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Abstract
A new nonlinear partial differential system called two-mode higher-order
Boussinesq-Burgers system is established. We aim to use the simplified bilinear
method to find the necessary constraint conditions that guarantee the existence of
both regular and singular multiple soliton solutions of the model. To study the
correctness of the obtained results, we use the hyperbolic-tangent expansion
method as an alternative technique to investigate more possible solutions.
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1 Introduction
Nonlinear evolution equations have been used as the models to describe a variety of en-
gineering phenomena and science such as optical fibers, chemical kinetics, fluid dynam-
ics, mathematical biology, chemical reactions, plasma waves and others [–]. The study
of nonlinear equations is an interesting topic in solitary waves theory. Many methods
are established to find exact solutions for nonlinear partial differential equations (PDEs)
such as Lie symmetries method, truncated Painleve expansion method, the inverse scat-
tering method, Hirota’s bilinear method, Darboux transformation, Backlund transforma-
tion, simplified Hirota’s method, trigonometric-function series method, modified map-
ping method, modified (G′/G)-expansion method, tanh-coth expansion method, Jacobi
elliptic function expansion method, first integral method and others (see [–] and [–
]). Also, important developments for searching for analytical solitary wave solutions for
PDEs can be found in [–].

The most integrable systems describe unidirectional waves such as the KP equation,
Burgers, KdV, mKdV equations and a higher-order Boussinesq-Burgers equation, where
these equations are first order PDE in time and model only the right-moving in the pos-
itive x-direction. However, the Boussinesq equation models both left- and right-going
waves and second-order in time. The two-mode equations are analogous to the two-mode
Boussinesq equation and hence are represented by a new nonlinear partial differential
equation of second-order in time.
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A higher-order Boussinesq-Burgers equation was introduced by Jin-Ming and Yao-Ming
() [] in the form

vt – avvx +



a(vw)x –



avxxx = ,

wt +



awwx – a(vw)x + avxvxx +



avvxxx –



awxxx = ,
()

where a is a non-zero arbitrary constant.
Wazwaz [–] and Korsunsky [] proposed the scaled form of the two-mode equa-

tion as follows:

utt – cuxx +
(

∂

∂t
– ac

∂

∂x

)
N(u, ux, . . .) +

(
∂

∂t
– ac

∂

∂x

)
L(ukx) = , ()

where c >  is the phase velocities, |a| ≤ , |a| ≤ , a is the dispersion parameter, a is
the parameter of nonlinearity, N(u, ux, . . .) is the nonlinear term and L(ukx) is the linear
term in the equation, k ≥ . Based on this argument, Jaradat et al. [–] used the same
sense as Korsunsky [] and Wazwaz [–] to establish the two-mode coupled system
of n equations

 = (ui)tt – c(ui)xx +
(

∂

∂t
– ac

∂

∂x

)
Ni

(
u, . . . , un, (u)x, . . . , (un)x, . . .

)

+
(

∂

∂t
– ac

∂

∂x

)
Li

(
(ui)kx

)
, i = , , . . . , n. ()

To establish the two-mode higher-order Boussinesq-Burgers equation (TM-ho-BBE) (),
we have

N(v, w, vx, wx, . . .) = –avvx +



a(vw)x,

L(vkx) = –



avxxx,

N(v, w, vx, wx, . . .) =



awwx – a
(
vw

)
x + avxvxx +




avvxxx,

L(vkx) = –



awxxx.

Thus, using equation (), (TM-ho-BBE) will have the form

 = vtt – cvxx –



a
(

∂

∂t
– ac

∂

∂x

)
vxxx +

(
∂

∂t
– ac

∂

∂x

){
–avvx +




a(vw)x

}
,

 = wtt – cwxx –



a
(

∂

∂t
– ac

∂

∂x

)
wxxx

+
(

∂

∂t
– ac

∂

∂x

){



awwx – a
(
vw

)
x + avxvxx +




avvxxx

}
.

()

Note that when c =  and integrating with respect to t, the two-mode higher-order
Boussinesq-Burgers equation (TM-ho-BBE) () is reduced to the standard higher-order
Boussinesq-Burgers equation ().
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The aim of this study is to find the necessary conditions needed for multiple-soliton
solutions and singular multiple-soliton solutions to exist for (TM-ho-BBE) by using the
simplified form of Hirota’s method. Moreover, we determine more exact solutions to this
new system by using the Tanh method.

2 Multiple soliton solutions and singular multiple soliton solutions
In this section, we used the simplified bilinear method to find the necessary conditions
needed to produce single soliton solutions, singular soliton solutions, multiple soliton so-
lutions and singular multiple soliton solutions of (TM-ho-BBE).

Substituting

v(x, t) = w(x, t) = eλi(x,t), λi(x, t) = rix – dit,

into the linear terms of equation () and solving the resulting equation gives

di =
–ar

i ± ri

√
ar

i – aacr
i + c


.

As a result, λi(x, t) becomes

λi(x, t) = rix –
–ar

i ± ri

√
ar

i – aacr
i + c


t, i = , , . . . . ()

Now, we propose the solutions to (TM-ho-BBE) () in the form

v(x, t) = C
∂

∂x
(
ln h(x, t)

)
, ()

w(x, t) = C
∂

∂x

(
ln h(x, t)

)
, ()

where C and C are constants. To find the one-soliton solution, we assume the auxiliary
function h(x, t) to be

h(x, t) =  + αeλ(x,t) =  + αerx–
–ar

 ±r
√

ar
 –aacr

 +c
 t , ()

where α = ±. Substitute (), () and () into (TM-ho-BBE) (). Then, solving for numer-
ical values C and C, we find that the one-soliton solution of (TM-ho-BBE) () exists only
if a = a. Therefore, two sets of solutions are obtained

C =
±


, ()

C =
–


. ()

Then the one-soliton solution of (TM-ho-BBE) () is given by

v(x, t) =
±


αrerx–
–ar

 ±r
√

ar
 –aacr

 +c
 t

 + αerx–
–ar

 ±r
√

ar
 –aacr

 +c
 t

,
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w(x, t) =
–


(
αr

 erx–
–ar

 ±r
√

ar
 –aacr

 +c
 t

 + αerx–
–ar

 ±r
√

ar
 –aacr

 +c
 t

)

+



(
αrerx–

–ar
 ±r

√
ar

 –aacr
 +c

 t

 + αerx–
–ar

 ±r
√

ar
 –aacr

 +c
 t

)

,

where

λ(x, t) = rx –
–ar

 ± r
√

ar
 – aacr

 + c


t.

For α = , the single soliton solution is

v(x, t) =
±


rerx–
–ar

 ±r
√

ar
 –aacr

 +c
 t

 + erx–
–ar

 ±r
√

ar
 –aacr

 +c
 t

=
±


r

(
 + tanh

(
λ(x, t)



))
, ()

w(x, t) =
–


(
r

 erx–
–ar

 ±r
√

ar
 –aacr

 +c
 t

 + erx–
–ar

 ±r
√

ar
 –aacr

 +c
 t

)

+



(
rerx–

–ar
 ±r

√
ar

 –aacr
 +c

 t

 + erx–
–ar

 ±r
√

ar
 –aacr

 +c
 t

)

=
–


r
 sech

(
λ(x, t)



)
. ()

For α = –, the singular single soliton solution is

v(x, t) =
∓


rerx–
–ar

 ±r
√

ar
 –aacr

 +c
 t

 – erx–
–ar

 ±r
√

ar
 –aacr

 +c
 t

=
±


r

(
 + coth

(
λ(x, t)



))
, ()

w(x, t) =



(
r

 erx–
–ar

 ±r
√

ar
 –aacr

 +c
 t

 – erx–
–ar

 ±r
√

ar
 –aacr

 +c
 t

)

+



(
rerx–

–ar
 ±r

√
ar

 –aacr
 +c

 t

 – erx–
–ar

 ±r
√

ar
 –aacr

 +c
 t

)

=



r
 csch

(
λ(x, t)



)
. ()

To find the two-wave solutions, we assume

h(x, t) =  + αeλ(x,t) + αeλ(x,t) + cααeλ(x,t)+λ(x,t). ()
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Insert (), () and () in () and solve for c. Then two-soliton solutions exist only if
a = a = ± and

c = . ()

This can be generalized to

cij = ,  ≤ i < j ≤ . ()

Also, inserting (), (), (), () in () and () and under the constraint condition a =
a = ±, we obtain the following two-soliton solutions:

v(x, t) =
±


rαeλ + rαeλ

 + αeλ + αeλ
,

w(x, t) =
–


(
αr

 eλ + αr
eλ

 + αeλ + αeλ
–

(
αreλ + rαeλ

 + αeλ + αeλ

))
,

where

λ = rx –
–ar

 ± (ar
 ± cr)


t,

λ = rx –
–ar

 ± (ar
 ± cr)


t.

For α = α = , the two-soliton solution is

v(x, t) =
±


reλ + reλ

 + eλ + eλ
,

w(x, t) =
–


(
r

 eλ + r
eλ

 + eλ + eλ
–

(
reλ + reλ

 + eλ + eλ

))
.

For α = α = –, the two-singular-soliton solution is

v(x, t) =
∓


reλ + reλ

 – eλ – eλ
,

w(x, t) =



(
r

 eλ + r
eλ

 – eλ – eλ
+

(
reλ + reλ

 – eλ – eλ

))
.

To find three-soliton solutions, we assume

h(x, t) =  + αeλ(x,t) + αeλ(x,t) + αeλ(x,t) + cαααeλ(x,t)+λ(x,t)+λ(x,t), ()

where

λi = rix –
–ar

i ± (ar
i ± cri)


t, i = , , .

Substituting (), () and () into () and solving for c, we find

c = .



Jaradat et al. Advances in Difference Equations  (2017) 2017:376 Page 6 of 10

Accordingly, we obtain the following three-wave solutions:

v(x, t) =
±


αreλ + rαeλ + rαeλ

 + αeλ + αeλ + αeλ
,

w(x, t) =
–


(
r

 αeλ + r
αeλ + r

αeλ

 + αeλ + αeλ + αeλ
–

(
rαeλ + rαeλ + rαeλ

 + αeλ + αeλ + αeλ

))
.

For α = α = α = , the three-wave solution is

v(x, t) =
±


reλ + reλ + reλ

 + eλ + eλ + eλ
,

w(x, t) =
–


(
r

 eλ + r
eλ + r

eλ

 + eλ + eλ + eλ
–

(
reλ + reλ + reλ

 + eλ + eλ + eλ

))
.

For α = α = α = –, the singular three-soliton solution is

v(x, t) =
∓


reλ – reλ – reλ

 – eλ – eλ – eλ
,

w(x, t) =



(
r

 eλ + r
eλ + r

eλ

 – eλ – eλ – eλ
+

(
reλ + reλ + reλ

 – eλ – eλ – eλ

))
.

Finally, we reach the fact that (TM-ho-BBE) has N-soliton solutions under the necessary
condition a = a = ±, where N ≥  [, ]. They are given by

v(x, t) =
±


∑N
k=rkerk x–

–ar
k ±(ar

k ±crk )
 t

 +
∑N

k=erk x–
–ar

k ±(ar
k ±crk )

 t
,

w(x, t) =
–


( ∑N
k=r

k erk x–
–ar

k ±(ar
k ±crk )

 t

 +
∑N

k=erk x–
–ar

k ±(ar
k ±crk )

 t
–

( ∑N
k=rkerk x–

–ar
k ±(ar

k ±crk )
 t

 +
∑N

k=erk x–
–ar

k ±(ar
k ±crk )

 t

))
.

Also, the singular N-soliton solutions under the same condition are given by

v(x, t) =
∓


∑N
k=rkerk x–

–ar
k ±(ar

k ±crk )
 t

 –
∑N

k=erk x–
–ar

k ±(ar
k ±crk )

 t
,

w(x, t) =



( ∑N
k=r

k erk x–
–ar

k ±(ar
k ±crk )

 t

 –
∑N

k=erk x–
–ar

k ±(ar
k ±crk )

 t
+

( ∑N
k=rkerk x–

–ar
k ±(ar

k ±crk )
 t

 –
∑N

k=erk x–
–ar

k ±(ar
k ±crk )

 t

))
.

Finally, we would like to present two plots of the obtained solutions of (TM-ho-BBE). Fig-
ure  is the one-soliton solution and Figure  is the two-soliton solution.

3 Alternative method: hyperbolic tangent expansion
In this section, we aim to validate the necessary conditions that guarantee the existence
of solutions to (TM-ho-BBE). To achieve this goal, we propose an alternative method, the
hyperbolic tangent expansion [–], to construct solitary wave solutions of problem ().
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Figure 1 The one-soliton solution of u1 when
r1 = 3, a = –2, c = 1, a1 = a2 = 1.5, C1 = 0.5,
C2 = –0.5.

Figure 2 The two-soliton solution of u2 when
r1 = 2.5, r2 = 1.5, a = –1, c = a1 = a2 = 1, C1 = 0.5,
C2 = –0.5.

We first consider the wave transform z = x – λt to reduce () into the following ordinary
differential equations:

 =
(
λ – c)v +




a(λ + ac)v′′ + a(λ + ac)
(




v –



vw
)

,

 =
(
λ – c)w′ +




a(λ + ac)w′′′

+ a(λ + ac)
((

vw
)′ –




ww′ – v′v′′ –



vv′′′
)

,

()

where v = v(z) and w = w(z).
Finite polynomials in terms of hyperbolic functions are to be considered as favorable

suggested solutions of (). Thus, we assume that

v(z) =
n∑
i=

ciY i,

w(z) =
n∑
j=

djY j,

()

where

Y = Y (z) = tanh(μz). ()



Jaradat et al. Advances in Difference Equations  (2017) 2017:376 Page 8 of 10

Balancing the behavior of Y in the highest derivative against its counterpart within the
nonlinear terms appearing in () leads to n +  = n = n + n or n +  = n +  =
n +  = n + n + . Thus, n = , n = . Accordingly, the solution of () in deterministic
form is

v(z) = c + cY ,

w(z) = d + dY + dY .
()

The task now is to determine the values of the parameters c, c, d, d, d and λ, μ. To
achieve this, we first substitute () in (), then we collect all coefficients of powers of Y
in the resulting equations and set them to zero. Finally, we solve the prescribed algebraic
system to retrieve the values of the required parameters. The algebraic calculations have
been executed by Mathematica and the following obtained solutions have been verified
as well. The first solution of () is

v(x, t) = ∓μ tanh
(
μ(x – λt)

)
,

w(x, t) = –μ + μ tanh(μ(x – λt)
)
,

()

where λ = 
 (–aμ ∓ √

c – aacμ + aμ).
The second solution is

v(x, t) = ∓μ


tanh

(
μ(x – λt)

)
,

w(x, t) = –
μ


+

μ


tanh(μ(x – λt)

)
,

()

where λ = 
 (–aμ –

√
c – aacμ + aμ).

The third solution is

v(x, t) = ∓μ


∓ μ


tanh

(
μ(x – λkt)

)
,

w(x, t) = –
μ


+

μ


tanh(μ(x – λkt)

)
, k = , ,

()

where

λ =


(
–aμ –

√
c – aacμ + aμ

)
,

λ =


(
–aμ +

√
c – aacμ + aμ

)
.

4 Conclusion
In this paper, we established a new nonlinear two-mode higher-order Boussinesq-Burgers
equation (TM-ho-BBE). By using a simplified form of Hirota’s method we reached the
following two facts:

• Single soliton and singular soliton solutions exist for (TM-ho-BBE) if a = a.
• Multiple soliton and multiple singular soliton solutions exist only under the condition

a = a = ∓.
Also, we applied an alternative method called hyperbolic tangent expansion to validate
the necessary conditions needed for solitary solutions to exist.
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