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Abstract
In this paper, we get a new form equivalent integral equation for a class of evolution
equations of fractional order with nonlocal conditions on the half-line. With the aid of
it, the uniqueness of the mild solution is obtained by the Banach contraction
theorem. Also, we present the existence and uniqueness theorem of positive mild
solutions by the monotone iterative method without assumption of lower and upper
solutions.
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1 Introduction
In this paper, we deal with the following functional differential abstract equation of frac-
tional order with nonlocal conditions in the Banach space E:

⎧
⎨

⎩

CDq
+u(t) = Au(t) + f (t, u(r(t))), t ∈ (, +∞),

u() =
∑∞

i= σiu(τi),
()

where CDq
+ is the Caputo fractional derivative,  < q < , σi > , τi >  (i = , , . . .), A is the

infinitesimal generator of a C semigroup {T(t)}t≥ of operators on Banach E, r ∈ C[,∞),
r(t) ≥ , and f : [, +∞) × E → E satisfies certain conditions.

If r(t) = t, then problem () can be written as

⎧
⎨

⎩

CDq
+u(t) = Au(t) + f (t, u(t)), t ∈ (, +∞),

u() =
∑∞

i= σiu(τi).
()

Fractional calculus, a generalization of the ordinary differentiation and integration, has
played an important role in science, biology, physics, economy, engineering, and other
fields (see [–]). A large number of phenomena and processes in the real world are de-
scribed by differential equation of fractional order, due to the fact of its various applica-
tions in many areas. Today, there are a lot of researchers committed to investigating the
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fractional differential equations. For more general theory of fractional differential equa-
tions, we refer readers to the papers [–] and the references given therein.

In [], EI-Sayed obtained the existence and uniqueness results based on an equiva-
lent integral equation for a class of fractional evolution equations, which was described
in terms of some probability densities by the method of Laplace transform for the first
time. Since then, according to EI-Sayed’s results, most papers have been working on the
evolution equations of fractional order, see [–].

Now, one branch of the studies on fractional differential equations is devoted to investi-
gating the fractional evolution equation with nonlocal conditions, which is a valuable tool
to describe the physics phenomena. Nonlocal conditions were initiated by Byszewski []
when he gave the existence and uniqueness results of the mild solutions for the nonlocal
Cauchy problems. In [], Byszewski and Lakshmikantham indicated that the nonlocal
condition can be more useful than the standard initial condition to model some physical
phenomena.

In [], Byszewski dealt with the following functional-differential abstract nonlocal
Cauchy problem of integer order in a general Banach space:

⎧
⎨

⎩

u′(t) = f (t, u(t), u(a(t))), t ∈ [t, t + T],

u(t) +
∑p

k= cku(tk) = x.

Applying the Banach contraction theorem and a modified Picard method, the existence
and uniqueness of a classical solution is given.

In [], Chen studied a class of nonlocal evolution equations
⎧
⎨

⎩

u′(t) + Au(t) = f (t, u(t)), t ≥ ,

u() =
∑∞

k= cku(tk).

With the help of the monotone iterative method, the existence and uniqueness of the mild
positive solutions were obtained in the paper.

As far as we know, recently, evolution equations of fractional order have attracted in-
creasing attention, and we refer to the papers [–] and the references therein. However,
many of those papers on the existence of solutions of fractional evolution equations are
on the finite interval, and the existence results on the half-line are still few.

Motivated by the papers [, , , ], in this paper, we study the fractional differential
equations () and () with nonlocal conditions on the unbounded domains. Here, we give
a corrected form of the equivalent integral equation of () by similar methods as the ones
used in [, ], which is different from those obtained in the existing literature. With the
aid of the Banach contraction theorem, the uniqueness of the mild solution of problem ()
is given. Besides, employing the monotone iterative method, without the assumption of
lower and upper solutions, we present some new results on the existence of positive mild
solutions for the abstract fractional differential equations ().

For the sake of convenience, we denote

χ :=


�(q + )


 –
∑∞

i= σi
.

Our main results are as follows.
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Theorem . Let E be a Banach space and {T(t)}t≥ be a uniformly exponentially stable
C-semigroup with the growth bound ω (ω < ), and A is the infinitesimal generator of
{T(t)}t≥. Let  <

∑∞
i= σi < . Let r ∈ C[,∞) and r(t) ≥ . If f (t, u) satisfies the following

condition:

(F) There exist two constants ω∗ ∈ (, |ω|] and M satisfying M < ω∗/χ such that

∥
∥f (t, x) – f (t, y)

∥
∥

ω∗ ≤M‖x – y‖ω∗ , ∀x, y ∈ E,

then problem () has a unique mild solution in BC(J , E). Besides, if f (t, θ ) �= θ , the unique
mild solution in B(J , E) is nontrivial.

Theorem . Let E be a Banach space, and P is its positive normal with N as the normal
constant. Let {T(t)}t≥ be a uniformly exponentially stable C-semigroup with the growth
bound ω (ω < ), and A is the infinitesimal generator of {T(t)}t≥. Let  <

∑∞
i= σi < .

Provided that f (t, u) : J × E −→ E is continuous and f(t) := f (t, θ ) ≥ θ is bounded on J , if
f (t, u) satisfies the following conditions:

(H) There exist two constants d < –ω and d > max{–d,ω} such that for

–d(y – x) ≤ f (t, y) – f (t, x) ≤ d(y – x), θ ≤ x ≤ y;

(H)

 <
d + d

d – ω
<


χ

,

then problem () has a unique positive mild solution in BC(J , E).

Remark . We give a comparison between the two methods. First, the existence of posi-
tive mild solution is given in Theorem .. However, Theorem . only shows the existence
of mild solution, and it cannot tell if it is positive. Second, the function f (t, x) should be a
monotone one in Theorem ., but this condition is not necessary in Theorem .. Given
the above, these two theorems are complementary.

The rest of the paper is organized as follows. In Section , we introduce the definitions
of the fractional integral and fractional derivative, some results about fractional differen-
tial equations and some useful preliminaries. In Section , we present the proofs of our
main results by the Banach contraction theorem and the monotone iterative method, re-
spectively. Then an example is given in Section  to demonstrate the application of our
results.

2 Preliminaries
First of all, we present some fundamental facts on the fractional calculus theory which we
will use in the next section.
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Definition . ([–]) The Riemann-Liouville fractional integral of order ν >  of a func-
tion h : (,∞) →R is given by

Iν
+h(t) = D–ν

+h(t) =


�(ν)

∫ t


(t – s)ν–h(s) ds, ()

provided that the right-hand side is pointwise defined on (,∞).

Definition . ([–]) The Caputo fractional derivative of order ν >  of a continuous
function h : (,∞) →R is given by

CDν
+h(t) =


�(n – ν)

∫ t


(t – s)n–ν–hn(s) ds, ()

where n = [ν] + , provided that the right-hand side is pointwise defined on (,∞).

Lemma . ([, ]) Assume that CDν
+h(t) ∈ L(, +∞), ν > . Then we have

Iν
+

CDν
+h(t) = h(t) + C + Ct + · · · + CN tN–, t > , ()

for some Ci ∈R, i = , , . . . , N ,where N is the smallest integer greater than or equal to ν .

If h is an abstract function with values in the Banach space E, then the integrals appear-
ing in Definition ., Definition . and Lemma . are taken in Bochner’s sense. And a
measurable function h is Bochner integrable if the norm of h is Lebesgue integrable.

Now let us recall some definitions and standard facts about the cone.
Let P be a cone in the ordered Banach space E, which defines a partial order on E by

x ≤ y if and only if y – x ∈ P. P is normal if there exists a positive constant N such that
θ ≤ x ≤ y implies ‖x‖ ≤ N‖y‖, where θ is the zero element of the Banach space E. The
infimum of all N with the property above is called the normal constant of P. For more
details on the cone P, we refer the readers to [, ].

Throughout the paper, we set E be an ordered Banach space with the norm ‖ · ‖ and the
partial order ‘≤’. Let P = {x ∈ E|x ≥ θ} be a positive cone, which is normal with normal
constant N . Let J = [, +∞). Set

BC(J , E) =
{

u(t)|u(t)is continuous and bounded on J
}

.

Obviously, BC(J , E) is a Banach space with the norm ‖u‖b = supt∈J ‖u(t)‖. Let

PB =
{

u ∈ BC(J , E)|u(t) ≥ θ , t ∈ J
}

.

It is easy to see that PB is also normal with the same normal constant N of the cone P.
Besides, BC(J , E) is also an ordered Banach space with the partial order ‘≤’ induced by
the positive cone PB (without confusion, we denote by ‘≤’ the partial order on both E and
BC(J , E)).

We denote by [v, w] the order interval {u ∈ PB|v ≤ u ≤ w, v, w ∈ BC(J , E)} on BC(J , E),
and use [v(t), w(t)] to denote the order interval {z ∈ E|v(t) ≤ z ≤ w(t)} on E for t ∈ J .
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Next, we give some facts about the semigroups of linear operators. These results can be
found in [, ].

For a strongly continuous semigroup (i.e., C-semigroup) {T(t)}t≥, the infinitesimal
generator of {T(t)}t≥ is defined by

Ax = lim
t→+

T(t)x – x
t

, x ∈ E.

We denote by D(A) the domain of A, that is,

D(A) =
{

x ∈ E
∣
∣
∣ lim

t→+

T(t)x – x
t

exists
}

.

Lemma . ([, ]) Let {T(t)}t≥ be a C-semigroup, then there exist constants C ≥ 
and ω ∈R such that ‖T(t)‖ ≤ Ceωt , t ≥ .

Lemma . ([, ]) A linear operator A is the infinitesimal generator of a C-semigroup
{T(t)}t≥ if and only if

(i) A is closed and D(A) = E.
(ii) The resolvent set ρ(A) of A contains R+ and, for every λ > , we have

∥
∥R(λ, A)

∥
∥ ≤ 

λ
,

where

R(λ, A) := (λI – A)– =
∫ +∞


e–λtT(t)x dt, x ∈ E.

Definition . ([, ]) A C-semigroup {T(t)}t≥ is said to be uniformly exponentially
stable if ω < , where ω is the growth bound of {T(t)}t≥, which is defined by

ω = inf
{
ω ∈R|∃C ≥  such that

∥
∥T(t)

∥
∥ ≤ Ceωt , t ≥ 

}
.

Definition . ([]) A C-semigroup {T(t)}t≥ is said to be positive on E, if order in-
equality T(t)x ≥ θ , x ∈ E and t ≥ .

According to Lemma . and Definition ., if {T(t)}t≥ is a uniformly exponentially
stable C-semigroup with the growth bound ω, then for any ω ∈ (, |ω|], there exists a
constant C ≥  such that ‖T(t)‖ ≤ Ceωt , t ≥ . Now, we define a norm in E by

‖x‖ω = sup
t≥

∥
∥eωtT(t)x

∥
∥.

Evidently, we have ‖x‖ ≤ ‖x‖ω ≤ C‖x‖, that is to say, the norm ‖·‖ω and ‖·‖ are equivalent.
We denote by ‖T(t)‖ω the norm of T(t) induced by the norm ‖ · ‖ω . Then we obtain

∥
∥T(t)

∥
∥

ω
≤ e–ωt , t ≥ . ()
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Also, we can define the equivalent norm on BC(J , E) by

‖u‖bω = sup
t∈J

∥
∥u(t)

∥
∥

ω
, u ∈ BC(J , E).

Obviously, if u(t) ≡ u, t ∈ J , u ∈ E, then we have

‖u‖bω = ‖u‖bω = ‖u‖ω.

Consider the one-sided stable probability density [, , ]

ψq(θ ) =

π

∞∑

n=

θ–qn– �(nq + )
n!

sin(nπq), θ ∈ (,∞),

where  < q < . By Remark . in [], for  ≤ γ ≤ , one has

∫ ∞


θ–qγ ψq(θ ) dθ =

�( + γ )
�( + qγ )

. ()

From [, , ], the Laplace transform of the one-sided stable probability density ψq(θ )
is given by

L
[
ψq(θ )

]
=

∫ ∞


e–λθψq(θ ) dθ = e–λq

,  < q < . ()

In the following, we assume that {T(t)}t≥ is a uniformly exponentially stable C-
semigroup with the growth bound ω, and ω ∈ (, |ω|).

Lemma . Define an operator

(ϒh)(t) :=
∫ 



∫ ∞



q
�( – q)

ψq(θ )
θq τ–q( – τ )q–T

(
tq( – τ )q

θq

)

h(s) dθ dτ ,

h ∈ BC(J , E). ()

Then ϒ : BC(J , E) −→ BC(J , E) and

‖ϒh‖bω ≤ ‖h‖bω.

In particular, if h(t) ≡ x, t ∈ J , x ∈ E, then

‖ϒx‖bω ≤ ‖x‖ω .

Proof Since

∥
∥(ϒh)(t)

∥
∥

ω

≤
∫ 



∫ ∞



q
�( – q)

τ–q( – τ )q– ψq(θ )
θq

∥
∥
∥
∥T

(
tq( – τ )q

θq

)

h(s)
∥
∥
∥
∥

ω

dθ dτ
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≤
∫ 



∫ ∞



q
�( – q)

τ–q( – τ )q– ψq(θ )
θq

∥
∥
∥
∥T

(
tq( – τ )q

θq

)∥
∥
∥
∥

ω

∥
∥h(s)

∥
∥

ω
dθ dτ

≤
∫ 



∫ ∞



q
�( – q)

τ–q( – τ )q– ψq(θ )
θq e–ω( tq(–τ )q

θq )‖h‖bω dθ dτ

≤ q
�( – q)

‖h‖bω

∫ 


τ–q( – τ )q–

(∫ ∞



ψq(θ )
θq dθ

)

dτ

≤ ‖h‖bω,

then the proof is finished. �

Lemma . Define a linear operator R : BC(J , E) −→ BC(J , E) as

Rh :=
∞∑

i=

σi
[
(ϒh)(τi)

]

=
∞∑

i=

σi

∫ 



∫ ∞



q
�( – q)

ψq(θ )
θq τ–q( – τ )q–T

(

τ
q
i

( – τ )q

θq

)

x dθ dτ .

Then R is bounded and ‖R‖ω ≤ ∑∞
i= σi. Besides, if  <

∑∞
i= σi < , then (I –R)– is a linear

bounded operator and

∥
∥(I – R)–∥∥

ω
≤ 

 –
∑∞

i= σi
.

Proof In view of Lemma ., one can get

‖Rh‖ω =

∥
∥
∥
∥
∥

∞∑

i=

σi
[
(ϒh)(τi)

]
∥
∥
∥
∥
∥

ω

≤
∞∑

i=

σi
∥
∥
[
(ϒh)(τi)

]∥
∥

ω
≤

∞∑

i=

σi‖ϒh‖bω

≤
( ∞∑

i=

σi

)

‖h‖ω .

Hence, R is bounded and ‖R‖ω ≤ ∑∞
i= σi. �

Lemma . Set

(Wh)(t) =
∫ t



∫ ∞


q
ψq(θ )

θq (t – s)q–T
(

(t – s)q

θq

)

h(s) dθ ds, h ∈ BC(J , E).

Then W : BC(J , E) −→ BC(J , E) and

∥
∥(Wh)(t)

∥
∥

ω
≤ 

ω


�(q + )

‖h‖bω;
∥
∥(Wh)

∥
∥

bω
≤ 

ω


�(q + )

‖h‖bω.

Proof Since

(Wh)(t) =
∫ t



∫ ∞


q
ψq(θ )

θq (t – s)q–T
(

(t – s)q

θq

)

h(s) dθ ds

=
∫ 



∫ ∞


q
ψq(θ )

θq tq( – τ )q–T
(

tq( – τ )q

θq

)

h(tτ ) dθ dτ ,
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then

∥
∥(Wh)(t)

∥
∥

ω

≤
∫ 



∫ ∞


q
ψq(θ )

θq tq( – τ )q–
∥
∥
∥
∥T

(
tq( – τ )q

θq

)∥
∥
∥
∥

ω

∥
∥h(tτ )

∥
∥

ω
dθ dτ

≤
∫ 



∫ ∞


q
ψq(θ )

θq tq( – τ )q–e–ω
tq(–τ )q

θq
∥
∥h(tτ )

∥
∥

ω
dθ dτ

≤ 
ω

‖h‖bω

∫ ∞



[(∫ 


e–ω( tq(–τ )q

θq ) d
(

–ω
tq( – τ )q

θq

))
ψq(θ )

θq

]

dθ

=

ω

‖h‖bω

∫ ∞



(
 – e–ω tq

θq
)ψq(θ )

θq dθ

≤ 
ω


�(q + )

‖h‖bω.

Therefore,

∥
∥(Wh)

∥
∥

bω
≤ 

ω


�(q + )

‖h‖bω. �

Lemma . Let h ∈ BC(J , E) and u ∈ D(A). Assume that  <
∑∞

i= σi < . Then the linear
fractional evolution equation

⎧
⎨

⎩

CDq
+u(t) = Au(t) + h(t), t ∈ (, +∞),

u() = u,
()

has a unique solution u ∈ BC(J , E) of the following form:

u(t) = (ϒu)(t) + (Wh)(t)

=
∫ 



∫ ∞



q
�( – q)

ψq(θ )
θq τ–q( – τ )q–T

(
tq( – τ )q

θq

)

u dθ dτ

+
∫ t



∫ ∞


q
ψq(θ )

θq (t – s)q–T
(

(t – s)q

θq

)

h(s) dθ ds. ()

Proof In view of Definitions ., . and Lemma ., equation () can be rewritten by the
equivalent integral equation as follows:

u(t) = u +


�(q)

∫ t


(t – s)q–[Au(s) + h(s)

]
ds. ()

Denote by U(λ) and H(λ) the Laplace transform of u(t) and h(t), respectively, using a
similar method as that in [, ], then with the Laplace transform, we can rewrite the
above equation as

U(λ) =

λ

u +

λq AU(λ) +


λq H(λ), λ > . ()

Then one has

(
λqI – A

)
U(λ) = λq–u + H(λ).
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By virtue of () and Lemma ., we obtain

U(λ) =
(
λqI – A

)–
λq–u +

(
λqI – A

)–H(λ)

= λq–
∫ ∞


e–λqsT(s)u ds +

∫ ∞


e–λqsT(s)H(λ) ds

= λq–
∫ ∞



∫ ∞


e–λs/qθψq(θ )T(s)u dθ ds

+
∫ ∞



∫ ∞


e–λs/qθψq(θ )T(s)H(λ) dθ ds

= λq–
∫ ∞


e–λt

[∫ ∞


q

tq–

θq ψq(θ )T
(

tq

θq

)

u dθ

]

dt

+
∫ ∞


e–λt

[∫ t



∫ ∞


q

(t – s)q–

θq ψq(θ )T
(

(t – s)q

θq

)

h(s) dθ ds
]

dt.

By the definition of Laplace transforms and the convolution theorem, applying
Lemma . and the inverse Laplace transforms on the above equations, then one can
derive that

u(t) = L–[λq–] ∗L–
[∫ ∞


e–λt

[∫ ∞


q

tq–

θq ψq(θ )T
(

tq

θq

)

u dθ

]

dt
]

+ L–
[∫ ∞


e–λt

(∫ t



∫ ∞


q

(t – s)q–

θq ψq(θ )T
(

(t – s)q

θq

)

h(s) dθ ds
)

dt
]

=
t–q

�( – q)
∗

[∫ ∞


q

tq–

θq ψq(θ )T
(

tq

θq

)

u dθ

]

+
∫ t



∫ ∞


q

(t – s)q–

θq ψq(θ )T
(

(t – s)q

θq

)

h(s) dθ ds

=
∫ t



∫ ∞



q
�( – q)

s–q (t – s)q–

θq ψq(θ )T
(

(t – s)q

θq

)

u dθ ds + (Wh)(t)

= (ϒu)(t) + (Wh)(t).

Since

∥
∥(ϒu)(t) + (Wh)(t)

∥
∥

ω
≤ ∥

∥(ϒu)(t)
∥
∥

ω
+

∥
∥(Wh)(t)

∥
∥

ω
≤ ‖u‖ω +


ω


�(q + )

‖h‖bω,

then

‖ϒu + Wh‖bω ≤ ‖u‖ω +

ω


�(q + )

‖h‖bω.

Hence, u ∈ BC(J , E). Then we complete the proof. �

3 Main results
In this section, we will present the existence theorem for the abstract fractional differential
equation on the half-line. In order to prove our main result, we need the following facts
and lemmas.
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Lemma . Let h ∈ BC(J , E) and u ∈ D(A). Let  <
∑∞

i= σi < . Then the linear fractional
evolution equation

⎧
⎨

⎩

CDq
+u(t) = Au(t) + h(t), t ∈ (, +∞),

u() =
∑∞

i= σiu(τi),
()

has a unique solution u ∈ BC(J , E) of the following form:

u(t)

= (�Ah)(t)

:=

(

ϒ

[

(I – R)–
∞∑

i=

σi(Wh)(τi)

])

(t) + (Wh)(t)

=
∫ 



∫ ∞



q
�( – q)

ψq(θ )
θq τ–q( – τ )q–T

(

tq ( – τ )q

θq

)

×
[

(I – R)–

( ∞∑

i=

σi(Wh)(τi)

)]

dθ dτ

+
∫ t



∫ ∞


q
ψq(θ )

θq (t – s)q–T
(

(t – s)q

θq

)

h(s) dθ ds. ()

Also, �A is a linear operator on the Banach space BC(J , E) and

‖�A‖bω ≤ χ

ω
.

Proof In view of Lemma ., one can obtain

u(τi) =
∫ τi



∫ ∞



[

q
(τi – s)q–

θq ψq(θ )T
(

(τi – s)q

θq

)(
s–q

�( – q)
u() + h(s)

)]

dθ ds.

From u() =
∑∞

i= σiu(τi), we have

u() =
∞∑

i=

σi

∫ τi



∫ ∞



q
�( – q)

ψq(θ )
θq s–q(τi – s)q–T

(
(τi – s)q

θq

)

u() dθ ds

+
∞∑

i=

σi(Wh)(τi)

=
∞∑

i=

σi

∫ 



∫ ∞



q
�( – q)

ψq(θ )
θq τ–q( – τ )q–T

(

τ
q
i

( – τ )q

θq

)

u() dθ dτ

+
∞∑

i=

σi(Wh)(τi)

= Ru() +
∞∑

i=

σi(Wh)(τi).
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Therefore,

(I – R)u() =
∞∑

i=

σi(Wh)(τi).

So, we obtain

u() = (I – R)–

( ∞∑

i=

σi(Wh)(τi)

)

.

Then () follows.
By (), one has

∥
∥(�Ah)(t)

∥
∥

ω

≤
∫ 



∫ ∞



q
�( – q)

ψq(θ )
θq τ–q( – τ )q–

∥
∥
∥
∥T

(

tq ( – τ )q

θq

)∥
∥
∥
∥

ω

×
∥
∥
∥
∥
∥

(I – R)–

( ∞∑

i=

σi(Wh)(τi)

)∥
∥
∥
∥
∥

ω

dθ dτ +
∥
∥(Wh)(t)

∥
∥

ω

≤
∫ 



∫ ∞



q
�( – q)

ψq(θ )
θq τ–q( – τ )q–e–ω

tq(–τ )q
θq

∥
∥(I – R)–∥∥

ω

×
∥
∥
∥
∥
∥

∞∑

i=

σi(Wh)(τi)

∥
∥
∥
∥
∥

ω

dθ dτ +
∥
∥(Wh)(t)

∥
∥

ω

≤ 
 –

∑∞
i= σi

∑∞
i= σi

ω


�(q + )

‖h‖bω +

ω


�(q + )

‖h‖bω

=

ω


�(q + )


 –

∑∞
i= σi

‖h‖bω

=
χ

ω
‖h‖bω.

Therefore,

‖�Ah‖bω ≤ χ

ω
‖h‖bω. �

In consequence, we have the following lemma.

Lemma . Let  <
∑∞

i= σi < . Then problem () can be written as the following equivalent
integral equation:

u(t) = Tu(t) := (�Af )(t) =

(

ϒ

[

(I – R)–
∞∑

i=

σi(W f )(τi)

])

(t) + (W f )(t). ()

Now, we give the proofs of the main result on the existence of positive solutions to prob-
lem () and () in the following.
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Proof of Theorem . Take two arbitrary elements u and v in Banach BC(J , E). From Lem-
mas ., . and ., by the condition (F), we get

∥
∥Tu(t) – Tv(t)

∥
∥

ω∗

=

∥
∥
∥
∥
∥

(

ϒ

[

(I – R)–
∞∑

i=

σiW
[
f
(
τi, u

(
r(τi)

))
– f

(
τi, v

(
r(τi)

))]
])

(t)

+ W
[
f
(
t, u

(
r(t)

))
– f

(
t, v

(
r(t)

))]
∥
∥
∥
∥
∥

ω∗

≤
∥
∥
∥
∥
∥

(

ϒ

[

(I – R)–
∞∑

i=

σiW
[
f
(
τi, u

(
r(τi)

))
– f

(
τi, v

(
r(τi)

))]
])

(t)

∥
∥
∥
∥
∥

ω∗

+
∥
∥W

[
f
(
t, u

(
r(t)

))
– f

(
t, v

(
r(t)

))]∥
∥

ω∗

≤ 
ω


�(q + )

[


 –
∑∞

i= σi

∞∑

i=

σi
∥
∥f

(
τi, u

(
r(τi)

))
– f

(
τi, v

(
r(τi)

))∥
∥

ω∗

+
∥
∥f

(
t, u

(
r(t)

))
– f

(
t, v

(
r(t)

))∥
∥

ω∗

]

≤ M
ω


�(q + )

[∑∞
i= σi‖u(r(τi)) – v(r(τi))‖ω∗

 –
∑∞

i= σi
+

∥
∥u

(
r(t)

)
– v

(
r(t)

)∥
∥

ω∗

]

≤ M
ω


�(q + )

[ ∑∞
i= σi

 –
∑∞

i= σi
+ 

]

‖u – v‖bω∗

=
M
ω


�(q + )


 –

∑∞
i= σi

‖u – v‖bω∗ .

Thus,

‖Tu – Tv‖bω∗ ≤Mχ

ω
‖u – v‖bω∗ ,

which implies that problem () has a unique mild solution. �

Proof of Theorem . In the following, similar to the methods used in [], we will deduce
the result of Theorem . by the monotone iterative method. The proof is divided into
four steps.

Step : First of all, consider an abstract fractional differential equation as follows:

⎧
⎨

⎩

CDq
+u(t) = Au(t) + du(t) + f(t), t ∈ (, +∞),

u() =
∑∞

i= σiu(τi).
()

Obviously, {edtT(t)}t≥ is a uniformly exponentially stable C-semigroup on Banach
E generated by A + dI , which is positive with the growth bound d + ω (d + ω < ).
Applying Lemma ., equation () has a unique mild solution φ ∈ BC(J , E) and φ ≥ θ

due to f(t) ≥ θ , t ∈ J .
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Step : Letting g ∈ BC(J , E), consider the following abstract fractional differential equa-
tion:

⎧
⎨

⎩

CDq
+u(t) + du(t) = Au(t) + g(t), t ∈ (, +∞).

u() =
∑∞

i= σiu(τi).
()

It is easy to see that A – dI generates a uniformly exponentially stable C-semigroup
{e–dtT(t)}t≥ on Banach E. Also, it is positive with the growth bound –d + ω

(–d + ω < ).
According to Lemma ., we can get that problem () has a unique mild solution u =

�A–dIg , where �A–dI : BC(J , E) −→ BC(J , E) is a positive bounded linear operator (similar
to the operator �A) with the property that

‖�A–dI‖bω ≤ χ

d – ω
, ω = d – ω.

Then φ is the mild solution of problem () for g = f + dφ + dφ, thus

φ = �A–dI(f + dφ + dφ). ()

Step : We will prove the existence of a mild positive solution of problem ().
Take F(u) = f (t, u) + du. Evidently, F(θ ) = f (t, θ ) = f(t) ≥ θ and F : BC(J , E) −→ BC(J , E)

is continuous due to condition (H), (H) and the normality of the cone PB.
By condition (H), then

F(y) – F(x) = f (t, y) + dy – f (t, x) – dx = f (t, y) – f (t, x) + d(y – x) ≥ θ , θ ≤ x ≤ y,

which implies that F is an increasing operator on the positive cone P.
Let ϕ = θ and O = �A–dI ◦ F . It is easy to notice that the fixed point of O is the mild

solution of problem (). Now, our next step is to prove that the operator O has at least one
fixed point.

Define two sequences

φn = O(φn–), n = , , , . . . , ()

and

ϕn = O(ϕn–), n = , , , . . . . ()

From condition (H), one can obtain

f
(
t,φ(t)

)
– f (t, θ ) ≤ dφ(t),

then

f
(
t,φ(t)

) ≤ dφ(t) + f(t).
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Thus,

F(φ) = f
(
t,φ(t)

)
+ dφ(t) ≤ dφ(t) + dφ(t) + f(t).

Therefore, we can get

θ ≤ f(t) = F(θ ) ≤ F(φ) ≤ dφ + dφ + f. ()

For the positivity of the linear bounded operator �A–dI , by () and (), one can get

θ ≤ �A–dI ◦ F(θ ) = O(θ ) ≤ �A–dI ◦ F(φ) = O(φ) ≤ �A–dI(dφ + dφ + f) = φ,

which shows that

θ = ϕ ≤ φ ≤ φ. ()

Since O is an increasing operator on the order interval [θ ,φ], in view of the definition
of O and (), we can get two sequences {φn} and {ϕn} (n = , , , , . . .) such that

θ = ϕ ≤ ϕ ≤ ϕ ≤ · · · ≤ ϕn ≤ · · · ≤ φn ≤ · · · ≤ φ ≤ φ ≤ φ.

From condition (H), we have

θ ≤ φn – ϕn = O(φn–) – O(ϕn–)

= �A–dI ◦ F(φn–) – �A–dI ◦ F(ϕn–)

= �A–dI
[
f (·,φn–) + dφn– – f (·,ϕn–) – dϕn–

]

≤ (d + d)�A–dI(φn– – ϕn–).

Then

θ ≤ φn – ϕn ≤ (d + d)n�A–dI(φ – ϕ) = (d + d)n�n
A–dI(φ).

Since the cone PB is normal with the normal constant N , by virtue of condition (H), one
can get

‖φn – ϕn‖bω ≤ N(d + d)n∥∥�n
A–dI(φ)

∥
∥

bω

≤ N(d + d)n∥∥�n
A–dI

∥
∥

bω
‖φ‖bω

≤ N(d + d)n‖�A–dI‖n
bω‖φ‖bω

≤ N(d + d)n
(

χ

d – ω

)n

‖φ‖bω

= N
(

χ (d + d)
d – ω

)n

‖φ‖bω → , n → +∞. ()

Therefore, by a method similar to the nested interval one, by (), there exists unique
u∗ ∈ ⋂∞

n=[ϕn,φn] such that u∗ = limn→∞ φn = limn→∞ ϕn.
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Taking limit of n → ∞ both on () and (), we can obtain that

u∗ = O
(
u∗),

which shows that u∗ is the fixed point of O. Hence, u∗ is a mild positive solution of prob-
lem ().

Step : In the last step, we will prove the uniqueness of the mild solution for problem ().
By reduction to absurdity, assume that u∗

 and u∗
 are two different positive mild solutions

for the fractional evolution equation (), so ‖u∗
 – u∗

‖bω > .
Replace φ by u∗

 and u∗
 in (), respectively. Following the same steps as above, for each

u∗
i (i = , ), we can get that u∗

i = O(u∗
i ), ‖u∗

i – ϕn‖bω →  (n → ∞) and φn = u∗
i for each

n ∈N (i = , ). Therefore,

 <
∥
∥u∗

 – u∗

∥
∥

bω
≤ ∥

∥u∗
 – ϕn

∥
∥

bω
+

∥
∥u∗

 – ϕn
∥
∥

bω
→ , n → ∞.

which is a contradiction.
Hence, problem () has a unique positive solution. The proof is completed. �

4 Examples
To illustrate our main result, we will present an example. Consider the following partial
fractional differential equation.

Example 

⎧
⎪⎪⎨

⎪⎪⎩

∂
q
t z(t, x) = ∂

x z(t, x) + F(t, z(t, x)), t ∈ [, +∞),

z(t, ) = z(t,π ) = , t ∈ [, +∞),

z(, x) =
∑∞

i= σiz(τi, x), x ∈ [,π ],

()

where ∂
q
t is the Caputo fractional partial derivative of order q ∈ (, ).

Set E = L([,π ],R) and Az = ∂
x z, according to [], then A : D(A) −→ E is a linear oper-

ator with domain D(A) = {u ∈ E|u′ ∈ E, u() = u(π ) = }. Besides, the operator A generates
a uniformly exponentially stable C-semigroup {T(t)}t≥ with the growth bound ω ≤ –.

Let u(t) = z(t, ·), f (t, u(t)) = F(t, z(t, ·)), then problem () can be written as

⎧
⎨

⎩

CDq
+u(t) = Au(t) + f (t, u(t)), t ∈ (, +∞),

u() =
∑∞

i= σiu(τi).
()

Take q = /,
∑∞

i= σi = /, τi > , i = , , . . . , then we can get

χ =


�(q + )


 –
∑∞

i= σi
=

√
π

.

Consider the following function:

f (t, x) =
(

–d +
–ω

( + a(t))(χ – )

)

x,
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where a ∈ C[, +∞) is bounded and

d = ω, d = –
(

 +


χ – 

)

ω.

It is easy for us to certify that

 <
d + d

d – ω
=


χ – 

<

χ

.

Since

–d –
ω

χ – 
=

(

 +


χ – 

)

ω –
ω

χ – 
≤ ω = d,

then, for θ ≤ x ≤ y,

–d(y – x) ≤ f (t, y) – f (t, x) =
[

–d +
–ω

( + a(t))(χ – )

]

(y – x)

≤
(

–d –
ω

χ – 

)

(y – x) ≤ d(y – x).

Noting that f (t, θ ) = θ . Thereby, f satisfies the conditions of Theorem .. We can con-
clude that problem () has a unique positive mild solution.
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