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+ AV, F(n,ui(n), ux(m) = f1(n),

A2 (n =12 (Auy(n=1))) = paln)@aluz()
+ AV, F(n,ui(n), ux(n)) = f,(n).

When F is not periodic in n and has (p, g)-sublinear growth or (p, g)-linear growth, by
using the least action principle, we obtain that a system with classical

(@1, -)-Laplacian has at least one homoclinic solution and, by using Clark’s theorem,
we see that a system with f; = £, = 0 has at least m distinct pairs of homoclinic
solutions.
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1 Introduction

Let R denote the real numbers, Z be the integers, and N be a fixed positive integer. (-, )
stands for the usual product in RY, | - | is the induced norm, and Z[1,N] = {1, 2,...,N}. (-)°
stands for the transpose of a vector. In this paper, we investigate the existence and mul-
tiplicity of homoclinic solutions for the following nonlinear difference systems involving
classical (¢y, ¢,)-Laplacian:

A(pr(n = 1)¢1(Aur(n - 1))) — p3 (1) s (u1(n))
+ AV F(n,u1(n), uz(n)) = fi(n),

Ap2(n = 1)¢2(Auz(n —1))) - pa(n)da(uz(n))
+ AV, F(n, u1(n), uz(n)) = fo(n),

(1.1)

where A > 0, A is the forward difference operator, n € Z, u,,(n) € R, f,, : Z — RN with
S = (Fonts - fun)', m=1,2,and p; : Z — R* and ¢;, i = 1,2, 3, 4 satisfy the following con-
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ditions:

(p) O<inf,ez pi <sup,cz pi<+00,i=1,2,3,4;

(Ap) @; is a homeomorphism from RN onto RN such that ¢;(0) = 0 and ¢; = V®;, with
®; € CY(RN, [0, +00)) strictly convex and ®;(0) =0, i =1,2,3,4.

Remark 1.1 Assumption (Ap) is given in [1], which is used to characterize the classical
homeomorphism. If, furthermore, ®; : RN — R is coercive (i.e., ®;(x) — +00 as |x| = 00),
then there exists §; > 0 such that

®i(x) > 8(lxl -1), xeRY, 1.2)
where §; = miny 1 (%), i =1,2,3,4 (see [1]).

As usual, we say that a solution u(n) = (111 (n), up(n)) of system (1.1) is homoclinic (to 0) if
u(n) — 0 as n — +oo. In addition, if u(xn) £ 0, then u(n) is called a nontrivial homoclinic
solution.

It is well known that the existence and multiplicity of homoclinic orbits for difference
systems have been extensively studied in many recent papers via critical point theory (for
example, see [2-12]). In [5], by using a linking theorem from [13], the author obtained
that a second-order self-adjoint discrete Hamiltonian system has infinitely many nontriv-
ial homoclinic solutions, when potential function W is indefinite sign and subquadratic.
In [6], by using a variant of the mountain pass theorem from [14], the authors obtained
that a class of p-Laplacian difference systems has at least one nontrivial homoclinic solu-
tion when the potential function possesses asymptotically p-linear properties at infinity. In
[7], Tang and Lin investigated the following second-order self-adjoint discrete difference
system:

A[p(n)Au(n - 1)] — L(n)u(n) + VW(V[, u(n)) =0, (1.3)

where p(n) and L(n) are N x N real symmetric positive definite matrices for all n € Z. By
using the least action principle, they obtained that system (1.3) has at least one homoclinic
solution and, by using the Clark theorem, they obtained that system (1.3) has infinitely
many homoclinic solutions. To be precise, they obtained the following theorems.

Theorem A Assume that p(n) is an N x N real symmetric positive definite matrix for all
n € Z. Assume L and W satisfy the following conditions:

(L)  L(n)isan N x N real symmetric positive definite matrix for all n € Z and there exists

a constant B > 0 such that
(L(mx,x) = Blx*>, V(nx) € Z x RN,

(W1) For every n € Z, W is continuously differentiable in x and there exist two constants
1< 1 <y < 2 and two functions ay,ay € I'>(Z, 10, +00)) such that

|W(n,x)| <am)x”, Vinx)eZxRY,|x <1
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and
|W(n,x)| <ar(n)|x]?, V(n,x)€Z xRN, |x| > 1.
(W2) There exist two functions b € ¥ and ¢ € C([0, +00), [0, +00)) such that
|VW(n,x)| < b(n)¢(|x|), Y(n,x) € Z x RN,

where ¢(s) = O(s"'™) as s — 0*.
(W3) There exist ng € Z and two constants n >0 and y3 € (1,2) such that

W(no,x) > nlx|?, VxeRN,|x| <1
Then system (1.3) possesses at least one non-trivial homoclinic solution.

Theorem B Assume that p(n) is an N x N real symmetric positive definite matrix for all
n € Z. Assume L and W satisfy (L), (W1), (W2), and the following conditions:

(W3) There exist two constants n > 0 and y3 € (1,2) and a set ] C Z with m > 0 elements
such that

W(n,x) > x|, Ymx)e] xRN, |x| <1.

(W4) W(n,—x)=W(nx),V(nx) e Z x RN,

Then system (1.3) possesses at least m distinct pairs of non-trivial homoclinic solutions.

Recently, in [1] and [15], Mawhin investigated the following second-order nonlinear dif-
ference systems with ¢-Laplacian:

A¢(Au(n-1)) = V,F(n,u(n)) + h(n) (n€Z), (1.4)

where ¢ is a homeomorphism from X C RN onto Y C RY, with three possible cases:

(1) classical homeomorphism if X = Y = RY;

(2) bounded homeomorphism if X = RN, Y = B, (a < +00);

(3) singular homeomorphism if X = B,, Y = R¥,
where B, is a ball with its center at origin and radius a. Inspired by [1, 15], and [10], Zhang
and Wang in [8] studied the existence of homoclinic solutions for the following nonlinear
difference systems with classical (¢, ¢,)-Laplacian:

Ap1(Auy(n —1)) + Vy,, V(n,u1(n), us(n)) = fi(n),
Ay (Aus(n —1)) + Vyu, V(n, ur (n), uz(n)) = fo(n),

(1.5)

where n € Z, u,,(n) € RN, m = 1,2, and ¢,,, m = 1,2 satisfy assumption (A4y) and
V(n,x1,%5) = =K (1, %1, %) + W(n,x1,%2), where K, W:Z x RN x RN — R, K(n,x1,%5) and
W (n,x1,%,) are T-periodic in n, K has p-sublinear growth, W has p-superlinear growth,
and f,, : Z — RN, m = 1,2 satisfy some reasonable growth conditions. By using a linking



Zhang et al. Advances in Difference Equations (2017) 2017:380 Page 4 of 26

theorem due to [16], they obtained some existence results of homoclinic solutions for
system (1.5).

In this paper, motivated by [1, 68, 15], the purpose is to obtain some results like The-
orem A and Theorem B for system (1.1). To be precise, by using the least action principle
and Clark’s theorem, we obtain some existence and multiplicity results of homoclinic so-
lutions for system (1.1) when F(#, %1, %3) is not periodic in # and possesses (p, g)-sublinear
growth or (p, g)-linear growth. Our results are different from those in [8]. Moreover, since
system (1.1) has a parameter A and perturbation terms f;,, (m = 1,2), some new cases can-
not be covered by [7] even if system (1.1) reduces to the second-order difference system.
For example, by virtue of perturbation terms f,, (m =1,2), (I) F(no,%1,%2) can be nega-
tive in a small interval of (|x;|, |x2|), which is impossible in (W3) (see Theorem 1.1 below),
(I) the restriction of f;, (m = 1,2) only aims at two components of f,, (m = 1,2), that is, fi;,
and fy;,, which gives the idea that the other components of f;, (m = 1,2) can be arbitrary
even if fi;, +foj, = 0, which is also impossible according to Theorem A (see Theorem 1.2
below), and (III) we consider the case in which F has (p, ¢)-linear growth, which was not
considered in [7] (see Theorem 1.3 below).

Let

o; = inf p;(n), pi=supp;(n), i=1,2,3,4.
— neZ

neZ

Next, we present our main results.
Theorem 1.1 Suppose that (p), (Ao), and the following conditions hold:
(A1) There exist positive constants by, d;, i = 1,3, bj, dj, j = 2,4, and p > 1, q > 1 such that
bilxlP < ®y(x) <di|xlf, i=1,3,
bilyl? < ®;(y) <djlyl?, j=2,4,Vx,yeRN.
(Ay) There exist positive constants Ky, m=1,2, ¢;, i =1,3, ¢j, j = 2,4 such that
|9i(®)| < K|, m=1,2
and
i(®) = i), x—y) = cile—ylP,  i=1,3Yx,yeRY,ifp>2,
(@) — B ),x y)zc,»lx—yw, j=24VxyeRY,ifq>2,

¢i(x) - 4i(9),x—y) = cilx—yPP(1xl + )", i=1,3,Vxy e RN, ifl<p <2,

&) - 2 —y) = gle—yP(1xl + )", j=24. Yy eRY,ifl<g<2.

(¢
(9
(
(

(F1) F(n,0,0) =0 for all n € 7 and there exist y1 € (1,p), v» € (L,q), and functions
ay € PO (Z,]0,+00)), ay € [947)(Z,[0,+00)), by € [F1(Z, [0, +00)), and by €
q
19-1(Z, [0, +00)) such that

|Vx1F(n1xl)x2)’ = ﬂl(l’l)|X1|y171 + bl(”)r
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|V, F(1,x1,%2)| < aa(m)|%2]"27" + by (m),
Jor all (n,%,,%x) € Z x RN x RN,

(Fy) There exist ng € Z and constants n; > 0, j=1,2, 8¢ € (0,1), and y3,ys € (1, +00) such
that

F(no,x1,%2) > —mi || = malwa |, V(x1,%2) € RN x RN, [x1| < 8o, x| < 0.
(f) i €lPT(Z,RN), fo € 171 (Z, RN), and there exist i, jo € Z[1,N] such that
Jrio (10) + fajp (m0) < 0.

Then system (1.1) with A > 0 possesses at least one nontrivial homoclinic solution.

Remark 1.2 There exist examples satisfying (o). For example, let p;(n) = ﬁ +1,i=
1,2,3,4.Then p; =2 and pi=1,i=1,2,3,4. Moreover, there exist examples satisfying (Ao),
(A;), and (A,). For example, as in [8]:

() Assume N =1.Letp=3,qg=4,

3|x1|21 X1 > 0)
d1(x1) = P3(x1) =

6lx11%, % <0,
and

4x)?, 0,
Pa(x2) = Palxo) = bl x>

8lx1|% % <0.
(II) Assume N > 1. Let
P1(x1) = P3(x1) = 3ao x|, $2(%2) = Palx2) = 4bolxs |,
for some ag, by > 0.

Remark 1.3 There exist examples satisfying Theorem 1.1. For example, we take N > 1, p,
q, pi» and ¢;, i =1,2,3,4 as in Remark 1.2. Let

5 7 1
F(n,%1,%,) = (I1) 2 + 2212 + |12 In(1 + |1 %)

1
n?+1
a3 In(1 + 13 ?) = In(1+ a1 13) = In(1+ Ja] 2)).

Take y1 = 3, y2 = 5, a1(n) = ax(n) = ﬁ, b1(n) = by(n) =0, m =1y =1,and np = 1. Then it

is easy to verify that F satisfies (F}) and (F,). Let

1 1 1
m+2 n2+1 7 w2+ 1

T 1 .
fi(l’l)Z ( ) ’ _fz(l’l)z m(—l,,l) .

Take ip = jo = 1. Then it is easy to see that (f) holds.
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Theorem 1.2 Suppose that (p), (Ao), (A1), (A2), (F1), and the following conditions hold:

(Fy)' there exist ny € Z and constants n; >0, j = 1,2, 8o € (0,1), y3 € (1,p), and ys € (1,9)
such that

F(no,%1,%) = mlx1|” + malaa|™,  ¥(xy,%5) € RN x RN, |y | < 8o, 4| < 8o;
(fY fi € IP1(Z,RN), f, € [71(Z,RN), and there exist io,jo € Z[1, N such that

Jio (o) + faj, (m0) = 0.
Then system (1.1) with A > 0 possesses at least one nontrivial homoclinic solution.

Remark 1.4 There exist examples satisfying Theorem 1.2. For example, we take N > 1, p,
q, pi» and ¢;, i =1,2,3,4 as in Remark 1.2. Let

1
F(n,x1,%) = m(lxllg + |x2|% +In(1+ |x1|%) +In(1+ |x2|%)).

Take )/1:)/3:%,yzz)q:%,al(n):az(n): r  bi(n)=by(n) =0, =n2=1,and 1y = 1.

n2+1’

Then it is easy to verify that F satisfies (F;) and (F,)'. Let

1 1

filn) = ...,15, fo(n) = (-1,...,1)".

n?+1 n?+1

Take ip = jo = 1. Then it is easy to see that ()" holds.
Theorem 1.3 Suppose that (p), (Ao), (A1), (A2), (f), (F>), and the following condition
hold:
(F1)' F(n,0,0) =0 and there exist functions ay,ay € [*°(Z, [0, +00)) with a;,(n) — 0 as n —
b q
00,i=1,2, by € [P1(Z, [0, +00)), and b, € 177 (Z, [0, +00)) such that
|VX1F(n’x1’x2)’ = al(”)"xl |p71 + bl(n)’
|Vx2F(n’x1, x2)| =< ﬂz(ﬂ)lleq_l + bz(”),

for all (n,%,,%,) € Z x RN x R¥,

pmin{p1b1,03b3}  qmin{paba,paba}
lla1lloo ’ llazlloo

Then system (1.1) with A € (0, min{
trivial homoclinic solution.

b possesses at least one non-

Remark 1.5 There exist examples satisfying Theorem 1.3. For example, we take N > 1, p,
q, pi» and ¢;, i =1,2,3,4, as in Remark 1.2. Let

1
F(n,%1,%;) = 11 (ler)? + 12 ) * + w2 In(1 + J2]?) = In(1 + |21 %) = In(1 + |x2]*)).
Take a1(n) = ay(n) = ﬁ, bi(n) =by(n)=0,n=n2=1,y3 =3, ya =4, and ny = 1. Then it

is easy to verify that F satisfies (F;)" and (F;). Let

1 1 1
m+2 n2+1 " w2 +1

T 1 .
ﬁ(n)=< ) AW

Take ip = jo = 1. Then it is easy to see that (f) holds.
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Theorem 1.4 Suppose that (p), (Ao), (A1), (A2), (F1), and the following conditions hold:
(Fy)" there exist constants 8y € (0,1), 7;>0,j=1,2, y3,ya € (I, min{p,q}), and a set ] C Z
with m € Z[1,N| elements such that
F(n,x1,%2) > mlx]” + x|, V(m,x1,%) € ] x RN xRN, || < 8o, x| < So;
(F3)  F(n,—x1,—%2) = F(1,%1,%2), Y(1,%1,%,) € Z x RN x RN,
(Y fi=fhi=o.

Then, for every A > 0, system (1.1) possesses at least m distinct pairs of nontrivial homoclinic

solutions.

Remark 1.6 There exist examples satisfying Theorem 1.4. For example, we take N > 4, p,
q, piand ¢;, i =1,2,3,4, as in Remark 1.2. Let

F(n,x1,%2) = (21l + ol 2 + (1 + 2] 3) + In(1 + Jaa| ).

n?+1

Take 1 = y3 = 3, 2 = va = §, a(n) = ar(n) = =, by(n) = by(n) = 0, =My = 75, and
J ={1,2,3,4}. Then it is easy to verify that F satisfies (F;) and (F,)"”. Hence, Theorem 1.4
implies that system (1.1) possesses at least four distinct pairs of nontrivial homoclinic so-

lutions for every A > 0.

2 Preliminaries
Define

S= {{”(”)}nez cu(n)eRN ne Z},

E,. = {u es: Z[|Au(n)|K + |u(n)|K] < +oo},

nez

where 1 < k¥ < +00 and for v € E, we define

1/k
VIl = {ZHAV(H)IK + IV(n)IK]} . (2.2)

nez

Let E=E, x E,. For u = (u, u) € E, we define
llull = llually + ez ll4- (2.3)

Then E is a uniformly convex Banach space with this norm. As in [7], for 1 < k¥ < +00, set

¥ = l"(Z,]RN) = {u € S:Z{u(n)r( < +oo},
nez (2.4)
1°:=1"(Z,RY) = {u € S:suplu(n)| < +oo},

nez
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with the norms

1/k
||u||1K=<Z\u(n)\K> . Yuel(Z,RN),

nez (2.5)
lulloo = sup{|u(n)| :ne Z}, Vuel®(Z,RY),

respectively. For u € E, it is easy to obtain
llloo < Natllze < llael]ic. (2.6)

Lemma 2.1 Assume that (p), (Ao), (A1), and (F) hold. Then, forall . > 0, f; € l!% (Z,RN),
and f; € [a (Z,RN), the functional J : E — R defined by

J(u) = Z[ﬁl(")%(ﬁm(l’l)) + P2 (M) Do Ay (m)) + p3(n) P3 (141 (m))

nez

+ 4 (1) @y (12 (1)) — LF (11, ur (), 1z (1))

+ (A(n), m(n)) + (H(n), ux(n))], Vu ek, (2.7)

is well defined and of class C'(E,R) and

(j/(lxl),l/> = <x7,(u1> MZ)» (Vl) V2)>
= Y [ (d1 (A (), Avi(n))

nez

+ p2(n) (¢2(Aua(n)), Avay(n))

+ 03(n) (@3 (12(n)), vi (1)) + pa () (¢a (42 (1)), v2 ()
= MV F (1, u1(n), uz(n)), v1(n))

— M(Viy (1, 1), 1 (1)), v ()

+ (A(n),vi(n) + (H(n),v2(n))], Vu,veE. (2.8)
Furthermore, the critical points of J in E are solutions of (1.1) with u(+o0) = 0.

Proof Firstly, we show that J : E — R is well defined. In fact,

1
F(n,xbe) = / (VxlF(nysxler);xl) ds + F(ﬂ, 0,962)
0
1
= / (Vi F(n, 531, %), 1) ds
0

1
+/ (VxZF(n,O,txz),xz) dt
0

+F(n,0,0). (2.9)
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Then, by (F), we have

1 1
|F(n,1,%2)| < / IVxlF(n,le,xz)IImldH/ |V, F(1,0, 8x5) |2 ] it
0 0

1

1
< /0 (|a1(n)||5x1|7’1*1+b1(n))|x1|ds+/0 ({ag(n)||tx2|yz—1

+ by (I’l)) |xo| dt

_ ()] i+ laz(n)]

)4t

%2172 + by () || + ba(n) |z ). (2.10)

So, for u = (41, up)" € E, by (2.10), the Holder inequality, and (2.6), we have

Z F (1, u1(n), uz(n))

nez

<Y |F(nm(n), uz(m))|

nez

< Z(lm(ln)l |1 ()| + |6l2y_(2"l)||u2(n)’1/2)

nez g

+ Z(|bl(”l)||ul(”)| + |ba(m)||ua(m)])

nez

= 41
»

< (Sl ) " (o)

nez nez

(D™ " (Sl

nez nez

NN

—

p—

(Zmol#) " (Shaer)’

nez ne’
(Sl ) " (Spuatal”)”
nez nez

1 n, L 7”2
= — a1l pro-w et llp + — a2l jgrg-va) 1112114
)4t )2

+ 161l pro-n Nt lle + 1D2 || jarg-n) l| 42 |l 12

IA

1 Y1 1 Y2

—llallpro- lluall)t + —llazllgra-—m w2l

N V2

+ b1l pro- ua llp + 1621l jara-v 12|l - (2.11)

It follows from (p), (A;), (2.7), and (2.11) that

J(u) < Z[ﬁdlmul(ﬂ)‘p + Dady | Auy (n)|" + P33 |ur ()| + Pada|uz(m)|*]

nez
A A

+ —laillpro-w ) + —llazll g luall?
4! V2

+ Mbrllpro- luallp + AN1b2 Ml aran 2l

1/p
i g, (bl ) 181, (Sl

nez nez

1/q
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< max{prdy, pads) 15+ max{pada, Dada) 214

* " i|| Il llua |72
+ —lall pro- Il + — llazllaa-r 1wzl
N V2
+ Alb1llpie-v |4l + M ballgia- 142l

+ u + u
VAl 2 Neallp + 11 e, ol

which shows that J is well defined.
Next, we prove that 7 € C!(E,R). We denote .7 as follows:

J W) = T(u) = 1T () + T5(u), (2.12)

where

Fiw) =Y [ pr(m)®1 (A (1)) + pa(n) P (Auy(n))

nez

+ p3(1n) @3 (11 (1)) + pa(1) s (uz())],

Ta() =Y F(n,m1(n), us(n)), (213)
ne’
Ts(w) =Y [ (A(n), 11(m)) + (o), ua(m))].
nez
First, by (Ay), it is easy to prove that 7; € C'(E,R) and
(A w),v) = Zz[pl(n)(d’l(Aul(”)): Avi(n))
+ p2(n) (2 (Aua(n)), Ava(n)) + p3(n) (s (u1(n)), vi(n))
+ p4(n) (¢4 (u2(n)),v2(n))], Vu,veE. (2.14)
Next, we prove that 7, € C'(E,R) and
(T3, v) = Y [(VinF (11 (n), (), v1 ()
nez
+ (Vi F (1, 12 (), (1)), v (m)) ] (2.15)

For any given u = (13, ), v = (v1, v2) € E and for any sequence {6, },cz C R with |6,] <1 for
n € Z and any number /4 € (0,1), by (F) and the Holder inequality, we have

max |(Vi F (1, w1 () + O, hvy (n), 1y (n) + hva(n)), vi(m))|
nez ’

+ Z max | (Vi E (11, 1 (1), 12 (1) + 0,1v2(m)), v2(n)) |
nez ’

< hrrl[%§]|Vu1F (1, u1(n) + 0,1 (1), uz (n) + hva () ||v1 ()|
nez €

+ 2 hr;l[%ﬁ] ’ VMZF(n, u1(n), uy(n) + GnhVZ(n)) | ’vz(n)|
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< > max (|ar(n)] i () + B, (0] + br(m) [ ()
ez ’

- Z hr?[%?;]( |as ()| |2 (1) + w2 () |* ™" + ba(m)) | v ()|

=20 )| (s + [ () ) m)|
nez
#2773 Jas ()] (Jua ()| + [v2(0n)] 7)) ()]
nez

3 )| [n(m)| + > |ba(m)||va ()]

nez nez

p- Vl n-1 1
<2 (L) " (Slaoil?) " (Lheol’ )
nez nez nez
+2”‘1(Zlal<n>|%)T(Zlmml’”)?
nez ne’
(Sl ) " (ol )
nez nez
+2V21(Z|a2(n)|qqy2> <Z|u2(n)| ) <Z|V2 n)| )
nez nez nez
+2”2_1(Z|a2(n)|q‘q > (Z|V2(}’l )
nez nez

(Zpl™) " (Sheto’)’

nez nez
< 2 Yla i (e I+ 122 Il
+ 2 Ml aa [l g (121727 + vl 227 2l
+ b1l pro-n Ivillp + 1621l ara-v V2 lg

< +00. (2.16)

Then it follows from (2.13) and (2.16) that

(‘_7/(1,{) V>_ lim j2(u+hv)_t72(u)
5 ,V) =

h—0* h

= lim l Z[F(n, ui1(n) + hvi(n), us(n) + hV2(I’l)) - F(n, u(n), I/lz(l’l))]

nez

hl_i)rg [(V,“F(n, w1 (1) + 0,hvy (1), us (1) + hvy(n)), vi(n))
ne’

+ (Vo F (1, 1 (n), iz (n) + 0, (1)), va(m)) |

Z[(V’HF(”“ w1 (n), uz(n)), v1(n))

nez

+ (Vo F (1,11 (n), 2 (n) ), v2(m) |
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which implies that (2.15) holds. Next, we prove J, € C'(E,R). For any sequence {u;} =
{(u¥, u5)} and any given v € E, by the Holder inequality and (2.6), we obtain

(T3 (i) — T3 (), v)|

=

Z(VMIF(VI, U (n), us(n)) — Vo F (1, u1(n), us(n)), v1 (1)) ‘

neZ

+ Z(VMZF(H, L/l‘(n), ulz((n)) - V,,zF(n, uy(n), uz(n)), Vz(}’l)) ‘

nez

< Vi F(n,uf (n), u§ (1)) = Vi F (1, 11 (), 1z (m)) | |2 () |

nez

+ Z | Vi, F(n, uk(n), 1/2‘(71)) — Vi, F(1n,u1(n), us(n)) | |V2(n)|

nez

= ”VlH”’(ZWMlF(”’ i (n), u3(n)) = Vi F(n, u1(n),uz(n))|"pl>7

ne’
q-1
v
+|[v2llm (Z‘VMZF(H, uy (n), us(n)) — Vi, F (1, w1 (n), uz (n)) | q—l)
nez
p-1
2\ 7
<l <Z|VM1F(71, uk (n), u(n)) = Vi F (1, u1 (1), uz(n)) I'“)
nez
-1
g\ q
+ ||vQ||q<Z|vuzP(n, i (n), uy(n)) = Vi, F (m, 11 (), u (m)) | ) : (2.17)
nez
Finally, we claim that
Vo E(n, ¥ (n), uk(n)) = Vy, F (1, u1(n), uz (1) 71 — 0, ask— oo, (2.18)
1 1 2 1
nez
and
V., E(n, uf(n), uk(n)) = V., F(n, ur(n), us(n) 7 — 0, ask— oo, (2.19)
2 1 2 2
nez

if uy — u in E. In fact, since u; — u, ||uf - w5 — 0 and [k — Uy ||7 — 0. Furthermore,

by (2.6), we have u¥ — u; in /” and u — u, in 1 and
klggo uf(n) =u;(n), VmneZ,i=1,2. (2.20)
Therefore, there exists a constant Cy > 0 such that

|ty + Neaallir + Jos3] g + Ntz < Co.

Page 12 of 26
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By (F}), we have
|V, E (1, 1k (1), 1 (1)) = V1 E (1, 103 (1), 102 2)) |77
= [ (a5 00" + fsa )] ) + 21 6)]
<271y )| 77 (ae )"+ Jaa )Y 25 (b )
< 27y ()| 1 [uk )| P+ 27 |y ()| P s )| P
+ 257 |y ()|
=g(n), VkeNnel (2.21)

By (2.21) and the Hoélder inequality, we obtain

2 1-1)
3 eto) = 27 3 [leno) P k)] F T+ o) )| P

nez nez
p+l P
+271 3 by ()| 1
nez
nl 1
p-1 p
<27 1||a1||” (Zluf(n)l )
nez
-1

427 |ll1||p " (Z|u1(n)|p> "
£ 250 3 by )| T

nez
L ‘ p(n;l) L p(n;l)
<2 1”011””;/(,; v ”u1 ”an +2071 ||ﬂ1||”;/(p ) ”141””;17
-
+ 277 |y |17,
1p-1
5 L p(;q -1) 5 p p(nll) Ll
<2r ‘Ilallllp/@ wCol ™ 20 IIﬂllllp,(p G’ 251 121 A
< +00. (2.22)

Since F is continuously differentiable in (x1,%;) € RN x RY, (2.20) implies that, for all
nelz,

|V F (1,15 (1), u5 (1)) = Vi F (1, u1(n), un(n)) | —> 0, as k — oc. (2.23)
Then it follows from (2.22) and (2.23) that

Z|Vu1F(”, ulf(n), ué(n)) - VMF(V[, u1(n), ug(n))|1% — 0, ask— oo. (2.24)

neZ

Hence, (2.18) holds. Similarly, we can obtain (2.19). Combining (2.18) and (2.19) with (2.17),
we conclude that 7, € C}(E,R).
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Finally, it is easy to check that J5 € C}(E,R) and

(T3(w),v):= Z[(fl(n),vl(n)) + (f(n), va(m))]. (2.25)

nez

Combining (2.14) and (2.15) with (2.25), we deduce that (2.8) holds. By (A;) and the Holder
inequality, we obtain, for any given u = (41, u3),v = (v1,12) € E,

> A(pr(n = 1)y (Aus (- 1)), w1 (m))

nez
<> [lm@)|[d1 (A () |10 + D] + | pr(n = 1)| |1 (Asa (2 = 1)) || w1 ()]
nez
<mY_k|Amm " e+ D+ 1Y k| Aw(n -1 [ui(n)]
nez nez

%; 1/p
< piky (ZIAm(n) Ip) <Z|V1(ﬂ - 1)|p)

nez nez
,Z Ip
+ prky (Z‘Aul n-1) ’p> <Z’V1 )
nez nez

which, together with the definition of E, implies that the series Y, _, A(p1(n—1)¢1(Aw (n—
1)), v1(n)) is absolutely convergent and then it is easy to see that

Y Alou(n= D1 (Au(n —1)),v1(n) = 0.

nez

Similarly, we have

D A(pa(n = 1) (Aua(n 1)), v2(n)) = 0.

nez

Thus, for u,v € E,

> [orm) (@1 (A (m)), Avi(m)) + pa(n) (o Ausa (1)), Avy(m))

nez
+ p3(1)(¢3(1(m)), vi(n)) + pa () (Ba (42(m)), v ()
~ (Vi F (1, u1(n), u2 (1)), vi (1)) — (Vi F (1, ua (1), (1)), v2 (1))
+ (fi(n), vi(n)) + (F(n), v2(n))]
= [A(pr(n - Dy (Aus (n - 1)), ()

nez

— (A(p1(n =D (Auy (1 - 1)), v1(n))

+ A(p2(n = D)o (Aun(n - 1)), va(n))

= (A(p2(n =)o (Auz(n - 1)), v2(n))

+ p3(n) (@3 (t1(n)), vi(1)) + pa (1) (da (u2(1)), v2 (1))



Zhang et al. Advances in Difference Equations (2017) 2017:380 Page 15 of 26

— (Vg F(m, u1(n), uz (n)), vi(n)) = (Vuy F (11, 141 (n), 2 (), v2 ()
+ (fi(m), vi(n) + (fa(n), v2(n)) ]
= [(~A(or(n - D (A (1~ 1)) + p3(n)ps (2 ()

nez

- VulF(l’l, Ml(l’l), Ltz(l’l)), Vl(n))]

+ Y [(~A(paln = Do (Aur( = 1)) ) + pa(n)pa (u2(1)

nez

- V,,,ZF(I’I, M1(Vl), ug(}’l)), V2(n))]

+ 3 [(A0D, vi(m)) + (a(m), va(m)].

nez

Using the above equation, it is easy to show that the critical points of J in E are weak
solutions of (1.1) with u(£o00) = 0. The proof is complete. O

Lemma 2.2 Assume that (p), (Ao), (A1), and (Fy) hold. Then, forall ). > 0,f; € [51 (Z,RN),
and f, € = (Z,RN), the functional J : E — R defined by (2.7) is well defined and of class
CYE,R) and (2.8) holds. Furthermore, the critical points of J in E are weak solutions of
(1.1) with u(+o0) = 0.

Proof The proof is similar to Lemma 2.1. In the proof of Lemma 2.1, we only need to
replace 1, 2, llaill pio-), and [l a2l aig-r2) With p, g, llar i, and [|@; i, respectively. We
omit the details. O

Next, we introduce two lemmas which will be used to prove our main results.

Assume that E is a real Banach space. For ¢ € C}(E,R), we say that ¢ satisfies the Palais-
Smale (PS) condition if any sequence {u,,} C E for which ¢(u,,) isbounded and ¢'(u,,) — 0
as m — 0o has a convergent subsequence.

Lemma 2.3 (see [17]) Assume that E is a real Banach space and let ¢ € C'(E,R) satisfy
the PS condition. If ¢ is bounded from below, then c = infg ¢ is a critical value of ¢.

Lemma 2.4 (see [18]) Assume that E is a real Banach space and ¢ € C'(E,R) with ¢ even,
bounded from below, and satisfying the PS condition. Suppose ¢(0) = 0. Then there exists
a set K C E such that K is homeomorphic to S (j — 1 dimension unit sphere) by an odd
map and supy ¢ < 0. Then ¢ has at least j distinct pairs of critical points.

3 Proofs
Proof of Theorem 1.1 By Lemma 2.1, we have J € C}(E,R). It follows from (p), (A;), and
(2.11) that

Tw) =Y pr(n) @1 (A (m) + Y pa(m) o (Aua ()

nez nez
+ 3 ps(m) @3 (1(m) + Y paln)Pa (1 ()
nez nez

_ ZF(n, u1(n), un(n))

nez
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+ Y (i), m(m) + > (Hn), us(n))

nez nez

> o1 Y b Aw(m)| + py Y bo| Auy ()|

nez nez

+&Zb3‘u1(71)‘p +&Zb4’u2(n)|q

nez nez

_ ZF(n, u1(n), up(n))

nez

1/p
_ Hﬁlll% <Z|u1(n)|1’> - “](2"1% <Z|uz(n)|q)

nez nez

1/q

> min{p1b1, p3bs}lmllf; + min{p2b2, paba}lluz |
A A

= —Mlallpro-n la )} = — a2l grig- 12117
14! 123

= Mbrllpro-n luallp = Al b2l jarig- 2 lq

= Wllwro-v luallp = 2 llra-v sz llg- (3.1)

Note that 1 < 1 < p, 1 < 3, < g. Then (3.1) and (p) show that 7 (u) — +00 as ||u|| = +o0,
which implies that 7 is bounded from below.

Next, we show that 7 satisfies the PS condition. Suppose that {u; = (u’f, ué)}keN CEis
a sequence such that {7 (ux)}ken is bounded and J'(u) — 0 as k — +00. Then, by (3.1),

there exists a constant My > 0 such that

loagll = ust], + s3], < Mo, keN.
By (2.6), we have
Jar] o < k], < Mo, [us], < [us], < Mo. (3.2)

Hence, there exists a subsequence, still denoted by {u}, such that u; — u, for some ug =

(u?,u)) in E. Like the argument of Proposition 1.2 in [17], it is easy to verify that

klim ur(n) = up(n), Vnel. (3.3)
Hence, by (3.2), (3.3), and the lower semi-continuity of norm, we have
[l Mo, 3] < Mo (3:4)

Note that a; € IP?~7)(Z,[0,+00)) and b € ll'%1 (Z,10,+00)). Then, for any given ¢ > 0,

there exists an integer M; > 0 such that

r—r p-1

(Z |a1(n)|pfy1> ’ <&, <Z |bl(n)|1"pl)T <e. (3.5)

|| >My 72| >My
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It follows from (3.2)-(3.4) and (F;) that
M

Z |V F (1, 15 (n), 5 (1))

n=—M;
-V, F(n, Uy O(n), Ltz(n))||u1 (n) — uy (n)| — 0, ask— oo. (3.6)

On the other hand, it follows from (3.2), (3.4), (3.5), (F1), and Young’s inequality that

Z |V F (1, 15 (1), 5 (1)) = Vi, F (1, 1 (), 3 () | | (1) — 0 ()|

|n|>Mq
< 2 la| ("™ + )] ") + 26100 (1ed ()] + |2 ()]
[n|>My
<3 Y |am|(|uf(m)[" +|u(m)]")
|n|>M
+2 Z bi(n) |u1(n)’ ’u(l)(n)|)
|n|>M;
<3 X el ) 7 (udl + 1adl)
|n|>M;

'mr‘“‘
L

w2 3 [ ”1) (el + 12,)

|2 >My

<3( X ol ) " (ludly  1a817)

|n]>My

2 X Imoal#)” (1l 142,

|n]>M;

<3e(MJ' + ||u) ”;1) +26(Mo + ||u

P), keN. (3.7)

Then the arbitrariness of ¢, together with (3.6), implies that

> (Vi F(m, 1§ (), ()
ne’Z
- VulF(n, u(l)(n), ug(n)) (n) Uy (n)) — 0, ask— +oo. (3.8)

Similarly, we have

Z(V F(n uk(n), u’z‘(rz))
nez
-V, F(n,ul(n) uz(n)) uz(n) uZ(n)) — 0, ask— +00. (3.9)

By (A;), we have

($i0) - 4:(9),x—y) =0, Va,y€RY,i=1,2,3,4.
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Then

(T wi) = T (o), wxc — o)
= (T (1) = T (0] 3), (0t — 013 — 145))

> p1 Y (61 (Auk () — ¢ (Auf (), Auk(n) - Auf(n))

nez

+ &Z(@ (Aulz‘(n)) - gbz(Aug(n)), Au’z‘(n) - Aug(n))

nez

+p3 (63 (uf () — 63 () (), uf () — 4] (m))

nez

b pa 3 (ba(us(m) = a (), b () — 3 ()

nez

—A Z[(VMIF(n, ulf(n), ulz((n)) — VulF(n, u?(rz), ug(n)), z/l‘(n) - u?

nez

(VuzF(n, Ul kK(n), uz(n)) VMZF(n, ul(n), uz(n)) (n) uz(n))]
Moreover, since J' (1) — 0 and u; — ug as kK — 0o, we have

(T (wi) = T (uo), i — o) — 0, as k — oo.

Page 18 of 26

(3.10)

(3.11)

Since (¢i(x) — ¢i(y),x —y) > 0 for all x,y € RN, A > 0, (3.10) and (3.11), together with (3.8)

and (3.9), imply that

Z(q&l(Aulf(n)) -1 (Al (n)), Auk(n) - Auj(n)) > 0, ask— +oo,

nez

Z(qbg(Aulz‘(n)) — o (Auy(n)), Aubi(n) - Auy(n)) — 0, ask— +0o,

nez

Z(¢3 (uf(n)) - ¢ (u3 (), uy(n) —u(n)) — 0, ask— +oo,

nez

Z(m(ug(n)) - ¢a(u3(m), uk(n) - uy(n)) - 0, ask— +oo.

nez

If 1 < p <2, then it follows from (.A;) and the Holder inequality that

Z‘Auf(n) - A (n) ’p

nez
Z‘Au — Aud(n |2_p
nez
< € Z(q)l(Aul (n)) qbl(Au(f(n)), Auk(n) - Au?(n))g
C1 ne’l

P2-p)

. (|Au11‘(n)’ + |Au§)(n)|) 2

14

(Z(%(Au’f(n)) — 1 (A (), Auf(n) - Au?(n))) i

(3.12)

(3.13)

(3.14)

(3.15)
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2-p

(X (audon + o))

ne

N

(S

pQ2-p)

(S

2

N

<

<Z(¢1(Au’f(n)) - 1 (Au(n)), Auf (n) - Au?(ﬂ)))

nez

o

C
2-p

(S tautonl + [aonp))

nez
rQ2-p) )4

2 (Z(cbl(mf(n))—@(Au?(n)),Auf(n)—Au?(n))f

[7’
1 nez

<

C

2-p
(el + 12l) 2

(3.16)

Similarly, we have

Z‘ulf(n) ud(n p

nez

(2-p) p
P2y 4

(Z(¢3 (e () = 3 (45 (m)), uf () - u?(m))

nez

<

C

(ltlly + 21)

4
2
3

2p
2

(3.17)

If p > 2, then it follows from (.A;) and the Holder inequality that

Z|Au’f(n) - Al (n) |p

ne’Z

< cl > (e (Auf(m) - dr (Auf (), Ak () — Au (m)), (3.18)

neZ

> i) - (m)]”

nez

= CLZ(@(“T(’?)) ¢1 (1 (m)), 5 () — 1 (). (3.19)

nez

By (3.12)-(3.19), it is easy to see that u¥ — u? in E, for any p > 1. Similarly, we can obtain
u’z‘ — ug in E, for any g > 1. So, ux — ug in E, that is, 7 satisfies the PS condition.

Let ¢ = J. By Lemma 2.3, ¢ = infg J (1) is a critical value of 7, that is, there exists a
critical point u* € E such that 7 (u*) = c.

Finally, we show that u* # 0. Let u,(no) = (u14(n0), u2. (1)) where uy,(n) = (0,...,1,

.,0)" € RN with 1 is the iyth component of the vector, us. (1) = (0,...,1,...0)" € RN
with 1 is the joth component of the vector, and u,(#n) = O for 1 # ng, where iy, jo are defined

in assumption (f). Then, by (F,) and (2.7), we have

T (su) = Y [ pr(m) @1 (Astar (1)) + po(n) D3 (Asuiz. ()

nez

+ p3(n) 3 (sur.(n)) + pa(n) Pa (s142.(n)) |

Page 19 of 26
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A ZF(n,sul*(n),suz*(n)) + Z(fl(n), ul*(”)) + Z(fz(l’l)y Mz*(i’l))

nez nez nez
<pis’dy Y | Aun ()" + pastdy Y | Augu(m)|* + D35y Y | (m)]”
nez nez nez

+pastds Y |1z (m)|" = AF (mo, s141.(110), sthas (0))

nel
+ (fl(”o)»sul*(l’lo)) + (fz(”o)»suz*(no))
< Espd1(|Au1*(n0)‘p + {Aul*(l’lo -1) }p)
+ p287d (| At (10) |* + | Attna (g — 1))
+ P3P ds|urc(no)|” + pastda|ua(no)|*
+ A" |u1s(n0)] ™ + Anas? s (m0)|™* + sfisy (10) + fj (o)
= (2p1dy + p3d3)s” + (202dy + Pady)s? + Amys™ + Angs™*
+ 5(fiio (10) + fajo (110)), (3.20)
for all 0 < s < 8. Since p,q, vs, ya € (1,+00), it follows from (f) that J(su,) <0 for s >0
small enough. Hence, J (u*) = ¢ = infg J (u) < 0, which implies that u* € E is a nontrivial

critical point of J and so u* = u*(n) is a nontrivial homoclinic solution of system (1.1).
The proof is complete. O

Proof of Theorem 1.2 By the proof of Theorem 1.1, we know that there exists a critical
point u* € E such that 7 (u*) = c. Next, we prove that #* # 0 when (F,)" and (f)’ hold. We
define the same u, as Theorem 1.1. Then, by A > 0, (F;), and (f)’, we have

T (sus) = Y [ pr(m) @1 (Astar (1)) + po(n) @3 (Asuaz. ()

nez

+ p3(n) 3 (su1.(n)) + pa(n) Pa (s142.(n)) |

=1 F(nsu1,(n), su(m) + Y (film), un(m) + ) (), ua(n))

nez nez nez
<pis’d; Z|Au1*(”) ip +0287d, Z|Au2*(n)|q + p3sPds Z|u1*(n)|p
ne’ nez nez
+Pus%dy Y [un(m)|" = AF (no, s141.(0), stha. (o))
nez

+ (fi(no), sur(n0)) + (f2(10), stz (o))
< p18Pd (| A (n0)[” + | Auyi(no - 1)[7)
+0287ds (| vtz (10) | + | Auiai (g — 1)|7) + 038P d3 | (o) |
+ Pastdy |12 (n0)| " — Ams”3 |1 (no)|
— A128"* 1z (10) | + sy (10) + s, (110)
= (2p1dy + P3ds)s” + (202ds + Pady)s? — Ams” — Anas™, (3.21)

for all 0 <s < §p. Since 1 < y3 < pand 1< y4 <q, J(su,) <0 for s > 0 small enough. Hence,
J(u*) = ¢ = infg J(u) < 0, which implies that u* € E is a nontrivial critical point of J
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and so u* = u*(n) is a nontrivial homoclinic solution of system (1.1). The proof is com-
plete. d

Proof of Theorem 1.3 By Lemma 2.2, J € C}E,R). Similar to (3.1), it follows from (p),
(A1), (F1)'; and (2.11), by replacing y1, y2, laill pio-n), and llazllaa-v) with p, q, llaillie,
and [|az ||, respectively, that

J (u) = min{p1b1, p3bs}llullf) + min{p2ba, paba}luz |
A A
= =llarlloollallf = = llaz o llu21I7
r q
= M bl pro-v Nl llp = MIb2llarig-v 142l

|lf1|| p Nwlly = Illel 0l llg- (3.22)

by,p3b in{p2ba,pab
Note that A < min {pmm”ii ”10:3 3}, qmml{lz—i”;pi 4}}. Then (3.22) shows that J(u#) — +00 as

|l#]] = +o00, which implies that 7 is bounded from below.

Next, we show that 7 satisfies the PS condition. Suppose that {u; = (u’f, ulz()}keN CEis
a sequence such that {7 (ux)}ken is bounded and J'(ux) — 0 as k — +o0. Similar to the
proof of Theorem 1.1, by (3.22), there exists a constant M, > 0 such that (3.2)-(3.4) hold.
Note that a;(n) - 0 as n — oo and b; € 11% (Z,10,+00)). Then, for any given ¢ > 0, there

exists an integer M; > 0 such that

sup [ax(n)] <, (Zibl(m\pl)T e. (3.23)

|n|>My [nl>M;

It follows from (3.2)-(3.4) and (F;) that (3.6) holds. On the other hand, it follows from
(3.2), (3.4), (3.23), (F1)’, and Young’s inequality that

Z |Vu1F(n, z/f(n), ulz((n)) —VMIF(n, (n) u2 n))||u1 (n) — 1y (n)|

|n|>My
< 2 (e + [ )]™) + 26100 ([uf ()] + [ )]
|n|>M;
<3 3 a@|( @ + [m]?) +2 3 bk )] + | ()])
|n|>M) |n|>My

=3 sup |ﬂ1(")|(||ul [+ [4217)

v2( X 10l (el +121,)

[n|>M;

<3 sup (| (s + ;)

oo X ) el )

[n|>M

<3e(Mg + ||u? ||§) + 28(M0 + ||u§) ||p), Vk € N.
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Then arbitrariness of ¢, together with (3.6), implies that

> (Vs (15 (), ()

nez

= Vi F(n,us (n), u3(n)), uk(n) - u)(n)) —> 0, ask— +oo.
Similarly, we have

Z(VuzF(n, u’f(n), ug‘(n))

nez

— Vi, F(n,ul (n), ug(n)),ulz‘(n) -uy(n)) >0, ask— +oo.

Following the argument of Theorem 1.1, we can obtain u; — u in E, that is, J satisfies
the PS condition.

Let ¢ = J. By Lemma 2.3, ¢ = infg J (1) is a critical value of 7, that is, there exists a
critical point #* € E such that 7 (u*) = c.

Finally, with the same argument as Theorem 1.1, we know that #* 0. The proof is com-
plete. 0

Proof of Theorem 1.4 In view of Lemma 2.1 and the proof of Theorem 1.1, 7 € C'(E, R) is
bounded from below and satisfies the PS condition. It follows from (Ap), (F1), (F3), and (f)”
that J is even and J(0) = 0. In order to apply Lemma 2.4, let ¢ = 7. We prove now that
there is a set K C E such that K is homeomorphic to $”~! by an odd map and supy J < 0.
The proof is motivated by [7] and [19]. Let

]: {n11n2;~')nm},
where n; < 1y < - - - < n,,,. Note that m < N. Define

,...,0,1,0,...,0)" e RN, n=un;
() = ! i=1,2,...,mj=12,
0, n#n,

u(n) = (ui(n), ug(n))r, i=1,2,...,m,
and
E, = span{u',u?,...,u"}, Ky ={u€Ey:|ull =5} (3.24)

where ||u||«2) is defined by ||ull) = w1 ll2 + llu2ll2. For any u € E,,, there exist A; € R,
i=1,2,...,m, such that

m m

U= Z)\,’u" and (ul(n), I/lz(l’l)) = Zk,’(ui(n), ué(n)), forn € Z. (3.25)

i=1 i=1
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Then

1/y3 m 1/y3
s = (Z|ul<n>|”) _ (Z |xi|m|ui<ni>|"> ,
i=1

nez

(3.26)
1/y4 m Uya
ol ra = (Z|M2(n)|m) = (Zwvﬂué(m)l”) :
nez i=1
Note that |2 (1;)|? = |ub(n;)|* =1,i=1,2,...,m. Hence
Il = (sl + N2 )
= ||M1||122 + 2wl w2l + ||M2||,22
, N NE ,
Q] +2<Z|u1(n)| ) <Z|uz(n)| ) + Y |ua(m)|
nez nez nez nez
= Z(ZA ul(n) ZA ul(n)>
nez
+ Z(ZA uz(n) ZA uz(n)>
nez
12
(Z(ZA ul(n), Zk ul(n)>)
nez
172
(Z(ZA u2 (n), ZA uz(n))>
nez
= YR+ Y )
i=1 i=1
" 12/ 172
+2<Z)\f|ui(n,-)|2> <Z)Li2|ué(ni)|2)
i=1 i=1
- 4Zx$. (3.27)

Since all the norms of a finite dimensional normed space are equivalent, there are con-
stants R; > 0,i = 1,2, 3,4, such that

i lly < Rilleaall 2, lually < Ralluall 2,
(3.28)
Rs|lupllp < llulls, Rylluzllp < lluzllpa, for uy,uy € Ey,.

Note that 8¢ € (0,1). Then, for all « € K,,;, we have

min{An (sRs)”, Ana(sRa)* } (el + laa ) 2) ™77
< 2m0573) min{3ny (sRs)"?, 2 (5Ra)* } (e 175 + 142 14)

< 270578 [y (sR3)3 Naag I3 + o (sRa) " 14212 (3.29)



Zhang et al. Advances in Difference Equations (2017) 2017:380 Page 24 of 26

Note that F(1,0,0) = 0 for all # € Z and A > 0. Then, by (A;), (F)”, (f)", (2.7), (3.24),
(3.26), (3.28), and (3.29), we have

T (su) = pr(m) @1 (Asuy(n)) + Y oo (1) Do (Asuiz(n))

nez nez

+ 3 pa(m)@s(sur(m) + Y palim)Da(suz(m))

nez nez

- Z F(n,sul(n),suz(n))

nez

< pidis¥ Z|Au1(n) ’p + Pados? Z|Au2(n)|q

nez nez

+ padss? Z|u1(n) |p

nez

+ Padys? Z\uz(n) |q —A ZF(M,-,skiui(n,-),skiué(ni))

ne’ i=1
< max{pid, p3ds}s”||u1 |}, + max{p2da, pada}s?||uz ||}

m

=3 [m|hasud ()" + o |hssudy (i) ]
i=1

= max{prdy, p3ds}s” || I} + max{pads, pada}s? | us||]
m m
—ams” Y il () [P = s Y Il ()|
i=1 i=1
= max{pidy, p3ds}s” | mll}, + max{pzdy, Pads}s?||uz |1
= amis” ua ||y — Amas™ llua |l
< max{prd, p3ds}(sRy) || ||% + max{pada, Pada}(sRy)"||u2l}y
— A (sR3)" ||l — Ana(sRa)™* [lua |

< max{prdy, B3ds}(sR) |l I}y + max{pady, Dada)}(sRo)? |||},

T omax(aal min{)»nl(ng)”, )»772(5R4)y4}

max{y3,y4}
(el + Nzl )

< max{prdy, pads}(sRy)? 8 + max{prdy, pads}(sRy)78¢

~ gy M m(sRs)”, ma(sRa) Jag 0

< max{p1d1 R} 8}, p3ds Ry 85, D2y R4S{, padaREs{ } s P4}

= Sma(s el min{nl(ng)V3, 1M2(sRy)"™ }581“{}/3'?4}, (3.30)

forall u = (u1,u2)" € K, and 0 < s < min{L, 8o (3"}, |A;])71}. Note that y3, y4 € (1, min{p, q}).
Then (3.30) implies that, for any given A > 0, there exist sufficiently small s¢, € (0,1) and
& > 0 such that

J(soru) < —e, YueK,,. (3.31)
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Let
K% = {sopu:u € K}
and
m
S = J (M, dase s h)” ER™ Y 2T =11, (3.32)
i=1
Then
K =4y sy a7 = %" ) (3.33)
i=1 i=1

Define the map ¥ : K, — S™1 by

4
V(u) = ﬁ(kl,lg,...,)\m)r, Yu e K50, (3.34)
orY0

It is easy to verify that ¥ : K;** — §”! is an odd homeomorphic map. On the other hand,
by (3.31), we have

J(u) <—¢, forueK, (3.35)

and so sup;so. J < —¢& < 0. Therefore, by Lemma 2.4, 7 has at least m distinct pairs of
critical points, so system (1.1) possesses at least m distinct pairs of nontrivial homoclinic
solutions. The proof is complete. d
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