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Abstract
A strongly coupled cooperative parabolic system, which describes fecally-orally
epidemic model with cross-diffusion in a heterogeneous environment, was
formulated and analyzed. The basic reproduction number RD0 , which serves as a
threshold parameter that predicts whether the coexistence will exist or not, is
introduced by the next infection operator and the related eigenvalue problems. By
applying upper and lower solutions method, we present the sufficient conditions for
the existence of the coexistence solution. The true positive solutions can also be
obtained by monotone iterative method. Our results imply that the fecally-orally
epidemic model with cross-diffusion admits at least one coexistence solution when
the basic reproduction number exceeds one and the cross-diffusion coefficient is
sufficiently small, while no coexistence exists when the basic reproduction number is
smaller than one or the cross-diffusion coefficient is large enough. Finally, some
numerical simulations are exhibited to confirm our analytical findings.
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1 Introduction
Since the most influential and theoretical model, the SIR model, was formulated by Ker-
mack and McKendrick in , the geographic transmission of infectious diseases has
been becoming an important issue in mathematical epidemiology. Capasso and Paveri-
Fontana [] proposed a spatially independent system to investigate the cholera epidemic
which spread in the European Mediterranean regions in . The epidemic model in-
volves a positive feedback interaction between the infected human population and the
concentration of bacteria. Considering the impact of spatial diffusion, Capasso and Mad-
dalena [] discussed the reaction-diffusion system

⎧
⎨

⎩

ut – d�u = –au + av, t > , x ∈ �,

vt – d�v = –av + g(u), t > , x ∈ �,
(.)
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subject to three different boundary conditions to interpret fecally-orally transmitted epi-
demics such as typhoid fever, infections hepatitis, polyometitis etc. Here d, d, a, a and
a are the positive constants, u(x, t) and v(x, t), respectively, represent the spatial densi-
ties of the bacterial population and of the human population infected by the bacteria at
location x in the habitat � and at time t ≥ , 

a
is the mean lifetime of the agent in the

environment, 
a

denotes the mean infectious period of the human infections, 
a

is the
multiplicative factor of the mean infectious agent due to the human populations, and g(u)
represents the infection rate of human under the assumption that total susceptible human
population is constant during the evolution of the epidemic.

To understand the dynamics of solutions to problem (.) and its corresponding Cauchy
problem, traveling waves solutions were studied in [, ], and the entire solutions (that
is, solutions defined for all times t ∈ R and for all points x ∈ R) was established in [, ]
and the spreading fronts of an infective environment was given in [] by considering a free
boundary problem.

In the past few years, a great deal of mathematical models have been developed to in-
vestigate the impact of diffusion and spatial heterogeneity on the dynamics of diseases [,
]. Allen et al. [] proposed a frequency-dependent SIS (susceptible-infected-susceptible)
epidemiological reaction-diffusion system, which reads as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

St – dS�S = – β(x)SI
S+I + γ (x)I, x ∈ �, t > ,

It – dI�I = β(x)SI
S+I – γ (x)I, x ∈ �, t > ,

∂S
∂η

= ∂I
∂η

= , x ∈ ∂�, t > ,

S(x, ) = S(x) ≥ , I(x, ) ≥ I(x) ≥, �≡ , x ∈ �,

(.)

the authors of [] studied the existence, uniqueness, stability of the disease-free equilib-
rium and particularly the asymptotical behavior of the unique endemic equilibrium as the
dispersal rate of susceptible dS tends to zero.

On the other hand, in ecology, different concentration levels of species can affect the dif-
fusive direction of another interacting species, which is called cross-diffusion []. This is
also another hot issue and attracts much attention in recent years; see [–] and the ref-
erences therein. Combined the spatial heterogeneity and cross-diffusion, the correspond-
ing ecosystem can induce more complicated dynamical behaviors [, ].

In present paper, based on the model in [], we will focus on the following cross-diffusion
epidemic model in a spatially heterogeneous environment with Dirichlet boundary con-
dition:

⎧
⎪⎪⎨

⎪⎪⎩

ut – �[(d + αu + β
γ+v )u] = a(x)v – a(x)u, x ∈ �, t > ,

vt – �[(d + β
γ+u + αv)v] = g(u) – a(x)v, x ∈ �, t > ,

u(x, ) = v(x, ) = , x ∈ ∂�,

(.)

where � is a bounded domain in R
N (N ≥ ) with smooth boundary ∂�, a(x), a(x)

and a(x) defined on � are all sufficiently smooth and strictly positive functions. 
a(x) is

the mean lifetime of the agent at location x, 
a(x) denotes the mean infectious period of

the human infections and 
a(x) is the multiplicative factor of the mean infectious agent at

location x. The constants di, αi, βi and γi are nonnegative (i = , ). The term d +αu + β
γ+v
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represents the ‘self-diffusion’ and β
γ+v u implies that the chaseable capacity of the bacteria

u is decreasing with the enhanced resistance of the infected human v [, ].
We further assume that g : R →R satisfies the following hypothesis:
(H) g ∈ C([,∞)), g() = , g ′(z) > ,∀z ≥ ;
(H) g(z)

z is decreasing and lim supz→∞
g(z)

z < min�{ a(x)
a(x) } · min� a(x).

From the view of ecology, we are more interested in investigating the steady state of
problem (.), namely, the corresponding strongly coupled elliptic problem

⎧
⎪⎪⎨

⎪⎪⎩

–�[(d + αu + β
γ+v )u] = a(x)v – a(x)u, x ∈ �,

–�[(d + β
γ+u + αv)v] = g(u) – a(x)v, x ∈ �,

u(x) = v(x) = , x ∈ ∂�.

(.)

Mathematically, the solution (u, v) to problem (.) is called a coexistence if u >  and v > 
for every x ∈ �.

The rest of this paper is organized as follows. Section  is devoted to introducing the ba-
sic reproduction number of epidemic model (.) by using the next infection operator and
corresponding eigenvalue problem. The sufficient condition for the existence and non-
existence of the coexistence solution are presented in Section . Finally, some numerical
simulations which confirm our analytical findings, as well as a brief discussion, are present
in Section .

2 The basic reproduction numbers
In this section, we will introduce the basic reproduction number and analyze its properties
for the corresponding elliptic system (.) in �. We linearize the first two equations around
disease-free equilibrium (, ) to obtain the following linear cooperative system:

⎧
⎨

⎩

ut – �[(d + β
γ

)u] = a(x)v – a(x)u, x ∈ �, t > ,

vt – �[(d + β
γ

)v] = g ′()u – a(x)v, x ∈ �, t > .
(.)

The basic reproduction number R is defined as the expected number of secondary
cases produced, in a completely susceptible population, by a typical infected individual
during its entire period of infectiousness []. In order to introduce the basic reproduc-
tion number for the diffusive epidemic model (.), as a first step, we need to define the
next infection operator for problem (.). Similarly as in [], we set X := (C(�, R)) and
X+

 := (C(�, R
+)). Let T(t) be the solution semigroup on X associated with the linear

system

⎧
⎨

⎩

ut – �[(d + β
γ

)u] = –a(x)u, x ∈ �, t > ,

vt – �[(d + β
γ

)v] = –a(x)v, x ∈ �, t > .
(.)

Define

L(φ)(x) :=
∫ ∞


F(x)

[
T(t)φ

]
(x) dt = F(x)

∫ ∞



[
T(t)φ

]
(x) dt,
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where

F(x) :=

(
 a(x)

g ′() 

)

, (.)

and F(x)[T(t)φ](x) accounts for the distribution of new infective members at time t. The
continuous and positive operator L, called the next generation operator, represents the
density distribution of the accumulative new infections at location x. As stated in [], we
define the spectral radius of L as the basic reproduction number

RD
 := ρ(L)

for the problem (.).
As discussed in [], we can proved that RD

 is the principal eigenvalue of the associated
linearized eigenvalue problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

–(d + β
γ

)�φ = a(x)
RD


ψ – a(x)φ, x ∈ �,

–(d + β
γ

)�ψ = g′()
RD


φ – a(x)ψ , x ∈ �,

φ(x) = ψ(x) = , x ∈ ∂�.

(.)

The eigenfunction pair (φ,ψ) with φ >  and ψ >  in � is unique (subject to constant
multiples). Moreover, RD

 is algebraically simple and dominant, and it possesses the fol-
lowing analytical properties.

Theorem . sign( – RD
 ) = sign(λ), where λ is the principal eigenvalue of the eigenvalue

problem

⎧
⎪⎪⎨

⎪⎪⎩

–(d + β
γ

)�φ = a(x)ψ – a(x)φ + λφ, x ∈ �,

–(d + β
γ

)�ψ = g ′()φ – a(x)ψ + λψ , x ∈ �,

φ(x) = ψ(x) = , x ∈ ∂�.

(.)

Proof For convenience, let

B :=

(
�(d + β

γ
) 

 �(d + β
γ

)

)

–

(
a(x) 

 a(x)

)

. (.)

One can easily prove that B is the generator of the semigroup T(t) on X. Due to T(t) is a
positive semigroup, that is, T(t)X+

 ⊆ X+
 for all t ≥ , it follows from [] that the operator

is resolvent-positive, and

(λI – B)–φ =
∫ ∞


e–λtT(t)φ dt, ∀λ > λ∗,φ ∈ X,

where λ∗ is the principal eigenvalue of problem (.). Letting λ = , we obtain

–B–φ =
∫ ∞


T(t)φ dt, ∀φ ∈ X,
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then we derive that L = –FB–. Denote the linear operator A := B + F , it is easy to deduce
that λ is the principal eigenvalue of the operator A. Thus, it follows from [] that λ has
the same sign as  – ρ(–FB–) =  – RD

 . �

Remark . It is well known that λ is monotonically decreasing with respect to a(x),
and we deduce from Theorem . that RD

 is monotonically increasing with respect to
a(x), thus RD

 >  if a(x) is sufficiently large.

When all coefficients in problem (.) are constants, we shall present an explicit formula
for RD

 , which is in line with the basic reproduction number for the corresponding fecally-
orally epidemic model with homogeneous boundary condition in a fixed region [, ].

Theorem . If a(x) = a∗
, a(x) = a∗

 and a(x) = a∗
, then the principal eigenvalue RD


for (.), or the basic reproduction number for model (.), is represented by

RD
 (�) =

√
a∗

g ′()
[D∗

λ
∗ + a∗

][D∗
λ

∗ + a∗
]

, (.)

where (d + β
γ

) = D∗
 , (d + β

γ
) = D∗

, and λ∗ is the principal eigenvalue of –� in � with
homogeneous Dirichlet boundary condition.

Proof Let ψ∗ be the eigenfunction to corresponding the principal eigenvalue (λ∗) of –� in
� with homogeneous Dirichlet boundary condition, that is, there exists a function ψ∗(x) >
 satisfying

⎧
⎨

⎩

–�ψ∗ = λ∗ψ∗, x ∈ �,

ψ∗ = , x ∈ ∂�,

and take

A∗ =
a∗

g ′()
[D∗

λ
∗ + a∗

][D∗
λ

∗ + a∗
]

,

φ∗ =
a∗

√
R∗[D∗

λ
∗ + a∗

]
ψ∗.

Straightforward computations show that the eigenfunction pair (φ∗,ψ∗) is a positive solu-
tion to problem (.) when RD

 =
√

A∗. Due to the uniqueness of the principal eigenvalue
of (.), one can obtain (.) immediately. �

3 Coexistence
In this section, inspired by [, , ], we first study the existence of a coexistence solution
to problem (.) by constructing upper and lower solutions. For the convenience, we let

f(x, u, v) = a(x)v – a(x)u,

f(x, u, v) = g(u) – a(x)v,

S =
{

(u, v) ∈ (
C(�)

); (û, v̂) ≤ (u, v) ≤ (ũ, ṽ), x ∈ �
}

,

where (û, v̂) and (ũ, ṽ) are given in the following definition.
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As stated in [], we are now in a position to present a sufficient condition for which sys-
tem (.) possesses a positive solution by constructing suitable upper and lower solutions.
For the sake of simplicity, we first give an equivalent form of problem (.):

⎧
⎪⎪⎨

⎪⎪⎩

–�[H(u, v)] = f(x, u, v), x ∈ �,

–�[H(u, v)] = f(x, u, v), x ∈ �,

u(x) = v(x) = , x ∈ ∂�,

(.)

where H(u, v) = (d + αu + β
γ+v )u, H(u, v) = (d + αv + β

γ+u )v.
Taking w = H(u, v) and z = H(u, v), then the Jacobian determinant of the transforma-

tion (u, v) → (w, z) is given by

J =
∂(w, z)
∂(u, v)

=
(

d + αu +
β

γ + v

)(

d +
β

γ + u
+ αv

)

–
βu

(γ + v)
βv

(γ + u)

= dd + (αdv + αdu) + ααuv + 
(

αβu
γ + u

+
αβv
γ + v

)

+
(

dβ

γ + u
+

dβ

γ + v

)

+
ββ

(γ + v)(γ + u)
–

βu
(γ + v)

βv
(γ + u)

> dd >  for (u, v) ≥ (, ).

Therefore, the inverse functions u = g(w, z), v = g(w, z) exist as long as (u, v) ≥ (, ).
Hence, problem (.) reduces to the following equivalent form:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–�w + kw = F(x, u, v), x ∈ �,

–�z + kz = F(x, u, v), x ∈ �,

u = g(w, z), v = g(w, z), x ∈ �,

w(x) = z(x) = , x ∈ ∂�,

(.)

where Fi(x, u, v) = kiHi(u, v) + fi(x, u, v), i = , , and the constants k, k will be chosen later
to make sure that F and F are increasing with respect to u and v, respectively.

On the other hand, an elementary computation yields

∂u
∂w

≥ ,
∂u
∂z

≥ ,
∂v
∂w

≥ ,
∂v
∂z

≥ ,

which implies that u = g(w, z) is nondecreasing in both w and z, and v = g(w, z) is also
nondecreasing in both u and v for all (u, v) ≥ (, ). Since problem (.) is quasi-monotone
nondecreasing, then we can define the ordered upper and lower solutions to problem (.)
as follows.

Definition . Assume that F and F are increasing with respect to u and v. A pair of -
nonnegative functions (ũ, ṽ, w̃, z̃), (û, v̂, ŵ, ẑ) in C(�) ∩ C(�) are called ordered upper and
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lower solutions of (.), if

(, ) ≤ (û, v̂) ≤ (ũ, ṽ), (, ) ≤ (ŵ, ẑ) ≤ (w̃, z̃)

and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–�w̃ + kw̃ ≥ F(x, ũ, ṽ), x ∈ �,

–�z̃ + kz̃ ≥ F(x, ũ, ṽ), x ∈ �,

–�ŵ + kŵ ≤ F(x, û, v̂), x ∈ �,

–�ẑ + kẑ ≤ F(x, û, v̂), x ∈ �,

ũ ≥ g(w̃, z̃), û ≤ g(ŵ, ẑ), x ∈ �,

ṽ ≥ g(w̃, z̃), v̂ ≤ g(ŵ, ẑ), x ∈ �,

w̃(x) ≥  ≥ ŵ(x), z̃(x) ≥  ≥ ẑ(x), x ∈ ∂�.

(.)

For consistency, we denote

ũ = g(w̃, z̃), ṽ = g(w̃, z̃), û = g(ŵ, ẑ), v̂ = g(ŵ, ẑ),

which means that

w̃ = H(ũ, ṽ), z̃ = H(ũ, ṽ), ŵ = H(û, v̂), v̂ = H(û, v̂).

Then (.) is rewritten as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

–�[(d + αũ + β
γ+ṽ )ũ] ≥ a(x)ṽ – a(x)ũ, x ∈ �,

–�[(d + αṽ + β
γ+ũ )ṽ] ≥ g(ũ) – a(x)ṽ, x ∈ �,

–�[(d + αû + β
γ+v̂ )û] ≤ a(x)v̂ – a(x)û, x ∈ �,

–�[(d + αv̂ + β
γ+û )v̂] ≤ g(û) – a(x)v̂, x ∈ �,

ũ(x) ≥  ≥ û(x), ṽ(x) ≥  ≥ v̂(x), x ∈ ∂�.

(.)

The pairs (ũ, ṽ) and (û, v̂), which satisfy (.) and (û, v̂) ≤ (ũ, ṽ), are also called ordered
upper and lower solutions of (.), respectively.

Theorem . Assume that RD
 > , and β

γ 


, β
γ 


are sufficiently small, then problem (.)

admits at least one coexistence solution (u(x), v(x)).

Proof To verify the existence of a positive solution to problem (.), it suffices to find
a pair of upper and lower solutions to problem (.). We seek such as in the form
(ũ, ṽ) = (M, M), (û, v̂) = (g(δ(d + β

γ
)φ, δ(d + β

γ
)ψ), g(δ(d + β

γ
)φ, δ(d + β

γ
)ψ)), where

Mi (i = , ) and δ are some positive constants with δ small enough, (φ,ψ) ≡ (φ(x),ψ(x))
is (normalized) positive eigenfunction corresponding to λ, and λ is the principal eigen-
value of the linear eigenvalue problem (.).
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In fact, (M, M) and (g(δ(d + β
γ

)φ, δ(d + β
γ

)ψ), g(δ(d + β
γ

)φ, δ(d + β
γ

)ψ)) satisfy the
inequalities in (.) if the following inequalities:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–�[(d + αM + β
γ+M

)M] ≥ a(x)M – a(x)M,

–�[(d + β
γ+M

+ αM)M] ≥ g(M) – a(x)M,

–�[(d + β
γ

)φ]

≤ a(x)(d + β
γ

)ψ/(d + αv̂ + β
γ+û ) – a(x)(d + β

γ
)φ/(d + αû + β

γ+v̂ ),

–�[(d + β
γ

)ψ]

≤ g ′(ξ )(d + β
γ

)φ/(d + αû + β
γ+v̂ ) – a(x)(d + β

γ
)ψ/(d + αv̂ + β

γ+û ),

(.)

hold, where ξ ∈ (, û).
On one hand, due to lim supz→∞

g(z)
z < min�{ a(x)

a(x) } · min�{a(x)}, there exists constant
M such that g(z)

z < min�{ a(x)
a(x) } · min�{a(x)} for z ≥ M. As a result, the first two in-

equalities in (.) will hold if we set (ũ, ṽ) = (M, M), where M = max{M, max� u(x, ),
max� v(x, )}, M = M · max�{ a(x)

a(x) }.
On the other hand, we can derive the relations

δ

(

d +
β

γ

)

φ =
(

d + αû +
β

γ + v̂

)

û, δ
(

d +
β

γ

)

ψ =
(

d + αv̂ +
β

γ + û

)

v̂,

which imply that  < û ≤ δ( + β/(dγ))φ and  < v̂ ≤ δ( + β/(dγ))ψ .
In view of (.), the last two inequalities in (.) can be simplified as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a(x)ψ – a(x)φ + λφ

≤ a(x)(d + β
γ

)ψ/(d + αv̂ + β
γ+û ) – a(x)(d + β

γ
)φ/(d + αû + β

γ+v̂ ),

g ′()φ – a(x)ψ + λψ

≤ g ′(ξ )(d + β
γ

)φ/(d + αû + β
γ+v̂ ) – a(x)(d + β

γ
)ψ/(d + αv̂ + β

γ+û ).

(.)

Since RD
 > , we can deduce that the principal eigenvalue λ of problem (.) satisfies

λ <  by applying Theorem .. Therefore we can choose δ sufficiently small such that
(.) hold.

Due to

∂F

∂u
= k

(

d + αu +
β

γ + v

)

– a(x),

∂F

∂v
=

–kuβ

(γ + v) + a(x),

we choose k = aM


d
, if β

γ 


≤ dam


aM


, then F is increasing with respect to u and v, respec-

tively, where aM
 = maxx∈� a(x) and am

 = minx∈� a(x). Analogously, we also choose
k = aM


d

, if β
γ 


≤ dg′()

aM


, then F is increasing with respect to u and v, respectively, where

aM
 = maxx∈� a(x).
Consequently, the pair (ũ, ṽ) = (M, M), (û, v̂) = (g(δ(d + β

γ
)φ, δ(d + β

γ
)ψ), g(δ(d +

β
γ

)φ, δ(d + β
γ

)ψ)) are ordered upper and lower solutions to problem (.), respectively.
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Applying Theorem . of [] leads to the existence of the coexistence solution to prob-
lem (.). �

In what follows, we will present the non-existence result of any coexistence steady state.

Theorem . If RD
 < , problem (.) has no positive steady-state solution.

Proof Suppose (u∗(x), v∗(x)) is a coexistence solution to problem (.) by contradiction.
It follows from the strong maximum principle that ∂u∗

∂η
(x) <  and ∂v∗

∂η
(x) <  for x ∈ ∂�,

therefore, there exist M >  and m >  such that

mv∗(x) ≤ u∗(x) ≤ Mv∗(x) for x ∈ �.

We now consider the following linear eigenvalue problem:

⎧
⎪⎪⎨

⎪⎪⎩

–(d + β
γ

)�φ = a(x)ψ – a(x)φ + μφ, x ∈ �,

–(d + β
γ

)�ψ = g ′()φ – a(x)ψ + μψ , x ∈ �,

φ(x) = ψ(x) = , x ∈ ∂�.

(.)

Next, we shall claim that the principal eigenvalue μ ≤ , which results in RD
 ≥ . This

leads to a contradiction.
To prove μ ≤ , we set

φ∗ =

ε

(

d + αu∗ +
β

γ + v∗

)

u∗
/(

d +
β

γ

)

,

ψ∗ =

ε

(

d + αv∗ +
β

γ + u∗

)

v∗
/(

d +
β

γ

)

,

then (.) is equivalent to the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

–(d + β
γ

)�φ∗ = a(x)ψ∗ – a(x)φ∗ + Fφ∗, x ∈ �,

–(d + β
γ

)�ψ∗ = g ′()φ∗ – a(x)ψ∗ + Gψ∗, x ∈ �,

φ∗(x) = ψ∗(x) = , x ∈ ∂�,

(.)

where

F = a(x)(H – )
ψ∗

φ∗ – a(x)(H – ) – a(x)HHεψ
∗,

G = g ′()(H – )
φ∗

ψ∗ – a(x)(H – ) – g ′()HHεφ
∗,

H(x) =
d + β/γ

d + αu∗ + β/(γ + v∗)
, H(x) =

d + β/γ

d + αv∗ + β/(γ + u∗)
.

From the above, we can obtain

u∗ ≤ εφ∗[ + β/(γd)
]
, v∗ ≤ εψ∗[ + β/(γd)

]
, m ≤ u∗

v∗ ≤ M,
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therefore there exists a positive constant M∗ such that |F| ≤ M∗ε and |G| ≤ M∗ε. Then
(.) can be rewritten as

⎧
⎪⎪⎨

⎪⎪⎩

–(d + β
γ

)�φ∗ = a(x)(x)ψ∗ – a(x)φ∗ + (–M∗ε + F)φ∗ + M∗εφ∗, x ∈ �,

–(d + β
γ

)�ψ∗ = g ′()φ∗ – a(x)ψ∗ + (–M∗ε + G)ψ∗ + M∗εψ∗, x ∈ �,

φ∗(x) = ψ∗(x) = , x ∈ ∂�.

(.)

Comparing (.) and (.), together with the monotonicity of μ with respect to the coeffi-
cients in (.), we can easily derive μ ≤ εM∗, which implies that μ ≤ , since ε is arbitrarily
small. This completes the proof. �

Remark . Assume that all coefficients of (.) are spatially independent. RD
 is repre-

sented by (.). If the cross-diffusion coefficients, i.e., β
γ

or β
γ

is large enough, then no
coexistence solution to problem (.) exists.

In what follows, we employ the monotone iterative schemes to construct the true solu-
tions of (.). It follows from RD

 >  that (M, M) and (g(δ(d + β
γ

)φ, δ(d + β
γ

)ψ), g(δ(d +
β
γ

)φ, δ(d + β
γ

)ψ)) are ordered upper and lower solution to problem (.), respectively.
Selecting (ū(), v̄()) = (M, M) and (u(), v()) = (g(δ(d + β

γ
)φ, δ(d + β

γ
)ψ), g(δ(d +

β
γ

)φ, δ(d + β
γ

)ψ)) as an initial iteration, we can construct a sequence {(u(n), v(n))} from
the iteration process

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–�w̄(n) + kw̄(n) = F(x, ū(n–), v̄(n–)), x ∈ �,

–�z̄(n) + kz̄(n) = F(x, ū(n–), v̄(n–)), x ∈ �,

–�w(n) + kw(n) = F(x, u(n–), v(n–)), x ∈ �,

–�z(n) + kz(n) = F(x, u(n–), v(n–)), x ∈ �,

ū(n) = g(w̄(n), z̄(n)), u(n) = g(w(n), z(n)), x ∈ �,

v̄(n) = g(w̄(n), z̄(n)), v(n) = g(w(n), z(n)), x ∈ �,

w̄(n)(x) = w(n)(x) = , z̄(n)(x) = z(n)(x) = , x ∈ ∂�,

(.)

where n = , , . . . .
As in Lemma . in [], the sequences {(w̄(n), z̄(n))} and {(w(n), z(n))} governed by (.)

are well-posed and possess the monotone property,

(ŵ, ẑ) ≤ (
w(n–), z(n–)) ≤ (

w(n), z(n)) ≤ (
w̄(n), z̄(n))

≤ (
w̄(n–), z̄(n–)) ≤ (w̃, z̃) for n = , , . . . .

Consequently, the pointwise limits

lim
n→∞

(
w̄(n), z̄(n)) = (w̄, z̄), lim

n→∞
(
w(n), z(n)) = (w, z)

exist and their limits obey the relations

(ŵ, ẑ) ≤ (
w(n), z(n)) ≤ (w, z) ≤ (w̄, z̄) ≤ (

w̄(n), z̄(n)) ≤ (w̃, z̃) (.)

for every n = , , . . . .
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The last three equations in (.) imply

ū(n) = g
(
w̄(n), z̄(n)), u(n) = g

(
w(n), z(n)),

v̄(n) = g
(
w̄(n), z̄(n)), v(n) = g

(
w(n), z(n)),

which is equivalent to

w̄(n) = H
(
ū(n), v̄(n)), w(n) = H

(
u(n), v(n)),

z̄(n) = H
(
ū(n), v̄(n)), z(n) = H

(
u(n), v(n)).

(.)

Letting n → ∞ in (.) and applying the standard regularity theory and compact argu-
ment for elliptic boundary problems shows that the solution pair (ū, v̄) and (u, v) satisfy

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

–�[H(ū, v̄)] + kH(ū, v̄) = F(x, ū, v̄), x ∈ �,

–�[H(ū, v̄)] + kH(ū, v̄) = F(x, ū, v̄), x ∈ �,

–�[H(u, v)] + kH(u, v) = F(x, u, v), x ∈ �,

–�[H(u, v)] + kH(u, v) = F(x, u, v), x ∈ �,

ū(x) = u(x) = , v̄(x) = v(x) = , x ∈ ∂�,

(.)

which is equivalent to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

–�[H(ū, v̄)] = f(x, ū, v̄), x ∈ �,

–�[H(ū, v̄)] = f(x, ū, v̄), x ∈ �,

–�[H(u, v)] = f(x, u, v), x ∈ �,

–�[H(u, v)] = f(x, u, v), x ∈ �,

ū(x) = u(x) = , v̄(x) = v(x) = , x ∈ ∂�.

(.)

Therefore (ū, v̄) and (u, v) are its maximal and minimal solutions to problem (.), in the
sense that if (u, v) is any other solution of (.) in 〈(û, v̂), (ũ, ṽ)〉, then they satisfy (u, v) ≤
(u, v) ≤ (ū, v̄), as well as the true solutions to problem (.).

The above derivations lead to the following theorem.

Theorem . Let (ũ, ṽ) and (û, v̂) be a pair of ordered upper and lower solutions of (.),
then the sequences {(ū(n), v̄(n))} and {(u(n), v(n))} provided from (.) converge monotonically
from above to a maximal solution (ū, v̄) and from below to a minimal solution (u, v) in S,
respectively, and satisfy the relation

(û, v̂) ≤ (
u(n), v(n)) ≤ (

u(n+), v(n+)) ≤ (
ū(n+), v̄(n+))

≤ (
ū(n), v̄(n)) ≤ (ũ, ṽ) for n = , , . . . ;

furthermore, if ū = u or v̄ = v, then (ū, v̄) = (u, v)(:= (u∗, v∗)) and (u∗, v∗) is the unique solu-
tion of (.) in �.
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Figure 1 Graphs (a) and (b) exhibit the existence
of true solutions from the monotone
convergence of upper and lower solutions.

4 Numerical simulation and discussion
In this section, we illustrate our theoretical results through numerical simulations. The
finite difference method and the Newton-Raphson method are applied in the simulation.
To reveal the feather of model (.), we now run numerical simulations with the following
functions and parameters:

� = (, ), d = ., α = ., d = ., α = .,

γ = ., γ = ., β = β = .,

a(x) =  + . sin

(



x
)

, a(x) =  + . sin

(



x
)

,

g(u) =
√

u +  – , a(x) =  + . sin

(



x
)

.

With the help of Matlab, we present the iterative procedure by Figure . Moreover, we
can gain the insight from Figure  that the upper solution sequence (u(m), v(m)) is mono-
tone decreasing and the lower solution sequence (u(m), v(m)) is monotone increasing, re-
spectively. Therefore, problem (.) admits at least one coexistence solution.

In present paper, we proposed and studied a cross-diffusion fecally-orally epidemic
model where we had considered the coexistence solution to problem (.) in a spatially het-
erogeneous environment. Firstly, we introduced the basic reproduction number RD

 via the
next generation operator and associated linear eigenvalue problem, and we further proved
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that RD
 served as a threshold parameter which predicts whether the coexistence exists or

not. To be more precise, when all coefficients are constants, we provided an explicit for-
mula for RD

 . The coexistence of problem (.) is investigated by combining the eigenvalue
problem and monotone iterative schemes when RD

 > , while if RD
 < , problem (.) has

no coexistence solution. We proved that large cross-diffusion will result in non-existence
of the coexistence (Theorem .), whereas coexistence is possible if the cross-diffusion
coefficients are small (Theorem .). As far as we know, on the propagation of the species,
large cross-diffusion will result in more complex dynamic behavior in ecology, for exam-
ple, large cross-diffusion can destabilize a uniform positive equilibrium which is stable for
the ODE system and for the weakly coupled reaction-diffusion system []; see also [,
] and the references therein. Our results show that cross-diffusion has also a significant
impact on the coexistence of the epidemic model.
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