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Abstract
We formulate a stochastic SIS epidemic model with vaccination by introducing a Lévy
noise and regime switching into the epidemic model. First, we prove that the
stochastic model admits a unique global positive solution. Moreover, we study the
asymptotic behavior of the stochastic regime switching SIS model with vaccination
driven by Lévy noise.
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1 Introduction
It is well known that epidemic diseases (tuberculosis, SARS, AIDS, etc.) always bring great
harm to the stability of the social and threat individual health, Moreover, the rapid devel-
opment of society and frequent contacts among people can accelerate the spread of epi-
demic disease. In recent years, control of infectious diseases becomes an increasingly com-
plex issue. Vaccination is an important strategy for the elimination of infectious disease.
Communication diseases may be prevented by a valid vaccination [–]. The vaccination
enables the vaccinated to get a permanent or temporary immunity. When the immunity
is temporary, it can be lost after a period of time. It is often assumed that the process of
losing immunity is exponential [–].

To formulate epidemic models with vaccination, we often let S(t) to denote the number
of members that are susceptible to infections at time t, I(t) denotes the number of mem-
bers that infective at time t, and V (t) denotes the number of members that are immune to
infections at time t as the result of vaccination. The total population size at time t is equal
to S + I + V for an SIS model with vaccination. The deterministic SIS epidemic model with
vaccination is expressed by

⎧
⎪⎪⎨

⎪⎪⎩

Ṡ(t) = ( – q)A – βI(t)S(t) – (μ + p)S(t) + γ I(t) + εV (t),

İ(t) = βS(t)I(t) – (μ + γ + α)I(t),

V̇ (t) = qA + pS(t) – (μ + ε)V (t),

(.)

where A is a constant input of new members into the population per unit time, q ( ≤
q ≤ ) is the fraction of vaccinated for newborns; β represents the transmission coefficient
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between compartments S and I , μ is the natural death rate per capita, p represents the pro-
portional coefficient of vaccinated for the susceptible, γ is the recovery rate, ε is the rate
of losing immunity for vaccinated individuals, and α represents the disease-caused death
rate of infectious individuals. These parameter values are all nonnegative, and μ, A > . Li
and Ma [] analyzed the thresholds, equilibria, and stabilities of the epidemic model (.)
of SIS type with vaccination. For system (.), there exists the basic reproduction number
R. The asymptotic behavior is globally asymptotically stable convergence to a disease-free
equilibrium P(S, I, V) below the threshold R. Otherwise, P is unstable when R > ,
and there is an endemic equilibrium P∗(S∗, I∗, V ∗), which is globally asymptotically stable.

Because of full randomness and stochasticity in real life, many studies have indicated
that environmental fluctuations have a huge impact on the transmission of an epidemic
[, ]. Zhao and Jiang [] considered the following stochastically perturbed SIS epidemic
model with vaccination:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS(t) = [( – q)A – βI(t)S(t) – (μ + p)S(t) + γ I(t) + εV (t)] dt

+ σS(t) dB(t),

dI(t) = [βS(t) – (μ + γ + α)]I(t) dt + σI(t) dB(t),

dV (t) = [qA + pS(t) – (μ + ε)V (t)] dt + σV (t) dB(t),

(.)

where Bi(t) (i = , , ) are independent Brownian motions, and σi (i = , , ) are their
intensities. They showed that when the perturbations and the disease-related death rate
α are small, there is a stationary distribution, and it is ergodic as the reproductive number
of the deterministic model R > . If R ≤ , then the solution of model (.) is oscillating
around the disease-free equilibrium P.

Furthermore, the population may suffer sudden environmental shocks and catastrophes
such as climate charges (earthquakes, hurricanes, etc.) and unpredictable disasters. These
phenomena cannot be modeled by stochastic continuous models. Bao et al. suggested that
the non-Gaussian Lévy noise should be suitable for describing these phenomena [–].
They considered stochastic Lotka-Volterra population systems with jumps [] for the
first time, and then some important results that reveal that jump processes can bring their
effect on the properties of the systems have been reported [–]. There are also many
results on the epidemic models with jumps [–]. Chen and Kang [] introduced a Lévy
noise into the multistrain SIS epidemic model and investigated its effects on the spread of
infectious disease with multiple pathogen strains.

However, epidemic models may be perturbed by colored noise, which can cause the
system switching from one environmental regime to another []. For example, the trans-
mission rate in winter will be much different from that in summer. Often, the switching
between environmental regimes is often memoryless, and the waiting time for the next
switching follows the exponential distribution []. Thus, we use a continue-time Markov
chain r(t) to model random environments with colored noise. Let r(t) (t ≥ ) be a right-
continuous Markov chain on the probability space (�,F, P) taking values in a finite state
space M = {, , . . . , N} with generator � = (γij)N×N , that is,

P
{

r(t + δ) = j|r(t) = i
}

=

⎧
⎨

⎩

γijδ + o(δ) if i �= j,

 + γijδ + o(δ) if i = j,
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where γij ≥  is the transition rate from i to j with i �= j whereas γii = –
∑

j �=i γij. We assume
that the Markov chain and Brownian motion are independent.

In this paper, we set up a stochastic regime switching SIS model with vaccination driven
by a Lévy noise:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t) = [( – q(r(t)))A(r(t)) – β(r(t))I(t)S(t)

– (μ(r(t)) + p(r(t)))S(t) + γ (r(t))I(t) + ε(r(t))V (t)] dt

+ σ(r(t))S(t) dB(t) +
∫

U D(r(t), u)S(t)Ñ(dt, du),

dI(t) = [β(r(t))S(t) – (μ(r(t)) + γ (r(t)) + α(r(t)))]I(t) dt

+ σ(r(t))I(t) dB(t) +
∫

U D(r(t), u)I(t)Ñ(dt, du),

dV (t) = [q(r(t))A(r(t)) + p(r(t))S(t) – (μ(r(t)) + ε(r(t)))V (t)] dt

+ σ(r(t))V (t) dB(t) +
∫

U D(r(t), u)V (t)Ñ(dt, du),

(.)

where Di(r(t), u) > – (i = , , ), Ñ(dt, du) is the compensated Poisson random measure
given by Ñ(dt, du) = N(dt, du) – ν(du) dt, and ν is the characteristic measure of N on a
measurable subset U of [,∞) satisfying ν(du) < ∞. Since stochastic model (.) is per-
turbed by both Lévy noise and colored noise, its dynamics is an interesting and important
question.

The paper is organized as follows. In Section , we give some notation and the equivalent
form of the studied model. In Section , we study the global positive solution of model
(.). In Sections  and , we investigate the asymptotic behavior of the stochastic regime
switching SIS model with vaccination driven by a Lévy noise.

2 Preliminaries
Here we assume that the Brownian motion and Markov chain are independent. In this
paper, we assume that γij >  for i �= j, and q(k), A(k), β(k), μ(k), p(k), γ (k), ε(k), and α(k)
are all positive constants for each k ∈ M. System (.) can be regarded as the result of a
stochastic SIS model with vaccination

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t) = [( – q(k))A(k) – β(k)I(t)S(t) – (μ(k) + p(k))S(t)

+ γ (k)I(t) + ε(k)V (t)] dt

+ σ(k)S(t) dB(t) +
∫

U D(k, u)S(t)Ñ(dt, du),

dI(t) = [β(k)S(t) – (μ(k) + γ (k) + α(k))]I(t) dt + σ(k)I(t) dB(t)

+
∫

U D(k, u)I(t)Ñ(dt, du),

dV (t) = [q(k)A(k) + p(k)S(t) – (μ(k) + ε(k))V (t)] dt + σ(k)V (t) dB(t)

+
∫

U D(k, u)V (t)Ñ(dt, du),

(.)

switching from one to the others according to the movement of the Markov chain. For
the corresponding regime switching SIS model with vaccination of system (.), there
exists the disease-free equilibrium P

k (S
k , I

k , V 
k ) = ( A(k)

μ(k)
μ(k)(–q(k))+ε(k)
μ(k)+ε(k)+p(k) , , A(k)

μ(k)
μ(k)q(k)+p(k)
μ(k)+ε(k)+p(k) )

when the threshold R
k ≤  for k ∈ M. Otherwise, there exists an endemic equilibrium

P∗
k (S∗

k , I∗
k , V ∗

k ) such that

(
 – q(k)

)
A(k) = β(k)I∗

k S∗
k +

(
μ(k) + p(k)

)
S∗

k – γ (k)I∗
k – ε(k)V ∗

k
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and

β(k)S∗
k I∗

k =
(
μ(k) + γ (k) + α(k)

)
I∗

k , q(k)A(k) + p(k)S∗
k =

(
μ(k) + ε(k)

)
V ∗

k

for k ∈M.

3 Existence and uniqueness of positive solution
Our first concern is whether the solution has a global existence. Moreover, we also con-
sider whether, as a population dynamic model, the value is nonnegative. Therefore, we
guarantee the existence of a global positive solution under some assumptions.

For the jump diffusion coefficient, we assume that, for each m > , there exists Lm > 
such that

(H)
∫

U |Hi(x, u, k) – Hj(y, u, k)|ν(du) ≤ Lm|x – y| (i = , , , k ∈M),
where H(x, u, k) = D(k, u)S(t), H(x, u, k) = D(k, u)I(t), H(x, u, k) = D(k, u)V (t) with
|x| ∨ |y| ≤ m;

(H) | log( + Di(k, u))| < ∞ for Di(k, u) > – (i = , , , k ∈M).

Theorem . Let assumptions (H) and (H) hold. Then, for any given initial value
(S(), I(), V ()) ∈ R

+, there is a unique solution (S(t), I(t), V (t)) of system (.) on t ≥ 
almost surely, and the solution remains in R

+ with probability .

Proof Since the drift and the diffusion of system (.) are both locally Lipschitz, for any
given initial value (S(), I(), V ()) ∈ R

+, there is a unique local solution (S(t), I(t), V (t)) ∈
R

+ for any t ∈ [, τe), where τe is the explosion time []. Let η >  be sufficiently large
such that

τη = inf

{

t ∈ [, τe) : S(t) /∈
(


η

,η
)

, I(t) /∈
(


η

,η
)

, or V (t) /∈
(


η

,η
)}

.

Obviously, τη is increasing as η → ∞, and τ∞ = limη→∞ τη ≤ τe a.s. To show that the solu-
tion is global, it suffices to show that τ∞ = ∞ a.s.

Consider the following Lyapunov function:

W (S, I, V , k) = c(k)(S –  – log S) + c(k)(I –  – log I) + c(k)(V –  – log V ), (.)

where ci(k) (i = , , ) are positive constants for all k ∈M.
Set T >  be arbitrary. Then, for any  < t < τη ∧ T , we have

dW (S, I, V , k)

= LW (S, I, V , k) dt + c(k)σ(k)(S – ) dB(t) + c(k)σ(k)(I – ) dB(t)

+ c(k)σ(k)(V – ) dB(t) +
∫

U

[
c(k)

(
D(k, u)S – log

(
 + D(k, u)

))

+ c(k)
(
D(k, u)I – log

(
 + D(k, u)

))
+ c(k)

(
D(k, u)V

– log
(
 + D(k, u)

))]
Ñ(dt, du), (.)
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where

LW (S, I, V , k)

≤ c(k)
(
 – q(k)

)
A(k) + c(k)

(
μ(k) + p(k)

)
+ c(k)

(
μ(k) + γ (k) + α(k)

)

+ c(k)
(
q(k)A(k) + μ(k) + ε(k)

)
–

(
c(k) – c(k)

)
β(k)SI –

(
c(k)

(
μ(k)

+ p(k)
)

+ c(k)β(k) – c(k)p(k)
)
S –

(
c(k)

(
μ(k) + γ (k) + α(k)

)
– c(k)

× (
γ (k) + β(k)

))
I –

(
c(k)

(
μ(k) + ε(k)

)
– c(k)ε(k)

)
V – c(k)

(
 – q(k)

)
A(k)


S

– c(k)γ (k)
I
S

– c(k)ε(k)
V
S

– c(k)q(k)A(k)

V

– c(k)p(k)
S
V

+



c(k)σ 
 (k)

+



c(k)σ 
 (k) +




c(k)σ 
 (k) +

∫

U

[
c(k)

(
D(k, u) – log

(
 + D(k, u)

))

+ c(k)
(
D(k, u) – log

(
 + D(k, u)

))
+ c(k)

(
D(k, u) – log

(
 + D(k, u)

))]
ν(du)

+
N∑

l=

γklW (S, I, V , l).

Choose

c(k) > c(k), c(k)
(
μ(k) + p(k)

)
+ c(k)β(k) > c(k)p(k),

c(k)
(
μ(k) + ε(k)

)
> c(k)ε(k), and

c(k)
(
μ(k) + γ (k) + α(k)

)
> c(k)

(
γ (k) + β(k)

)
for k ∈M.

By Assumption (H) and the inequality Di(k, u) – log( + Di(k, u)) ≥  for Di(k, u) > –,
we have

LW ≤ c(k)
(
 – q(k)

)
A(k) + c(k)

(
μ(k) + p(k)

)
+ c(k)

(
μ(k) + γ (k) + α(k)

)

+ c(k)
(
q(k)A(k) + μ(k) + ε(k)

)
+




c(k)σ 
 (k) +




c(k)σ 
 (k)

+



c(k)σ 
 (k) + K +

N∑

l=

γklV (S, I, V , l),

where K = max≤i≤{
∫

U ci(k)(Di(k, u) – log( + Di(k, u)))ν(du)}.
Let č = max{ ci(l)

ci(k) :  ≤ i ≤ ,  ≤ l, k ≤ N}. Then, for any l, k ∈ M, we get

W (S, I, V , l) ≤ č
[
c(k)(S –  – log S) + c(k)(I –  – log I) + c(k)(V –  – log V )

]

= čW (S, I, V , k).

Therefore

N∑

l=

γklW (S, I, V , l) ≤ č

( N∑

l=

|γkl|
)

W (S, I, V , k),
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and thus

LW (S, I, V , k) := K̄ +
N∑

l=

γklW (S, I, V , k)

≤ K̃
[
 + W (S, I, V , k)

]
, (.)

where

K̃ = max

{

K̄ , č

( N∑

l=

|γkl|
)}

,

K̄ = c(k)
(
 – q(k)

)
A(k) + c(k)

(
μ(k) + p(k)

)
+ c(k)

(
μ(k) + γ (k) + α(k)

)

+ c(k)
(
q(k)A(k) + μ(k) + ε(k)

)
+




c(k)σ 
 (k) +




c(k)σ 
 (k) +




c(k)σ 
 (k) + K .

Integrating both sides of (.) from  to τη ∧ T and taking expectation yield

EW
(
S(τη ∧ T), I(τη ∧ T), V (τη ∧ T), r(τη ∧ T)

)

≤ W
(
S(), I(), V (), r()

)
+ E

∫ τη∧T


LW

(
S(τ ), I(τ ), V (τ ), r(τ )

)
dτ

≤ [
W

(
S(), I(), V (), r()

)
+ K̃T

]
eK̃T .

In fact, we find that

[
W

(
S(), I(), V (), r()

)
+ K̃T

]
eK̃T

≥ E
[
{τη∧T}W

(
S(τm,ω), I(τm,ω), V (τm,ω), r(τm,ω)

)]

≥ min
≤i≤

{

ci(k)(η –  – logη), ci(k)
(


η

–  + logη

)}

P(τη ≤ T),

where {τη∧T} is the indicator function of {τη ∧ T}. Letting η → ∞ implies

P(τ∞ ≤ T) = .

By the arbitrariness of T we can see that

P(τ∞ = ∞) = .

Thus, the proof is complete. �

4 Asymptotic behavior around P0
k

It is clear that P
k (S

k , , V 
k ) is the solution for the corresponding regime switching SIS

model with vaccination of system (.), which is called the disease-free equilibrium. If
R

k ≤ , then P
k is globally asymptotically stable. This means that the disease will disappear

after some period of time. Whereas for the stochastic regime switching SIS model with
vaccination driven by a Lévy noise, P

k is no longer a disease-free equilibrium. Thus for
the solution of system (.), what kind of changes will appear around P

k ? In this section,
we study the asymptotic behavior around P

k .
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Theorem . Let (S(t), I(t), V (t)) be the solution of system (.) with any initial value
(S(), I(), V ()) ∈ R

+. Suppose that R
k ≤  and the following conditions are satisfied:

μ(k)
(

(μ(k) + p(k))
ε(k)

+ 
)

>
(
 + a(k)

)
σ 

 (k) +
(
 + a(k)

)
∫

U
D

 (k, u)ν(du),

(
μ(k) + α(k)

)(
 + a(k)

)
>



σ 

 (k)
(
 + a(k)

)
+

(
 + a(k)

)
∫

U
D

(k, u)ν(du),

and

μ(k) > σ 
 (k) + 

∫

U
D

(k, u)ν(du).

Then

lim sup
t→∞


t

E
∫ t



[(
S(s) – S

k
)

+ I(s) +
(
V (s) – V 

k
)]ds

≤ 
M̃

[
σ 

 (k)
(
S

k
)( + a(k)

)
+ σ 

 (k)
(
V 

k
)],

where

a(k) =
μ(k)
ε(k)

,

M̃ = min

{

μ(k)
(

(μ(k) + p(k))
ε(k)

+ 
)

–
(
 + a(k)

)
σ 

 (k) –
(
 + a(k)

)
∫

U
D

 (k, u)ν(du),

(
μ(k) + α(k)

)(
 + a(k)

)
–



σ 

 (k)
(
 + a(k)

)
–

(
 + a(k)

)
∫

U
D

(k, u)ν(du),

μ(k) – σ 
 (k) – 

∫

U
D

(k, u)ν(du)
}

.

Proof First, by the change of variables

x(t) = S(t) – S
k , y(t) = I(t), z(t) = V (t) – V 

k

system (.) can be rewritten as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t) = [–β(k)(x(t) + S
k )y(t) – (μ(k) + p(k))x(t) + γ (k)y(t) + ε(k)z(t)] dt

+ σ(k)(x(t) + S
k ) dB(t) +

∫

U D(k, u)(x(t) + S
k )Ñ(dt, du),

dy(t) = [β(k)x(t)y(t) + (β(k)S
k – (μ(k) + γ (k) + α(k)))y(t)] dt

+ σ(k)y(t) dB(t) +
∫

U D(k, u)y(t)Ñ(dt, du),

dz(t) = [p(k)x(t) – (μ(k) + ε(k))z(t)] dt + σ(k)(z(t) + V 
k ) dB(t)

+
∫

U D(k, u)(z(t) + V 
k )Ñ(dt, du).

(.)

Consider the C function

W (x, y, z, k) = a(k)y +
a(k)


(x + y) +




(x + y + z),
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where k ∈ M, a(k), a(k) are positive constants to be determined later. Using Itô’s formula,
we obtain

dW = LW dt + σ(k)
(
x + S

k
)[

a(k)(x + y) + x + y + z
]

dB(t)

+ σ(k)y
[
a(k) + a(k)(x + y) + x + y + z

]
dB(t)

+ σ(k)(x + y + z)
(
z + V 

k
)

dB(t) + a(k)
∫

U
D(k, u)yÑ(dt, du)

+
a(k)



∫

U

[(
D(k, u)x + D(k, u)y

)

+ (x + y)
(
D(k, u)x + D(k, u)y

)]
Ñ(dt, du)

+
∫

U

[
(x + y + z)

(
D(k, u)x + D(k, u)y + D(k, u)z

)

+
(
D(k, u)x + D(k, u)y + D(k, u)z

)]Ñ(dt, du), (.)

where

LW = –
[
a(k)

(
μ(k) + p(k)

)
+ μ(k)

]
x –

(
a(k) + 

)(
μ(k) + α(k)

)
y

– μ(k)z + a(k)
[
β(k)S

k

–
(
μ(k) + α(k) + γ (k)

)]
y +

[
a(k)β(k) – a(k)

(
μ(k) + α(k)

+ p(k)
)

–
(
μ(k) + α(k)

)]
xy

+
[
a(k)ε(k) –

(
μ(k) + α(k)

)]
yz +

(
a(k)ε(k) – μ(k)

)
xz

+


σ 

 (k)
(
a(k) + 

)(
x + S

k
)

+


σ 

 (k)
(
a(k) + 

)
y +



σ 

 (k)
(
z + V 

k
)

+
a(k)



∫

U

[
(D(k, u)x + D(k, u)y

]
ν(du)

+
∫

U

[
(D(k, u)x + D(k, u)y + D(k, u)z

]
ν(du) +

N∑

l=

γklW (x, y, z, l).

Note that

a(k)β(k) – a(k)
(
μ(k) + α(k) + p(k)

)
–

(
μ(k) + α(k)

)
= ,

a(k)ε(k) – μ(k) = .

Applying the inequalities ab ≤ a + b, (a + b) ≤ a + b, and (a + b + c) ≤ a + b +
c, we get

LW ≤ –
[

μ(k)
(

(μ(k) + p(k))
ε(k)

+ 
)

–
(

 +
μ(k)
ε(k)

)

σ 
 (k)

–
(

μ(k)
ε(k)

+ 
)∫

U
D

 (k, u)ν(du)
]

x
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–
[(

 +
μ(k)
ε(k)

)
(
μ(k) + α(k)

)
–



σ 

 (k)
(

 +
μ(k)
ε(k)

)

–
(

μ(k)
ε(k)

+ 
)∫

U
D

(k, u)ν(du)
]

y

–
[

μ(k) – σ 
 (k) – 

∫

U
D

(k, u)ν(du)
]

z + σ 
 (k)

(
V 

k
)

+ σ 
 (k)

(

 +
μ(k)
ε(k)

)
(
S

k
)

+
N∑

l=

γklW (x, y, z, l).

Denote ǎ = max{ ai(l)
ai(k) ,  ≤ i ≤ ,  ≤ l, k ≤ N}. Then

N∑

l=

γklW (x, y, z, l) ≤ ǎ

( N∑

l=

|γkl|
)

W (x, y, z, k)

:= MW (x, y, z, k),

and thus

LW ≤ –
[

μ(k)
(

(μ(k) + p(k))
ε(k)

+ 
)

–
(

 +
μ(k)
ε(k)

)

σ 
 (k)

–
(

μ(k)
ε(k)

+ 
)∫

U
D

 (k, u)ν(du)
]

x

–
[(

 +
μ(k)
ε(k)

)
(
μ(k) + α(k)

)
–



σ 

 (k)
(

 +
μ(k)
ε(k)

)

–
(

μ(k)
ε(k)

+ 
)∫

U
D

(k, u)ν(du)
]

y

–
[

μ(k) – σ 
 (k) – 

∫

U
D

(k, u)ν(du)
]

z + σ 
 (k)

(
V 

k
)

+ σ 
 (k)

(

 +
μ(k)
ε(k)

)
(
S

k
)

+ MW (x, y, z, k). (.)

Integrating both sides of (.) from  to t and taking expectation, we obtain

 ≤ EW
(
x(t), y(t), z(t), r(t)

)

= W
(
x(), y(), z(), r()

)
+ E

∫ t


LW ds

≤ W
(
x(), y(), z(), r()

)
– E

∫ t



{[

μ(k)
(

(μ(k) + p(k))
ε(k)

+ 
)

–
(

 +
μ(k)
ε(k)

)

σ 
 (k)

–
(

μ(k)
ε(k)

+ 
)∫

U
D

 (k, u)ν(du)
]

x(s)

+
[(

 +
μ(k)
ε(k)

)
(
μ(k) + α(k)

)
–



σ 

 (k)
(

 +
μ(k)
ε(k)

)
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–
(

μ(k)
ε(k)

+ 
)∫

U
D

(k, u)ν(du)
]

y +
[

μ(k) – σ 
 (k) – 

∫

U
D

(k, u)ν(du)
]

z
}

ds

+
[

σ 
 (k)

(
V 

k
) + σ 

 (k)
(

 +
μ(k)
ε(k)

)
(
S

k
)

]

t + ME
∫ t


W

(
x(s), y(s), z(s), r(s)

)
ds

≤
{

W
(
x(), y(), z(), r()

)

– E
∫ t



{[

μ(k)
(

(μ(k) + p(k))
ε(k)

+ 
)

–
(

 +
μ(k)
ε(k)

)

σ 
 (k)

–
(

μ(k)
ε(k)

+ 
)∫

U
D

 (k, u)ν(du)
]

x(s)

+
[(

 +
μ(k)
ε(k)

)
(
μ(k) + α(k)

)
–



σ 

 (k)
(

 +
μ(k)
ε(k)

)

–
(

μ(k)
ε(k)

+ 
)∫

U
D

(k, u)ν(du)
]

y +
[

μ(k) – σ 
 (k) – 

∫

U
D

(k, u)ν(du)
]

z
}

ds

+
[

σ 
 (k)

(
V 

k
) + σ 

 (k)
(

 +
μ(k)
ε(k)

)
(
S

k
)

]

t
}

eMt ,

which implies that

lim sup
t→∞


t

E
∫ t



[(
S(s) – S

k
) + I(s) +

(
V (s) – V 

k
)]ds

≤ 
M̃

[

σ 
 (k)

(
V 

k
) + σ 

 (k)
(

 +
μ(k)
ε(k)

)
(
S

k
)

]

,

where M̃ are defined as in Theorem .. This completes the proof. �

Remark . From Theorem . we can see that the solution of system (.) will oscillate
around the disease-free equilibrium P

k (S
k , , V 

k ) under some conditions. The lower the
vibration intensity of the Lévy noise, the nearer the solution of the stochastic SIS model
(.) to the disease-free equilibrium P

k . Hence the disease will die out. Besides, if Di(k, u) =
 (i = , , ), then Theorem . shows the asymptotic behavior of the stochastic regime
switching SIS model with vaccination. Then the solution will oscillate around the disease-
free equilibrium where the intensity is relevant to the values of σi(k) (i = , , ).

5 Asymptotic behavior around P∗
k

In this section, we assume that Rk
 > . Then P∗

k is the endemic equilibrium of the corre-
sponding regime switching SIS model with vaccination for system (.). But it is no longer
an endemic equilibrium of system (.). Similarly, we also expect to find out whether or
not the solution goes around P∗

k . We get the following result.

Theorem . Let (S(t), I(t), V (t)) be the solution of system (.) with any initial value
(S(), I(), V ()) ∈ R

+. Suppose that R
k >  and the following conditions are satisfied:

μ(k)
ε(k)

(
μ(k) + p(k)

)
+ μ(k) >



σ 

 (k)
(
 + b(k)

)
+

(
μ(k)
ε(k)

+



)∫

U
D

 (k, u)ν(du),

(
μ(k)
ε(k)

+ 
)

(
μ(k) + p(k)

)
>



σ 

 (k)
(

 +
μ(k)
ε(k)

)

+
(

μ(k)
ε(k)

+



)∫

U
D

(k, u)ν(du)
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and

μ(k) >


σ 

 (k) +



∫

U
D

(k, u)ν(du).

Then

lim sup
t→∞


t

E
∫ t



[(

S(τ ) –
α(k)
α(k)

S∗
k

)

+
(

I(τ ) –
α(k)
α(k)

I∗
k

)

+
(

V (τ ) –
μ(k)
α(k)

V ∗
k

)]

dτ

≤ α(k)
α̃(k)

, (.)

where

α(k) =
μ(k)
ε(k)

(
μ(k) + p(k)

)
+ μ(k) –



σ 

 (k)
(
 + b(k)

)

–
(

b(k) +



)∫

U
D

 (k, u)ν(du),

α(k) =
(
μ(k) + α(k)

)
(

 +
μ(k)
ε(k)

)

–


σ 

 (k)
(
 + b(k)

)

–
(

b(k) +



)∫

U
D

(k, u)ν(du),

α(k) = μ(k) –


σ 

 (k) –



∫

U
D

(k, u)ν(du),

α(k) =
μ(k)
ε(k)

(
ν(k) + p(k)

)
+ μ(k),

α(k) =
(
μ(k) + α(k)

)
(

 +
μ(k)
ε(k)

)

,

α(k) =


α(k)

[
μ(k)
ε(k)

(
μ(k) + α(k)

)
+ μ(k)

]

×
[



σ 

 (k)
(
 + b(k)

)
+

(

b(k) +



)∫

U
D

 (k, u)
]
(
S∗

k
)

+


α(k)
(
μ(k) + α(k)

)
(

 +
μ(k)
ε(k)

)

×
[



σ 

 (k)
(
 + b(k)

)
+

(

b(k) +



)∫

U
D

(k, u)ν(du)
]
(
I∗

k
)

+
μ(k)
α(k)

[


σ 

 (k) +



∫

U
D

(k, u)ν(du)
]
(
V ∗

k
) +




b(k)σ 
 (k)I∗

k

+ b(k)I∗
k

∫

U

[
D(k, u) – log

(
 + D(k, u)

)]
ν(du),

α̃(k) = min
≤i≤

{
αi(k)

}
.
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Proof Define the function W : R
+ → R+ by

W (S, I, V , k) = b(k)
(

I – I∗
k – I∗

k log
I
I∗

k

)

+
b(k)


[(

S – S∗
k
)

+
(
I – I∗

k
)]

+


[(

S – S∗
k
)

+
(
I – I∗

k
)

+
(
V – V ∗

k
)],

where b(k) and b(k) are positive constants to be determined later. Applying Itô’s formula,
we get

dW (S, I, V , k)

= LW dt + b(k)σ(k)
(
I – I∗

k
)

dB(t) + b(k)
(
S – S∗

k + I – I∗
k
)[

σ(k)S dB(t)

+ σ(k)I dB(t)
]

+
(
S – S∗

k + I – I∗
k + V – V ∗

k
)[

σ(k)S dB(t) + σ(k)I dB(t)

+ σ(k)V dB(t)
]

+ b(k)
∫

U

[
D(k, u)I – I∗

k log
(
 + D(k, u)

)]
Ñ(dt, du)

+
b(k)



∫

U

[
D(k, u)S + D(k, u)I

]Ñ(dt, du)

+ b(k)
∫

U

(
S – S∗

k + I – I∗
k
)[

D(k, u)S + D(k, u)I
]
Ñ(dt, du)

+
∫

U

(
S – S∗

k + I – I∗
k + V – V ∗

k
)[

D(k, u)S + D(k, u)I + D(k, u)V
]
Ñ(dt, du)

+



∫

U

[
D(k, u)S + D(k, u)I + D(k, u)V

]Ñ(dt, du). (.)

In detail,

LW = b(k)β(k)
(
S – S∗

k
)(

I – I∗
k
)

+ b(k)
(
S – S∗

k + I – I∗
k
)[

–
(
μ(k) + p(k)

)(
S – S∗

k
)

–
(
μ(k) + α(k)

)(
I – I∗

k
)

+ ε(k)
(
V – V ∗

k
)]

+
(
S – S∗

k + I – I∗
k + V – V ∗

k
)

× [
–μ(k)

(
S – S∗

k
)

–
(
μ(k) + α(k)

)(
I – I∗

k
)

– μ(k)
(
V – V ∗

k
)]

+


(
 + b(k)

)(
σ 

 (k)S + σ 
 (k)I) +



σ 

 (k)V  +



b(k)σ 
 (k)I∗

k

+ b(k)I∗
k

∫

U

[
D(k, u) – log

(
 + D(k, u)

)]
ν(du)

+



b(k)
∫

U

[
D(k, u)S + D(k, u)I

]
ν(du)

+



∫

U

[
D(k, u)S + D(k, u)I + D(k, u)V

]
ν(du) +

N∑

l=

γklW (S, I, V , l)

= –
[
b(k)

(
μ(k) + p(k)

)
+ μ(k)

](
S – S∗

k
) –

(
μ(k) + α(k)

)(
 + b(k)

)(
I – I∗

k
)

– μ(k)
(
V – V ∗

k
)

+
[
b(k)β(k) – b(k)

(
μ(k) + α(k) + p(k)

)
–

(
μ(k) + α(k)

)](
S – S∗

k
)(

I – I∗
k
)

+
[
b(k)ε(k) – μ(k)

](
S – S∗

k
)(

V – V ∗
k
)

+
[
b(k)ε(k) – μ(k) – α(k)

](
I – I∗

k
)(

V – V ∗
k
)



Guo Advances in Difference Equations  (2017) 2017:375 Page 13 of 15

+


(
 + b(k)

)(
σ 

 (k)S + σ 
 (k)I) +



σ 

 (k)V  +



b(k)σ 
 (k)I∗

k

+ b(k)I∗
k

∫

U

[
D(k, u) – log

(
 + D(k, u)

)]
ν(du)

+



b(k)
∫

[
D(k, u)S + D(k, u)I

]
ν(du)

+



∫

U

[
D(k, u)S + D(k, u)I + D(k, u)V

]
ν(du) +

N∑

l=

γklW (S, I, V , l).

Note that

b(k)ε(k) – μ(k) = , b(k)β(k) – b(k)
(
μ(k) + α(k) + p(k)

)
–

(
μ(k) + α(k)

)
= .

Then

LW ≤ –
[

μ(k)
ε(k)

(
μ(k) + p(k)

)
+ μ(k)

]
(
S – S∗

k
)

+
[



σ 

 (k)
(
 + b(k)

)
+

(

b(k) +



)∫

U
D

 (k, u)ν(du)
]

S

–
(
μ(k) + α(k)

)
(

 +
μ(k)
ε(k)

)
(
I – I∗

k
)

+
[



σ 

 (k)
(
 + b(k)

)
+

(

b(k) +



)∫

U
D

(k, u)ν(du)
]

I

– μ(k)
(
V – V ∗

k
) +

[


σ 

 (k) +



∫

U
D

(k, u)ν(du)
]

V  +



b(k)σ 
 (k)I∗

k

+ b(k)I∗
k

∫

U

[
D(k, u) – log

(
 + D(k, u)

)]
ν(du) +

N∑

l=

γklW (S, I, V , l)

≤ –α(k)
(

S –
α(k)
α(k)

S∗
k

)

– α(k)
(

I –
α(k)
α(k)

I∗
k

)

– α(k)
(

V –
μ(k)
α(k)

V ∗
k

)

+ α(k) +
N∑

l=

γklW (S, I, V , l),

where αi(k) (i = , . . . , ) are defined as in Theorem ..
Furthermore, we define b̌ = max{ bi(l)

bi(k) , i = , ,  ≤ k, l ≤ N}, and there exists a constant B̄
such that

N∑

l=

γklW (S, I, V , l) ≤ b̌

( N∑

l=

|γkl|
)

W (S, I, V , k)

:= B̄W (S, I, V , k).

Integrating both sides of (.) from  to t and taking expectation, we have

 ≤ EW
(
S(t), I(t), V (t), r(t)

)

≤ W
(
S(), I(), V (), r()

)
+ E

∫ t


LW dτ
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= W
(
S(), I(), V (), r()

)
– E

∫ t



[

α(k)
(

S –
α(k)
α(k)

S∗
k

)

+ α(k)
(

I –
α(k)
α(k)

I∗
k

)

+ α(k)
(

V –
μ(k)
α(k)

V ∗
k

)]

dτ + α(k)t + B̄E
∫ t


W

(
S(τ ), I(τ ), V (τ ), r(τ )

)
dτ

≤
{

W
(
S(), I(), V (), r()

)
– E

∫ t



[

α(k)
(

S –
α(k)
α(k)

S∗
k

)

+ α(k)
(

I –
α(k)
α(k)

I∗
k

)

+ α(k)
(

V –
μ(k)
α(k)

V ∗
k

)]

dτ + α(k)t
}

eB̄t .

Therefore, we get

lim sup
t→∞


t

E
∫ t



[(

S(τ ) –
α(k)
α(k)

S∗
k

)

+
(

I(τ ) –
α(k)
α(k)

I∗
k

)

+
(

V (τ ) –
μ(k)
α(k)

V ∗
k

)]

dτ

≤ α(k)
α̃(k)

,

where α̃(k) = min≤i≤{αi(k)}.
The theorem is proved. �

Remark . According to Theorem ., we obtain that the solution of model (.) fluc-
tuates around a certain level relevant to E∗

k ( α(k)
α(k) S∗

k , α(k)
α(k) I∗

k , μ(k)
α(k) V ∗

k ), σi(k) (i = , , ), and
Di(k, u) (i = , , ). With the values of σi(k) and Di(k, u) (i = , , ) decreasing, the solution
of system (.) will be close to E∗

k , and the difference between (S(t), I(t), V (t)) and E∗
k will

also decrease. Besides, if Di(k, u) =  (i = , , ), Theorem . shows that the solution of
the stochastic regime switching SIS model with vaccination will fluctuate around a certain
level relevant to E∗

k and σi(k) (i = , , ).

6 Conclusions
We present a stochastic regime switching SIS epidemic model with vaccination driven by
a Lévy noise. Based on this model, we analyze the existence and uniqueness of its global
positive solution. We also discuss the asymptotic behavior of the solution to this model
around the disease-free equilibrium P

k and the endemic equilibrium P∗
k .

The asymptotic behavior of solutions to SDEs is very important. From the view of appli-
cations, investigating the stability in distribution is a more interesting question in stochas-
tic population systems. Bao et al. [, ] did a pioneering work in this area. After that,
many results on the stochastic population models with jumps have been reported [, ,
–].
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