ)) of series
() is continuous on x ∈ (, ]. Therefore, the sum of series () is continuous on x ∈ (, ]
and

φ(x,λ) = lim
n→∞ un(x,λ) = u(x,λ) + u∗(x,λ)

is continuous on x ∈ (, ].
The uniform convergency of the sequence un(x,λ) allows us to take n → ∞ in the rela-

tion (). This gives equations () showing that φ(x,λ), the limit function of the process
defined by () and (), is the solution of (). Furthermore, it is trivial that φ(x,λ) sat-
isfies the initial conditions ()-(). Finally, the function φ(x,λ) given by

φ(x,λ) =

⎧⎨
⎩

φ(x,λ), x ∈ [–, ),

φ(x,λ), x ∈ (, ]
()

satisfies the differential equation (), fractional boundary condition () and fractional
transmission conditions () and (). �

In a similar manner, we can prove the following theorem.

Theorem  For any λ ∈ C, the differential equation

Lα,xu(x) + λu(x) = , x ∈ [–, ) ∪ (, ]

has a unique solution

χ (x,λ) =

⎧⎨
⎩

χ(x,λ), x ∈ [–, ),

χ(x,λ), x ∈ (, ]

satisfying fractional boundary condition () and fractional transmission conditions () and
() for each x ∈ [–, ) ∪ (, ].
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Remark  If λ is not eigenvalue, then φ and χ are linearly independent solutions of
equation () in the interval [–, ). Similarly, φ and χ are linearly independent solutions
of equation () in the interval (, ]. Then it is obvious that the four functions ũ, ũ, ũ,
ũ which are defined by

ũ =

⎧⎨
⎩

φ(x,λ), x ∈ [–, ),

, x ∈ (, ],
ũ =

⎧⎨
⎩

χ(x,λ), x ∈ [–, ),

, x ∈ (, ],

ũ =

⎧⎨
⎩

, x ∈ [–, ),

φ(x,λ), x ∈ (, ],
ũ =

⎧⎨
⎩

, x ∈ [–, ),

χ(x,λ), x ∈ (, ]

are linearly independent solutions of equation () in whole [–, ) ∪ (, ].
To prove this fact, suppose if possible that λ = λ is not an eigenvalue but the corre-

sponding solutions φ(x,λ) and χ(x,λ) are linearly dependent. Then there is a constant
α �=  such that

χ(x,λ) = αφ(x,λ).

From this equality obviously follows that the solution χ(x,λ) also satisfies the first
boundary condition. Consequently, the solution

χ (x,λ) =

⎧⎨
⎩

χ(x,λ), x ∈ [–, ),

χ(x,λ), x ∈ (, ]

satisfies also the first boundary condition. Therefore, χ (x,λ) satisfies all boundary and
transmission conditions, that is, χ (x,λ) is an eigenfunction for the considered problem
()-(), and consequently λ is an eigenvalue. Thus we have a contradiction which com-
pletes the proof.

Let us consider the fractional Wronskians

ωi(λ) := WF
(
φi(x,λ),χi(x,λ)

)
, i = , 

:= I–α
–+ φi(x,λ)Dα

+χi(x,λ) – I–α
+ χi(x,λ)Dα

–+φi(x,λ)

which are independent of x and are entire functions. The short calculation gives

ω(λ) = ω(λ).

Now we may introduce to the consideration the characteristic function

ω(λ) := ω(λ) = ω(λ). ()

Lemma  The fractional Wronskian WF satisfies the following relation:

WF (λ) = –hω
(λ),
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where

WF (λ) =

∣∣∣∣∣∣∣∣∣

L(φ) L(χ) L(φ) L(χ)
L(φ) L(χ) L(φ) L(χ)
L(φ) L(χ) L(φ) L(χ)
L(φ) L(χ) L(φ) L(χ)

∣∣∣∣∣∣∣∣∣
.

Proof Employing the definitions of the functions φi(x,λ) and χi(x,λ), i = , , we obtain

WF (λ) =

∣∣∣∣∣∣∣∣∣

 ω(λ)  
  ω(λ) 

hI–α
–+ φ(–,λ) hI–α

–+ χ(–,λ) I–α
+ φ(+,λ) I–α

+ χ(+,λ)
Dα

–+φ(–,λ) Dα
–+χ(–,λ) hDα

+φ(+,λ) hDα
+χ(+,λ)

∣∣∣∣∣∣∣∣∣

= ω(λ)ω(λ)

∣∣∣∣∣
hI–α

–+ φ(–,λ) I–α
+ χ(+,λ)

Dα
–+φ(–,λ) hDα

+χ(+,λ)

∣∣∣∣∣
= –hω


 (λ)ω(λ)

= –hω
(λ). �

Corollary  The zeros of the function WF (λ) consist of the zeros of the characteristic func-
tion ω(λ).

Theorem  The eigenvalues of fractional boundary value problem ()-() are the same as
the roots of the characteristic function ω(λ).

Proof Let λ = λ be a root of the characteristic function ω(λ), hence ω(λ) = . It follows
that φ and χ are linearly dependent, that is,

φ(x,λ) = cχ(x,λ); x ∈ (, ]

for some c �= . As a result, the function φ(x,λ) satisfies fractional boundary condition
(). So, φ(x,λ) which is given by

φ(x,λ) =

⎧⎨
⎩

φ(x,λ), x ∈ [–, ),

φ(x,λ), x ∈ (, ]

satisfies the main problem ()-(). So, the function φ(x,λ) is an eigenfunction of problem
()-() corresponding to the eigenvalue λ.

Let λ = λ be an eigenvalue and u(x,λ) be any corresponding eigenfunction. It must be
proved that ω(λ) = . Let us suppose that ω(λ) �= . Then, since ω(λ) �=  and ω(λ) �=
, there exist constants ci, i = , , , , at least one of which is not zero, such that

u(x,λ) =

⎧⎨
⎩

cφ(x,λ) + cχ(x,λ), x ∈ [–, ),

cφ(x,λ) + cχ(x,λ), x ∈ (, ]

since ω(λ) �=  and ω(λ) �= .
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Since the eigenfunction u(x,λ) satisfies both fractional boundary and fractional trans-
mission conditions ()-(), we have

Liu(·,λ) = , for i = , , , .

Also since at least one of the constants ci, i = , , , , is not zero,

det
(
Liu(·,λ)

)
= ,

that is, WF (λ) = . But, by Lemma , WF (λ) �= . This contradiction completes the proof.
�
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