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Abstract
We present a closed-form formula for the general solution to the difference equation

xn+k – qnxn = fn, n ∈ N0,

where k ∈N, (qn)n∈N0 , (fn)n∈N0 ⊂ C, in the case qn = q, n ∈ N0, q ∈ C \ {0}. Using the
formula, we show the existence of a unique bounded solution to the equation when
|q| > 1 and supn∈N0

|fn| <∞ by finding a solution in closed form. By using the formula
for the bounded solution we introduce an operator that, together with the
contraction mapping principle, helps in showing the existence of a unique bounded
solution to the equation in the case where the sequence (qn)n∈N0 is real and
nonconstant, which shows that, in this case, there is an elegant method of proving
the result in a unified way. We also obtain some interesting formulas.
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1 Introduction
Difference equations are an area of considerable interest. Some classical results can be
found, for example, in [–]. There has been some renewed interest in solvable differ-
ence equations [–] and systems [, –] and some closely related topics such as find-
ing their invariants or some applications [–]; see also numerous references therein.
In many of these papers on solvability, the equations and systems are nonlinear and are
transformed into some solvable linear ones by using suitable changes of variables.

A frequent situation is that a difference equation is transformed into a linear first-order
one [–], which is solvable ([] contains a nice presentation of some methods for solving
the equation; see also [], as well as [] where the case of constant coefficients is con-
sidered). Moreover, an analysis shows that many systems are also essentially reduced to
the equation (see, for example, [, ] and the references therein). In our recent papers
on product-type difference equations and systems, we frequently use the corresponding
product-type first-order equation, which, in some cases, is also solvable (see, for example,
[–] and the references therein).
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One of the simplest inhomogenous higher-order linear equations is the following rela-
tive of the linear first-order difference equation:

xn+k – qnxn = fn, n ∈N, ()

where (qn)n∈N and (fn)n∈N are real or complex sequences.
If qn = q �=  and fn = , n ∈N, then we have

xn+k – qxn = , n ∈ N. ()

Since the associated characteristic polynomial to equation () is

Pk(λ) = λk – q,

its general solution can be written in the following form [–]:

xn =
k∑

j=

cj
(

k√qεj–)n =
(

k√q
)n

k∑

j=

cj
(
εj–)n, n ∈N, ()

where cj, j = , k, are arbitrary constants, k√q is one of the kth roots of q, and

ε = e
π i

k

(the notation will be used from now on).
Formula () shows that every solution to equation () converges to zero when |q| < ,

every solution to the equation is bounded when |q| = , and all nontrivial solutions to the
equation are unbounded when |q| > .

In [] we presented some of our old results related to equation () for the case k =
, which had been presented at some talks and/or conferences during the last decade.
Some of them seem folklore, but there are some nice ideas behind them. Let us briefly
describe the results of []. Namely, we have studied, among other problems, the existence
of bounded solutions to equation () when k =  in two different ways. Using a routine
method, it was shown that when qn = q ∈C \ {}, the equation has the general solution

xn = (
√

q)n

(
c +

n–∑

k=

fk

(√q)k+

)
+ (–

√
q)n

(
d +

n–∑

k=

(–)kfk

(√q)k+

)
, n ∈ N, ()

where c, d ∈ C, and √q is one of two possible square roots of q. Employing (), it was
shown that the equation in the case qn = q, n ∈ N, has a unique bounded solution when
|q| >  by finding its closed-form formula. The formula motivated us to introduce an oper-
ator that, together with the contraction mapping principle [], helped us in showing the
existence of a unique bounded solution to the equation under some conditions on (qn)n∈N .
A more general linear second-order difference equation was later studied in a similar way
in []. A natural problem is to try to generalize the results by using the procedure for
arbitrary k, which is technically not so easy. Recently in [], we have managed to solve
the problem for the case k = , which suggested us that there was a related solution in the
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general case. However, the problem for the case of an arbitrary k was left open because
of many technical difficulties. This paper is devoted to solving the problem. Namely, fol-
lowing the ideas in [], we first present a closed-form formula for the general solution
to equation () in the case qn = q, n ∈ N, q ∈ C \ {}. Using the formula, we show the
existence of a unique bounded solution to the equation when |q| >  and supn∈N |fn| < ∞
by finding the solution in closed form. Then, using the formula for the bounded solution,
we introduce an operator that, together with the contraction mapping principle, helps in
showing the existence of a unique bounded solution to the equation when the sequence
(qn)n∈N is real, nonconstant and satisfies some additional conditions which will be speci-
fied later. We also obtain some interesting formulas.

Some other applications of fixed-point theorems in investigation of difference equations
can be found in [, , ] (see also the related references therein), where a variant of the
Schauder fixed-point theorem [, ] is frequently applied. The majority of such papers
construct suitable operators by using some summations, which can be regarded as some
kind of solvability methods.

As usual, by l∞(N) we denote the Banach space of bounded sequences u = (un)n∈N with
the supremum norm

‖u‖∞ = sup
n∈N

|un|. ()

By Vk(t, t, . . . , tk) we denote the Vandermonde determinant of kth order:

Vk(t, t, . . . , tk) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

   · · · 
t t t · · · tk

t
 t

 t
 · · · t

k
...

...
...

. . .
...

tk–
 tk–

 tk–
 · · · tk–

k

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

It is well known that

Vk(t, t, . . . , tk) =
∏

≤l<j≤k

(tj – tl). ()

2 Main results
Our first result shows that there is a closed-form formula for general solutions to equation
() when (qn)n∈N is a constant sequence. From the theoretical point of view, we know
that for each inhomogeneous linear difference equation with constant coefficients, such
a formula exists. On the other hand, we know that the polynomial equations of order
greater than or equal to five need not be solved by radicals, which implies that there are
linear difference equations with constant coefficients for which we cannot find a closed-
form formula for their general solutions. The result shows that there is a class of linear
equations of arbitrary order for which it is possible to find such a closed-form formula.
Moreover, the result gives only one formula that includes all the solutions to the equation.

Lemma  Consider the difference equation

xn+k – qxn = fn, n ∈N, ()
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where k ∈ N, q ∈ C \ {}, and (fn)n∈N is a given sequence of complex numbers. Then, the
general solution to the equation is

xn =
k–∑

s=

(
k√qεs)n

(
cs +


k

n–∑

j=

ε–sjfj

( k√q)j+k

)
, n ∈N, ()

where cs, s = , k – , are arbitrary numbers, and k√q is one of the kth roots of q.

Proof Based on (), we try to find the general solution to equation () in the form

xn =
k–∑

s=

c(s)
n

(
k√qεs)n, n ∈N, ()

where (c(s)
n )n∈N , s = , k – , are some undetermined sequences.

To do this, we pose the following conditions:

xn+ =
k–∑

s=

c(s)
n+

(
k√qεs)n+ =

k–∑

s=

c(s)
n

(
k√qεs)n+,

xn+ =
k–∑

s=

c(s)
n+

(
k√qεs)n+ =

k–∑

s=

c(s)
n

(
k√qεs)n+,

...

xn+k– =
k–∑

s=

c(s)
n+

(
k√qεs)n+k– =

k–∑

s=

c(s)
n

(
k√qεs)n+k–

()

for n ∈N, from which it follows that

k–∑

s=

(
c(s)

n+ – c(s)
n

)(
k√qεs)n+ = ,

k–∑

s=

(
c(s)

n+ – c(s)
n

)(
k√qεs)n+ = ,

...

k–∑

s=

(
c(s)

n+ – c(s)
n

)(
k√qεs)n+k– = 

()

for n ∈N.
From (), (), and the last equality in () with n → n + , we easily get

k–∑

s=

(
c(s)

n+ – c(s)
n

)(
k√qεs)n+k = fn ()

for n ∈N.
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Since q �= , for each fixed n ∈N, equations () and () are equivalent to the following
k-dimensional linear system:

k–∑

s=

(
c(s)

n+ – c(s)
n

)(
εs)n+ = ,

k–∑

s=

(
c(s)

n+ – c(s)
n

)(
εs)n+ = ,

...

k–∑

s=

(
c(s)

n+ – c(s)
n

)(
εs)n+k– = ,

k–∑

s=

(
c(s)

n+ – c(s)
n

)(
εs)n+k =

fn

( k√q)n+k

()

in unknown variables c(s)
n+ – c(s)

n , s = , k – .
The determinant of the system is

�k(n) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

 εn+ ε(n+) · · · ε(k–)(n+)

 εn+ ε(n+) · · · ε(k–)(n+)

 εn+ ε(n+) · · · ε(k–)(n+)

...
...

...
. . .

...
 εn+k ε(n+k) · · · ε(k–)(n+k)

∣∣∣∣∣∣∣∣∣∣∣∣∣

= ε
(n+)(k–)k



∣∣∣∣∣∣∣∣∣∣∣∣∣

   · · · 
 ε ε · · · εk–

 ε ε · · · ε(k–)

...
...

...
. . .

...
 εk– ε(k–) · · · ε(k–)(k–)

∣∣∣∣∣∣∣∣∣∣∣∣∣

= ε
(n+)(k–)k

 Vk
(
, ε, . . . , εk–). ()

From () and (), by some calculation and using properties of determinants, we get

c(s)
n+ – c(s)

n =
ε

(n+)(–k)k


Vk(, ε, . . . , εk–)

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

 εn+ · · · ε(s–)(n+)  ε(s+)(n+) · · · ε(k–)(n+)

 εn+ · · · ε(s–)(n+)  ε(s+)(n+) · · · ε(k–)(n+)

 εn+ · · · ε(s–)(n+)  ε(s+)(n+) · · · ε(k–)(n+)

...
...

...
...

...
...

 εn+k– · · · ε(s–)(n+k–)  ε(s+)(n+k–) · · · ε(k–)(n+k–)

 εn+k · · · ε(s–)(n+k) fn
( k√q)n+k ε(s+)(n+k) · · · ε(k–)(n+k)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



Stević Advances in Difference Equations  (2017) 2017:377 Page 6 of 12

=
ε–s(n+)

Vk(, ε, . . . , εk–)

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

  · · ·    · · · 
 ε · · · εs–  εs+ · · · εk–

 ε · · · (ε(s–))  (εs+) · · · (ε(k–))

...
...

...
...

...
...

 εk– · · · (ε(s–))k–  (ε(s+))k– · · · (ε(k–))k–

 εk– · · · (ε(s–))k– fn
( k√q)n+k (ε(s+))k– · · · (ε(k–))k–

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
(–)k+s+ε–s(n+)fn

( k√q)n+kVk(, ε, . . . , εk–)

×

∣∣∣∣∣∣∣∣∣∣∣∣∣

  · · ·   · · · 
 ε · · · εs– εs+ · · · εk–

 ε · · · (ε(s–)) (εs+) · · · (ε(k–))

...
...

...
...

...
 εk– · · · (ε(s–))k– (ε(s+))k– · · · (ε(k–))k–

∣∣∣∣∣∣∣∣∣∣∣∣∣

= (–)k+s+ε–s(n+)fn
Vk–(, ε, . . . , εs–, εs+, . . . , εk–)

( k√q)n+kVk(, ε, . . . , εk–)
. ()

By using formula () it follows that

Vk–(, ε, . . . , εs–, εs+, . . . , εk–)
Vk(, ε, . . . , εk–)

=


(εs – ) · · · (εs – εs–)(εs+ – εs) · · · (εk– – εs)

=
(–)k––s

(εs – ) · · · (εs – εs–)(εs – εs+) · · · (εs – εk–)
. ()

Now note that

zk –  = (z – ) · · · (z – εs–)(z – εs)(z – εs+) · · · (z – εk–), ()

from which it follows that

(
εs – 

) · · · (εs – εs–)(εs – εs+) · · · (εs – εk–)

= lim
z→εs

(z – ) · · · (z – εs–)(z – εs+) · · · (z – εk–)

= lim
z→εs

zk – 
z – εs = kεs(k–). ()

From (), (), and (), since εk = , it follows that

c(s)
n+ – c(s)

n =
ε–snfn

k( k√q)n+k ()

for n ∈N and s = , k – .
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Summing up () from  to n – , we obtain

c(s)
n = cs +


k

n–∑

j=

ε–sjfj

( k√q)j+k ()

for n ∈N and s = , k – , where cs := c(s)
 , s = , k – .

Employing () in (), we get formula (), as desired. �

Remark  It is interesting that the determinant Vk(, ε, . . . , εk–) can be calculated in
closed form (see, for example, [, p. ], [, p. ]). Namely, we have the following for-
mula:

Vk
(
, ε, . . . , εk–) = k

k
 e

π i
 (k–)(k–). ()

From (), (), and () we obtain

V (s)
k– := Vk–

(
, ε, . . . , εs–, εs+, . . . , εk–)

= (–)k––sk
k–

 e
π i
k (k–)(k–k–s)

for s = , k – .

Our next result gives an application of Lemma  in the investigation of the existence
of a bounded solution to equation () when |q| >  and (fn)n∈N is a bounded sequence of
complex numbers.

Theorem  Assume that |q| >  and f := (fn)n∈N ⊂ C is a given bounded sequence. Then,
there is a unique bounded solution to equation ().

Proof Employing (), it follows that

xkm+l =
k–∑

s=

(
k√qεs)km+l

(
cs +


k

km+l–∑

j=

ε–sjfj

( k√q)j+k

)

=
(

k√q
)km+l

( k–∑

s=

csε
sl +


k

k–∑

s=

km+l–∑

j=

εs(l–j)fj

( k√q)j+k

)
()

for all m ∈N and l = , k – .
Since |q| >  and f is bounded, we have

∣∣∣∣∣

k–∑

s=

km+l–∑

j=

εs(l–j)fj

( k√q)j+k

∣∣∣∣∣ ≤ k
∞∑

j=

‖f ‖∞
| k√q|j+k =

k‖f ‖∞
| k√q|k–(| k√q| – )

< ∞ ()

for each l = , k – .
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From (), (), and the assumption |q| > , we see that, for a bounded solution (xn)n∈N

to (), there must be

k–∑

s=

csε
sl = –


k

∞∑

j=

k–∑

s=

εs(l–j)fj

( k√q)j+k =: Sl ()

for l = , k – .
Equalities () are a k-dimensional linear system in variables cs, s = , k – , whose de-

terminant is Vk(, ε, . . . , εk–) =: Vk . By solving the system we have

cs– =


Vk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

  · · ·  S  · · · 
 ε · · · εs– S εs · · · εk–

 ε · · · (ε(s–)) S (εs) · · · (ε(k–))

...
...

...
...

...
...

 εk– · · · (ε(s–))k– Sk– (ε(s))k– · · · (ε(k–))k–

 εk– · · · (ε(s–))k– Sk– (ε(s))k– · · · (ε(k–))k–

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
∑k

l=(–)l+sSl–Wls

Vk(, ε, . . . , εk–)
()

for s = , k, where Wls, l, s = , k, are (k – )-dimensional minors of the determinant in ()
corresponding to the element on the position (l, s).

They can be obtained by the coefficients of the following polynomial of (k – )th order,
which is defined by the Vandermonde determinant:

Pk–(x) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

  · · ·    · · · 
 ε · · · εs– x εs · · · εk–

 ε · · · (ε(s–)) x (εs) · · · (ε(k–))

...
...

...
...

...
...

 εk– · · · (ε(s–))k– xk– (ε(s))k– · · · (ε(k–))k–

 εk– · · · (ε(s–))k– xk– (ε(s))k– · · · (ε(k–))k–

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (–)k+sxk–Wks + (–)k+s–xk–Wk– s + · · · + (–)s+Ws

= (–)k–s(x – ) · · · (x – εs–)(x – εs) · · · (x – εk–)

× Vk–
(
, ε, . . . , εs–, εs, . . . , εk–), ()

where the second equality is obtained by expanding the determinant along the sth column,
whereas the third one follows from ().

First, note that from () it follows that

Wks = Vk–
(
, ε, . . . , εs–, εs, . . . , εk–). ()

Now note the following equality:

k–∑

j=

εsj =

⎧
⎨

⎩
, s �= km,

k, s = km,
()

for m ∈ Z.
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From () and () we have

Wk– s = Vk–
(
, ε, . . . , εs–, εs, . . . , εk–)

k–∑

j=,j �=s–

εj

= Vk–
(
, ε, . . . , εs–, εs, . . . , εk–)

( k–∑

j=

εj – εs–

)

= –εs–Vk–
(
, ε, . . . , εs–, εs, . . . , εk–). ()

Now note that from () and the Viète formula, it follows that

∑

≤j<j<···<jt≤k–

εjεj · · · εjt =  ()

for t = , k – .
From (), () with t = , and the calculation in () we have

Wk– s = Vk–
(
, ε, . . . , εs–, εs, . . . , εk–) ∑

≤j<j≤k–,j,j �=s–

εjεj

= Vk–
(
, ε, . . . , εs–, εs, . . . , εk–)

(
∑

≤j<j≤k–

εjεj – εs–
k–∑

j=,j �=s–

εj

)

= ε(s–)Vk–
(
, ε, . . . , εs–, εs, . . . , εk–). ()

Assume that, for an m ∈ {, . . . , k – }, we have proved that

Wk–m s = (–)mεm(s–)Vk–
(
, ε, . . . , εs–, εs, . . . , εk–) ()

and

∑

≤j<···<jm≤k–,j,...,jm �=s–

εj · · · εjm = (–)mεm(s–). ()

Then, from (), () with t = m + , and () we have

Wk–m– s = Vk–
(
, ε, . . . , εs–, εs, . . . , εk–) ∑

≤j<···<jm+≤k–,j,...,jm+ �=s–

εj · · · εjm+

= Vk–
(
, ε, . . . , εs–, εs, . . . , εk–)

×
( ∑

≤j<···<jm+≤k–

εj · · · εjm+ – εs–
∑

≤ĵ<···<ĵm≤k–,ĵ,...,ĵm �=s–

ε ĵ · · · ε ĵm
)

= (–)m+ε(m+)(s–)Vk–
(
, ε, . . . , εs–, εs, . . . , εk–). ()

From (), (), and the method of induction we see that () holds.
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Employing (), (), and () in (), we get

cs = –


k

∞∑

j=

fj

( k√q)j+k

k–∑

l=

ε–ls
k–∑

t=

ε–t(j–l)

= –

k

∞∑

j=

ε–sjfj

( k√q)j+k ()

for s = , k – , where we have also used that

k–∑

l=

ε–ls
k–∑

t=

ε–t(j–l) =
k–∑

t=

ε–tj
k–∑

l=

ε(t–s)l,

and, then applied () in the cases t = s and t �= s (note also that |t – s| < k).
Using () in (), we get

xn = –

k

k–∑

s=

(
k√qεs)n

∞∑

j=n

ε–sjfj

( k√q)j+k ()

for n ∈N.
Using (), by a direct calculation we verify that () presents a solution to equation ().

Also, we have that

|xn| ≤ ‖f ‖∞
| k√q|k–(| k√q| – )

< ∞, n ∈N,

showing the boundedness of the solution. The uniqueness of the bounded solution follows
from the unique choice of constants cs, s = , k – , in (). �

Remark  Note that by using () in () it follows that

Sl = –
∞∑

m=

fl+mk

( k√q)l+mk+k

for l = , k – .

Now, motivated by () and some operator theory technique, we prove a result on the
unique existence of bounded solutions to equation ().

Theorem  Consider equation () where

 < a ≤ qn ≤ b, n ∈N, ()

or

–b ≤ qn ≤ –a < –, n ∈ N, ()

for some positive numbers a and b, and (fn)n∈N is a bounded sequence of complex numbers.
Then the equation has a unique bounded solution.
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Proof We may assume that () holds. The reasoning in the case () is similar. Choose a
number q such that

q ∈ (
max

{
a, (b + )/

}
, b

)
()

and write () as follows:

xn+k – qxn = (qn – q)xn + fn, n ∈N. ()

Now we introduce the following operator:

A(u) =

(
–
(

k√q
)n 

k

∞∑

j=n

∑k–
s= εs(n–j)((qj – q)uj + fj)

( k√q)j+k

)

n∈N

. ()

Assume that u ∈ l∞(N). Then (), together with some simple estimates, implies

∥∥A(u)
∥∥∞ = sup

n∈N

∣∣∣∣∣
(

k√q
)n 

k

∞∑

j=n

∑k–
s= εs(n–j)((qj – q)uj + fj)

( k√q)j+k

∣∣∣∣∣

≤ sup
n∈N


k

∞∑

j=n

k((qk + q)|uk| + |fk|)
| k√q|j+k–n

≤ (b + q)‖u‖∞ + ‖f ‖∞
| k√q|k–(| k√q| – )

< ∞.

Hence, A(l∞(N)) ⊆ l∞(N).
Assume that u, v ∈ l∞(N). Then, using () and (), we have

∥∥A(u) – A(v)
∥∥∞ = sup

n∈N

∣∣∣∣∣
(

k√q
)n 

k

∞∑

j=n

∑k–
s= εs(n–j)(qj – q)(uj – vj)

( k√q)j+k

∣∣∣∣∣

= sup
n∈N

∣∣∣∣∣
(

k√q
)n

∞∑

j=

(qn+kj – q)(un+kj – vn+kj)
( k√q)n+kj+k

∣∣∣∣∣

≤ sup
n∈N

∞∑

j=

|qn+kj – q||un+kj – vn+kj|
qj+

≤ max{q – a, b – q}
q – 

‖u – v‖∞. ()

By the choice of q it follows that

q̂ :=
max{q – a, b – q}

q – 
∈ (, ),

so () can be written as

∥∥A(u) – A(v)
∥∥∞ ≤ q̂‖u – v‖∞ ()

for u, v ∈ l∞(N), which means that A : l∞(N) → l∞(N) is a contraction.
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The Banach fixed point theorem says that the operator has a unique fixed point, say
x∗ = (x∗

n)n∈N ∈ l∞(N), that is, A(x∗) = x∗, or equivalently

x∗
n = –

(
k√q

)n 
k

∞∑

j=n

∑k–
s= εs(n–j)((qj – q)x∗

j + fj)
( k√q)j+k , n ∈N. ()

It is not difficult to verify that () is a bounded solution to () for n ∈N. �
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