
Zhang et al. Advances in Difference Equations  (2017) 2017:380 
DOI 10.1186/s13662-017-1419-4

R E S E A R C H Open Access

Existence and multiplicity of homoclinic
solutions for difference systems involving
classical (φ,φ)-Laplacian and a parameter
Xingyong Zhang*, Chi Zong, Haiyun Deng and Liben Wang

*Correspondence:
zhangxingyong1@163.com
Department of Mathematics,
Faculty of Science, Kunming
University of Science and
Technology, Kunming, Yunnan
650500, P.R. China

Abstract
In this paper, we investigate the existence and multiplicity of homoclinic solutions for
a class of nonlinear difference systems involving classical (φ1,φ2)-Laplacian and a
parameter:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�(ρ1(n – 1)φ1(�u1(n – 1))) – ρ3(n)φ3(u1(n))

+ λ∇u1F(n,u1(n),u2(n)) = f1(n),

�(ρ2(n – 1)φ2(�u2(n – 1))) – ρ4(n)φ4(u2(n))

+ λ∇u2F(n,u1(n),u2(n)) = f2(n).

When F is not periodic in n and has (p,q)-sublinear growth or (p,q)-linear growth, by
using the least action principle, we obtain that a system with classical
(φ1,φ2)-Laplacian has at least one homoclinic solution and, by using Clark’s theorem,
we see that a system with f1 = f2 ≡ 0 has at leastm distinct pairs of homoclinic
solutions.

Keywords: difference systems; classical (φ1,φ2)-Laplacian; homoclinic solutions;
variational method

1 Introduction
Let R denote the real numbers, Z be the integers, and N be a fixed positive integer. (·, ·)
stands for the usual product in R

N , | · | is the induced norm, and Z[, N] = {, , . . . , N}. (·)τ
stands for the transpose of a vector. In this paper, we investigate the existence and mul-
tiplicity of homoclinic solutions for the following nonlinear difference systems involving
classical (φ,φ)-Laplacian:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�(ρ(n – )φ(�u(n – ))) – ρ(n)φ(u(n))

+ λ∇u F(n, u(n), u(n)) = f(n),

�(ρ(n – )φ(�u(n – ))) – ρ(n)φ(u(n))

+ λ∇u F(n, u(n), u(n)) = f(n),

(.)

where λ > , � is the forward difference operator, n ∈ Z, um(n) ∈ R
N , fm : Z → R

N with
fm = (fm, . . . , fmN )τ , m = , , and ρi : Z → R

+ and φi, i = , , ,  satisfy the following con-
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ditions:

(ρ)  < infn∈Z ρi ≤ supn∈Z ρi < +∞, i = , , , ;
(A) φi is a homeomorphism from R

N onto R
N such that φi() =  and φi = ∇�i, with

�i ∈ C(RN , [, +∞)) strictly convex and �i() = , i = , , , .

Remark . Assumption (A) is given in [], which is used to characterize the classical
homeomorphism. If, furthermore, �i : RN →R is coercive (i.e., �i(x) → +∞ as |x| → ∞),
then there exists δi >  such that

�i(x) ≥ δi
(|x| – 

)
, x ∈R

N , (.)

where δi = min|x|= �m(x), i = , , ,  (see []).

As usual, we say that a solution u(n) = (u(n), u(n)) of system (.) is homoclinic (to ) if
u(n) →  as n → ±∞. In addition, if u(n) 	≡ , then u(n) is called a nontrivial homoclinic
solution.

It is well known that the existence and multiplicity of homoclinic orbits for difference
systems have been extensively studied in many recent papers via critical point theory (for
example, see [–]). In [], by using a linking theorem from [], the author obtained
that a second-order self-adjoint discrete Hamiltonian system has infinitely many nontriv-
ial homoclinic solutions, when potential function W is indefinite sign and subquadratic.
In [], by using a variant of the mountain pass theorem from [], the authors obtained
that a class of p-Laplacian difference systems has at least one nontrivial homoclinic solu-
tion when the potential function possesses asymptotically p-linear properties at infinity. In
[], Tang and Lin investigated the following second-order self-adjoint discrete difference
system:

�
[
p(n)�u(n – )

]
– L(n)u(n) + ∇W

(
n, u(n)

)
= , (.)

where p(n) and L(n) are N × N real symmetric positive definite matrices for all n ∈ Z. By
using the least action principle, they obtained that system (.) has at least one homoclinic
solution and, by using the Clark theorem, they obtained that system (.) has infinitely
many homoclinic solutions. To be precise, they obtained the following theorems.

Theorem A Assume that p(n) is an N × N real symmetric positive definite matrix for all
n ∈ Z. Assume L and W satisfy the following conditions:

(L) L(n) is an N × N real symmetric positive definite matrix for all n ∈ Z and there exists
a constant β >  such that

(
L(n)x, x

) ≥ β|x|, ∀(n, x) ∈ Z×R
N .

(W) For every n ∈ Z, W is continuously differentiable in x and there exist two constants
 < γ < γ <  and two functions a, a ∈ l/(–γ)(Z, [, +∞)) such that

∣
∣W (n, x)

∣
∣ ≤ a(n)|x|γ , ∀(n, x) ∈ Z×R

N , |x| ≤ 
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and

∣
∣W (n, x)

∣
∣ ≤ a(n)|x|γ , ∀(n, x) ∈ Z×R

N , |x| ≥ .

(W) There exist two functions b ∈ l/(–γ) and ϕ ∈ C([, +∞), [, +∞)) such that

∣
∣∇W (n, x)

∣
∣ ≤ b(n)ϕ

(|x|), ∀(n, x) ∈ Z×R
N ,

where ϕ(s) = O(sγ–) as s → +.
(W) There exist n ∈ Z and two constants η >  and γ ∈ (, ) such that

W (n, x) ≥ η|x|γ , ∀x ∈R
N , |x| ≤ .

Then system (.) possesses at least one non-trivial homoclinic solution.

Theorem B Assume that p(n) is an N × N real symmetric positive definite matrix for all
n ∈ Z. Assume L and W satisfy (L), (W), (W), and the following conditions:

(W)′ There exist two constants η >  and γ ∈ (, ) and a set J ⊂ Z with m >  elements
such that

W (n, x) ≥ η|x|γ , ∀(n, x) ∈ J ×R
N , |x| ≤ .

(W) W (n, –x) = W (n, x), ∀(n, x) ∈ Z×R
N .

Then system (.) possesses at least m distinct pairs of non-trivial homoclinic solutions.

Recently, in [] and [], Mawhin investigated the following second-order nonlinear dif-
ference systems with φ-Laplacian:

�φ
(
�u(n – )

)
= ∇uF

(
n, u(n)

)
+ h(n) (n ∈ Z), (.)

where φ is a homeomorphism from X ⊂R
N onto Y ⊂R

N , with three possible cases:
() classical homeomorphism if X = Y = R

N ;
() bounded homeomorphism if X = R

N , Y = Ba (a < +∞);
() singular homeomorphism if X = Ba, Y = R

N ,
where Ba is a ball with its center at origin and radius a. Inspired by [, ], and [], Zhang
and Wang in [] studied the existence of homoclinic solutions for the following nonlinear
difference systems with classical (φ,φ)-Laplacian:

⎧
⎨

⎩

�φ(�u(n – )) + ∇u V (n, u(n), u(n)) = f(n),

�φ(�u(n – )) + ∇u V (n, u(n), u(n)) = f(n),
(.)

where n ∈ Z, um(n) ∈ R
N , m = , , and φm, m = ,  satisfy assumption (A) and

V (n, x, x) = –K(n, x, x) + W (n, x, x), where K , W : Z×R
N ×R

N → R, K(n, x, x) and
W (n, x, x) are T-periodic in n, K has p-sublinear growth, W has p-superlinear growth,
and fm : Z → R

N , m = ,  satisfy some reasonable growth conditions. By using a linking
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theorem due to [], they obtained some existence results of homoclinic solutions for
system (.).

In this paper, motivated by [, –, ], the purpose is to obtain some results like The-
orem A and Theorem B for system (.). To be precise, by using the least action principle
and Clark’s theorem, we obtain some existence and multiplicity results of homoclinic so-
lutions for system (.) when F(n, x, x) is not periodic in n and possesses (p, q)-sublinear
growth or (p, q)-linear growth. Our results are different from those in []. Moreover, since
system (.) has a parameter λ and perturbation terms fm (m = , ), some new cases can-
not be covered by [] even if system (.) reduces to the second-order difference system.
For example, by virtue of perturbation terms fm (m = , ), (I) F(n, x, x) can be nega-
tive in a small interval of (|x|, |x|), which is impossible in (W) (see Theorem . below),
(II) the restriction of fm (m = , ) only aims at two components of fm (m = , ), that is, fi

and fj , which gives the idea that the other components of fm (m = , ) can be arbitrary
even if fi + fj = , which is also impossible according to Theorem A (see Theorem .
below), and (III) we consider the case in which F has (p, q)-linear growth, which was not
considered in [] (see Theorem . below).

Let

ρi = inf
n∈Z

ρi(n), ρi = sup
n∈Z

ρi(n), i = , , , .

Next, we present our main results.

Theorem . Suppose that (ρ), (A), and the following conditions hold:

(A) There exist positive constants bi, di, i = , , bj, dj, j = , , and p > , q >  such that

bi|x|p ≤ �i(x) ≤ di|x|p, i = , ,

bj|y|q ≤ �j(y) ≤ dj|y|q, j = , ,∀x, y ∈R
N .

(A) There exist positive constants km, m = , , ci, i = , , cj , j = ,  such that

∣
∣φi(x)

∣
∣ ≤ km|x|p–, m = , 

and

(
φi(x) – φi(y), x – y

) ≥ ci|x – y|p, i = , ,∀x, y ∈R
N , if p > ,

(
φj(x) – φj(y), x – y

) ≥ cj|x – y|q, j = , ,∀x, y ∈R
N , if q > ,

(
φi(x) – φi(y), x – y

) ≥ ci|x – y|(|x| + |y|)p–, i = , ,∀x, y ∈ R
N , if  < p ≤ ,

(
φj(x) – φj(y), x – y

) ≥ cj|x – y|(|x| + |y|)q–, j = , ,∀x, y ∈R
N , if  < q ≤ .

(F) F(n, , ) =  for all n ∈ Z and there exist γ ∈ (, p), γ ∈ (, q), and functions
a ∈ lp/(p–γ)(Z, [, +∞)), a ∈ lq/(q–γ)(Z, [, +∞)), b ∈ l

p
p– (Z, [, +∞)), and b ∈

l
q

q– (Z, [, +∞)) such that

∣
∣∇x F(n, x, x)

∣
∣ ≤ a(n)|x|γ– + b(n),
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∣
∣∇x F(n, x, x)

∣
∣ ≤ a(n)|x|γ– + b(n),

for all (n, x, x) ∈ Z×R
N ×R

N .
(F) There exist n ∈ Z and constants ηj > , j = , , δ ∈ (, ), and γ,γ ∈ (, +∞) such

that

F(n, x, x) ≥ –η|x|γ – η|x|γ , ∀(x, x) ∈R
N ×R

N , |x| ≤ δ, |x| ≤ δ.

(f ) f ∈ l
p

p– (Z,RN ), f ∈ l
q

q– (Z,RN ), and there exist i, j ∈ Z[, N] such that

fi (n) + fj (n) < .

Then system (.) with λ >  possesses at least one nontrivial homoclinic solution.

Remark . There exist examples satisfying (ρ). For example, let ρi(n) = 
n+ + , i =

, , , . Then ρi =  and ρi = , i = , , , . Moreover, there exist examples satisfying (A),
(A), and (A). For example, as in []:

(I) Assume N = . Let p = , q = ,

φ(x) = φ(x) =

⎧
⎨

⎩

|x|, x > ,

|x|, x ≤ ,

and

φ(x) = φ(x) =

⎧
⎨

⎩

|x|, x > ,

|x|, x ≤ .

(II) Assume N ≥ . Let

φ(x) = φ(x) = a|x|, φ(x) = φ(x) = b|x|,

for some a, b > .

Remark . There exist examples satisfying Theorem .. For example, we take N > , p,
q, ρi, and φi, i = , , ,  as in Remark .. Let

F(n, x, x) =


n + 
(|x| 

 + |x| 
 + |x| 

 ln
(
 + |x|

)

+ |x| 
 ln

(
 + |x|

)
– ln

(
 + |x| 


)

– ln
(
 + |x| 


))

.

Take γ = 
 , γ = 

 , a(n) = a(n) = 
n+ , b(n) = b(n) = , η = η = , and n = . Then it

is easy to verify that F satisfies (F) and (F). Let

f(n) =
(


n + 

,


n + 
, . . . ,


n + 

)τ

, f(n) =


n + 
(–, . . . , )τ .

Take i = j = . Then it is easy to see that (f ) holds.
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Theorem . Suppose that (ρ), (A), (A), (A), (F), and the following conditions hold:

(F)′ there exist n ∈ Z and constants ηj > , j = , , δ ∈ (, ), γ ∈ (, p), and γ ∈ (, q)
such that

F(n, x, x) ≥ η|x|γ + η|x|γ , ∀(x, x) ∈R
N ×R

N , |x| ≤ δ, |x| ≤ δ;

(f )′ f ∈ l
p

p– (Z,RN ), f ∈ l
q

q– (Z,RN ), and there exist i, j ∈ Z[, N] such that

fi (n) + fj (n) = .

Then system (.) with λ >  possesses at least one nontrivial homoclinic solution.

Remark . There exist examples satisfying Theorem .. For example, we take N > , p,
q, ρi, and φi, i = , , ,  as in Remark .. Let

F(n, x, x) =


n + 
(|x| 

 + |x| 
 + ln

(
 + |x| 


)

+ ln
(
 + |x| 


))

.

Take γ = γ = 
 , γ = γ = 

 , a(n) = a(n) = 
n+ , b(n) = b(n) = , η = η = , and n = .

Then it is easy to verify that F satisfies (F) and (F)′. Let

f(n) =


n + 
(, . . . , )τ , f(n) =


n + 

(–, . . . , )τ .

Take i = j = . Then it is easy to see that (f )′ holds.

Theorem . Suppose that (ρ), (A), (A), (A), (f ), (F), and the following condition
hold:

(F)′ F(n, , ) =  and there exist functions a, a ∈ l∞(Z, [, +∞)) with ai(n) →  as n →
∞, i = , , b ∈ l

p
p– (Z, [, +∞)), and b ∈ l

q
q– (Z, [, +∞)) such that

∣
∣∇x F(n, x, x)

∣
∣ ≤ a(n)|x|p– + b(n),

∣
∣∇x F(n, x, x)

∣
∣ ≤ a(n)|x|q– + b(n),

for all (n, x, x) ∈ Z×R
N ×R

N .

Then system (.) with λ ∈ (, min{ p min{ρb,ρb}
‖a‖∞ , q min{ρb,ρb}

‖a‖∞ }) possesses at least one non-
trivial homoclinic solution.

Remark . There exist examples satisfying Theorem .. For example, we take N > , p,
q, ρi, and φi, i = , , , , as in Remark .. Let

F(n, x, x) =


n + 
(|x| + |x| + |x| ln

(
 + |x|

)
– ln

(
 + |x|

)
– ln

(
 + |x|

))
.

Take a(n) = a(n) = 
n+ , b(n) = b(n) = , η = η = , γ = , γ = , and n = . Then it

is easy to verify that F satisfies (F)′ and (F). Let

f(n) =
(


n + 

,


n + 
, . . . ,


n + 

)τ

, f(n) =


n + 
(–, . . . , )τ .

Take i = j = . Then it is easy to see that (f ) holds.
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Theorem . Suppose that (ρ), (A), (A), (A), (F), and the following conditions hold:

(F)′′′ there exist constants δ ∈ (, ), ηj > , j = , , γ,γ ∈ (, min{p, q}), and a set J ⊂ Z
with m ∈ Z[, N] elements such that

F(n, x, x) ≥ η|x|γ +η|x|γ , ∀(n, x, x) ∈ J ×R
N ×R

N , |x| ≤ δ, |x| ≤ δ;

(F) F(n, –x, –x) = F(n, x, x), ∀(n, x, x) ∈ Z×R
N ×R

N ;
(f )′′ f = f ≡ .

Then, for every λ > , system (.) possesses at least m distinct pairs of nontrivial homoclinic
solutions.

Remark . There exist examples satisfying Theorem .. For example, we take N > , p,
q, ρi, and φi, i = , , , , as in Remark .. Let

F(n, x, x) =


n + 
(|x| 

 + |x| 
 + ln

(
 + |x| 


)

+ ln
(
 + |x| 


))

.

Take γ = γ = 
 , γ = γ = 

 , a(n) = a(n) = 
n+ , b(n) = b(n) = , η = η = 

 , and
J = {, , , }. Then it is easy to verify that F satisfies (F) and (F)′′′. Hence, Theorem .
implies that system (.) possesses at least four distinct pairs of nontrivial homoclinic so-
lutions for every λ > .

2 Preliminaries
Define

S =
{{

u(n)
}

n∈Z : u(n) ∈ R
N , n ∈ Z

}
,

Eκ =
{

u ∈ S :
∑

n∈Z

[∣
∣�u(n)

∣
∣κ +

∣
∣u(n)

∣
∣κ

]
< +∞

}

,
(.)

where  < κ < +∞ and for v ∈ Eκ we define

‖v‖κ =
{∑

n∈Z

[∣
∣�v(n)

∣
∣κ +

∣
∣v(n)

∣
∣κ

]
}/κ

. (.)

Let E = Ep × Eq. For u = (u, u) ∈ E, we define

‖u‖ = ‖u‖p + ‖u‖q. (.)

Then E is a uniformly convex Banach space with this norm. As in [], for  < κ < +∞, set

lκ := lκ
(
Z,RN)

=
{

u ∈ S :
∑

n∈Z

∣
∣u(n)

∣
∣κ < +∞

}

,

l∞ := l∞
(
Z,RN)

=
{

u ∈ S : sup
n∈Z

∣
∣u(n)

∣
∣ < +∞

}
,

(.)
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with the norms

‖u‖lκ =
(∑

n∈Z

∣
∣u(n)

∣
∣κ

)/κ

, ∀u ∈ lκ
(
Z,RN)

,

‖u‖∞ = sup
{∣
∣u(n)

∣
∣ : n ∈ Z

}
, ∀u ∈ l∞

(
Z,RN)

,

(.)

respectively. For u ∈ Eκ , it is easy to obtain

‖u‖∞ ≤ ‖u‖lκ ≤ ‖u‖κ . (.)

Lemma . Assume that (ρ), (A), (A), and (F) hold. Then, for all λ > , f ∈ l
p

p– (Z,RN ),
and f ∈ l

q
q– (Z,RN ), the functional J : E →R defined by

J (u) =
∑

n∈Z

[
ρ(n)�

(
�u(n)

)
+ ρ(n)�

(
�u(n)

)
+ ρ(n)�

(
u(n)

)

+ ρ(n)�
(
u(n)

)
– λF

(
n, u(n), u(n)

)

+
(
f(n), u(n)

)
+

(
f(n), u(n)

)]
, ∀u ∈ E, (.)

is well defined and of class C(E,R) and

〈
J ′(u), v

〉
=

〈
J ′(u, u), (v, v)

〉

=
∑

n∈Z

[
ρ(n)

(
φ

(
�u(n)

)
,�v(n)

)

+ ρ(n)
(
φ

(
�u(n)

)
,�v(n)

)

+ ρ(n)
(
φ

(
u(n)

)
, v(n)

)
+ ρ(n)

(
φ

(
u(n)

)
, v(n)

)

– λ
(∇u F

(
n, u(n), u(n)

)
, v(n)

)

– λ
(∇u F

(
n, u(n), u(n)

)
, v(n)

)

+
(
f(n), v(n)

)
+

(
f(n), v(n)

)]
, ∀u, v ∈ E. (.)

Furthermore, the critical points of J in E are solutions of (.) with u(±∞) = .

Proof Firstly, we show that J : E →R is well defined. In fact,

F(n, x, x) =
∫ 



(∇x F(n, sx, x), x
)

ds + F(n, , x)

=
∫ 



(∇x F(n, sx, x), x
)

ds

+
∫ 



(∇x F(n, , tx), x
)

dt

+ F(n, , ). (.)



Zhang et al. Advances in Difference Equations  (2017) 2017:380 Page 9 of 26

Then, by (F), we have

∣
∣F(n, x, x)

∣
∣ ≤

∫ 



∣
∣∇x F(n, sx, x)

∣
∣|x|ds +

∫ 



∣
∣∇x F(n, , tx)

∣
∣|x|dt

≤
∫ 



(∣
∣a(n)

∣
∣|sx|γ– + b(n)

)|x|ds +
∫ 



(∣
∣a(n)

∣
∣|tx|γ–

+ b(n)
)|x|dt

=
|a(n)|

γ
|x|γ +

|a(n)|
γ

|x|γ + b(n)|x| + b(n)|x|. (.)

So, for u = (u, u)τ ∈ E, by (.), the Hölder inequality, and (.), we have

∣
∣
∣
∣

∑

n∈Z
F
(
n, u(n), u(n)

)
∣
∣
∣
∣ ≤

∑

n∈Z

∣
∣F

(
n, u(n), u(n)

)∣
∣

≤
∑

n∈Z

( |a(n)|
γ

∣
∣u(n)

∣
∣γ +

|a(n)|
γ

∣
∣u(n)

∣
∣γ

)

+
∑

n∈Z

(∣
∣b(n)

∣
∣
∣
∣u(n)

∣
∣ +

∣
∣b(n)

∣
∣
∣
∣u(n)

∣
∣
)

≤ 
γ

(∑

n∈Z

∣
∣a(n)

∣
∣

p
p–γ

) p–γ
p

(∑

n∈Z

∣
∣u(n)

∣
∣p

) γ
p

+

γ

(∑

n∈Z

∣
∣a(n)

∣
∣

q
q–γ

) q–γ
q

(∑

n∈Z

∣
∣u(n)

∣
∣q

) γ
q

+
(∑

n∈Z

∣
∣b(n)

∣
∣

p
p–

) p–
p

(∑

n∈Z

∣
∣u(n)

∣
∣p

) 
p

+
(∑

n∈Z

∣
∣b(n)

∣
∣

q
q–

) q–
q

(∑

n∈Z

∣
∣u(n)

∣
∣q

) 
q

=

γ

‖a‖lp/(p–γ)‖u‖γ
lp +


γ

‖a‖lq/(q–γ)‖u‖γ
lq

+ ‖b‖lp/(p–)‖u‖lp + ‖b‖lq/(q–)‖u‖lq

≤ 
γ

‖a‖lp/(p–γ)‖u‖γ
p +


γ

‖a‖lq/(q–γ)‖u‖γ
q

+ ‖b‖lp/(p–)‖u‖p + ‖b‖lq/(q–)‖u‖q. (.)

It follows from (ρ), (A), (.), and (.) that

J (u) ≤
∑

n∈Z

[
ρd

∣
∣�u(n)

∣
∣p + ρd

∣
∣�u(n)

∣
∣q + ρd

∣
∣u(n)

∣
∣p + ρd

∣
∣u(n)

∣
∣q]

+
λ

γ
‖a‖lp/(p–γ)‖u‖γ

p +
λ

γ
‖a‖lq/(q–γ)‖u‖γ

q

+ λ‖b‖lp/(p–)‖u‖p + λ‖b‖lq/(q–)‖u‖q

+ ‖f‖
l

p
p–

(∑

n∈Z

∣
∣u(n)

∣
∣p

)/p

+ ‖f‖
l

q
q–

(∑

n∈Z

∣
∣u(n)

∣
∣q

)/q
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≤ max{ρd,ρd}‖u‖p
p + max{ρd,ρd}‖u‖q

q

+
λ

γ
‖a‖lp/(p–γ)‖u‖γ

p +
λ

γ
‖a‖lq/(q–γ)‖u‖γ

q

+ λ‖b‖lp/(p–)‖u‖p + λ‖b‖lq/(q–)‖u‖q

+ ‖f‖
l

p
p–

‖u‖p + ‖f‖
l

q
q–

‖u‖q,

which shows that J is well defined.
Next, we prove that J ∈ C(E,R). We denote J as follows:

J (u) = J(u) – λJ(u) + J(u), (.)

where

J(u) :=
∑

n∈Z

[
ρ(n)�

(
�u(n)

)
+ ρ(n)�

(
�u(n)

)

+ ρ(n)�
(
u(n)

)
+ ρ(n)�

(
u(n)

)]
,

J(u) :=
∑

n∈Z
F
(
n, u(n), u(n)

)
,

J(u) :=
∑

n∈Z

[(
f(n), u(n)

)
+

(
f(n), u(n)

)]
.

(.)

First, by (A), it is easy to prove that J ∈ C(E,R) and

〈
J ′

 (u), v
〉

=
∑

n∈Z

[
ρ(n)

(
φ

(
�u(n)

)
,�v(n)

)

+ ρ(n)
(
φ

(
�u(n)

)
,�v(n)

)
+ ρ(n)

(
φ

(
u(n)

)
, v(n)

)

+ ρ(n)
(
φ

(
u(n)

)
, v(n)

)]
, ∀u, v ∈ E. (.)

Next, we prove that J ∈ C(E,R) and

〈
J ′

(u), v
〉

=
∑

n∈Z

[(∇u F
(
n, u(n), u(n)

)
, v(n)

)

+
(∇u F

(
n, u(n), u(n)

)
, v(n)

)]
. (.)

For any given u = (u, u), v = (v, v) ∈ E and for any sequence {θn}n∈Z ⊂R with |θn| <  for
n ∈ Z and any number h ∈ (, ), by (F) and the Hölder inequality, we have

∑

n∈Z
max

h∈[,]

∣
∣
(∇u F

(
n, u(n) + θnhv(n), u(n) + hv(n)

)
, v(n)

)∣
∣

+
∑

n∈Z
max

h∈[,]

∣
∣
(∇u F

(
n, u(n), u(n) + θnhv(n)

)
, v(n)

)∣
∣

≤
∑

n∈Z
max

h∈[,]

∣
∣∇u F

(
n, u(n) + θnhv(n), u(n) + hv(n)

)∣
∣
∣
∣v(n)

∣
∣

+
∑

n∈Z
max

h∈[,]

∣
∣∇u F

(
n, u(n), u(n) + θnhv(n)

)∣
∣
∣
∣v(n)

∣
∣
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≤
∑

n∈Z
max

h∈[,]

(∣
∣a(n)

∣
∣
∣
∣u(n) + θnhv(n)

∣
∣γ– + b(n)

)∣
∣v(n)

∣
∣

+
∑

n∈Z
max

h∈[,]

(∣
∣a(n)

∣
∣
∣
∣u(n) + θnhv(n)

∣
∣γ– + b(n)

)∣
∣v(n)

∣
∣

≤ γ–
∑

n∈Z

∣
∣a(n)

∣
∣
(∣
∣u(n)

∣
∣γ– +

∣
∣v(n)

∣
∣γ–)∣∣v(n)

∣
∣

+ γ–
∑

n∈Z

∣
∣a(n)

∣
∣
(∣
∣u(n)

∣
∣γ– +

∣
∣v(n)

∣
∣γ–)∣∣v(n)

∣
∣

+
∑

n∈Z

∣
∣b(n)

∣
∣
∣
∣v(n)

∣
∣ +

∑

n∈Z

∣
∣b(n)

∣
∣
∣
∣v(n)

∣
∣

≤ γ–
(∑

n∈Z

∣
∣a(n)

∣
∣

p
p–γ

) p–γ
p

(∑

n∈Z

∣
∣u(n)

∣
∣p

) γ–
p

(∑

n∈Z

∣
∣v(n)

∣
∣p

) 
p

+ γ–
(∑

n∈Z

∣
∣a(n)

∣
∣

p
p–γ

) p–γ
p

(∑

n∈Z

∣
∣v(n)

∣
∣p

) γ
p

+
(∑

n∈Z

∣
∣b(n)

∣
∣

p
p–

) p–
p

(∑

n∈Z

∣
∣v(n)

∣
∣p

) 
p

+ γ–
(∑

n∈Z

∣
∣a(n)

∣
∣

q
q–γ

) q–γ
q

(∑

n∈Z

∣
∣u(n)

∣
∣q

) γ–
q

(∑

n∈Z

∣
∣v(n)

∣
∣q

) 
q

+ γ–
(∑

n∈Z

∣
∣a(n)

∣
∣

q
q–γ

) q–γ
q

(∑

n∈Z

∣
∣v(n)

∣
∣q

) γ
q

+
(∑

n∈Z

∣
∣b(n)

∣
∣

q
q–

) q–
q

(∑

n∈Z

∣
∣v(n)

∣
∣q

) 
q

≤ γ–‖a‖lp/(p–γ)
(‖u‖γ–

p + ‖v‖γ–
p

)‖v‖p

+ γ–‖a‖lq/(q–γ)
(‖u‖γ–

q + ‖v‖γ–
q

)‖v‖q

+ ‖b‖lp/(p–)‖v‖p + ‖b‖lq/(q–)‖v‖q

< +∞. (.)

Then it follows from (.) and (.) that

〈
J ′

(u), v
〉

= lim
h→+

J(u + hv) – J(u)
h

= lim
h→+


h

∑

n∈Z

[
F
(
n, u(n) + hv(n), u(n) + hv(n)

)
– F

(
n, u(n), u(n)

)]

= lim
h→+

∑

n∈Z

[(∇u F
(
n, u(n) + θnhv(n), u(n) + hv(n)

)
, v(n)

)

+
(∇u F

(
n, u(n), u(n) + θnhv(n)

)
, v(n)

)]

=
∑

n∈Z

[(∇u F
(
n, u(n), u(n)

)
, v(n)

)

+
(∇u F

(
n, u(n), u(n)

)
, v(n)

)]
,
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which implies that (.) holds. Next, we prove J ∈ C(E,R). For any sequence {uk} =
{(uk

 , uk
)} and any given v ∈ E, by the Hölder inequality and (.), we obtain

∣
∣
〈
J ′

(uk) – J ′
(u), v

〉∣
∣

≤
∣
∣
∣
∣

∑

n∈Z

(∇u F
(
n, uk

 (n), uk
(n)

)
– ∇u F

(
n, u(n), u(n)

)
, v(n)

)
∣
∣
∣
∣

+
∣
∣
∣
∣

∑

n∈Z

(∇u F
(
n, uk

 (n), uk
(n)

)
– ∇u F

(
n, u(n), u(n)

)
, v(n)

)
∣
∣
∣
∣

≤
∑

n∈Z

∣
∣∇u F

(
n, uk

 (n), uk
(n)

)
– ∇u F

(
n, u(n), u(n)

)∣
∣
∣
∣v(n)

∣
∣

+
∑

n∈Z

∣
∣∇u F

(
n, uk

 (n), uk
(n)

)
– ∇u F

(
n, u(n), u(n)

)∣
∣
∣
∣v(n)

∣
∣

≤ ‖v‖lp

(∑

n∈Z

∣
∣∇u F

(
n, uk

 (n), uk
(n)

)
– ∇u F

(
n, u(n), u(n)

)∣
∣

p
p–

) p–
p

+ ‖v‖lq

(∑

n∈Z

∣
∣∇u F

(
n, uk

 (n), uk
(n)

)
– ∇u F

(
n, u(n), u(n)

)∣
∣

q
q–

) q–
q

≤ ‖v‖p

(∑

n∈Z

∣
∣∇u F

(
n, uk

 (n), uk
(n)

)
– ∇u F

(
n, u(n), u(n)

)∣
∣

p
p–

) p–
p

+ ‖v‖q

(∑

n∈Z

∣
∣∇u F

(
n, uk

 (n), uk
(n)

)
– ∇u F

(
n, u(n), u(n)

)∣
∣

q
q–

) q–
q

. (.)

Finally, we claim that

∑

n∈Z

∣
∣∇u F

(
n, uk

 (n), uk
(n)

)
– ∇u F

(
n, u(n), u(n)

)∣
∣

p
p– → , as k → ∞, (.)

and

∑

n∈Z

∣
∣∇u F

(
n, uk

 (n), uk
(n)

)
– ∇u F

(
n, u(n), u(n)

)∣
∣

q
q– → , as k → ∞, (.)

if uk → u in E. In fact, since uk → u, ‖uk
 – u‖p

p →  and ‖uk
 – u‖q

q → . Furthermore,
by (.), we have uk

 → u in lp and uk
 → u in lq and

lim
k→∞

uk
i (n) = ui(n), ∀n ∈ Z, i = , . (.)

Therefore, there exists a constant C >  such that

∥
∥uk


∥
∥

lp + ‖u‖lp +
∥
∥uk


∥
∥

lq + ‖u‖lq ≤ C.
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By (F), we have

∣
∣∇u F

(
n, uk

 (n), uk
(n)

)
– ∇u F

(
n, u(n), u(n)

)∣
∣

p
p–

≤ [∣
∣a(n)

∣
∣
(∣
∣uk

 (n)
∣
∣γ– +

∣
∣u(n)

∣
∣γ–) + b(n)

] p
p–

≤ 


p–
∣
∣a(n)

∣
∣

p
p–

(∣
∣uk

 (n)
∣
∣γ– +

∣
∣u(n)

∣
∣γ–) p

p– + 
p+
p–

(
b(n)

) p
p–

≤ 


p–
∣
∣a(n)

∣
∣

p
p–

∣
∣uk

 (n)
∣
∣

p(γ–)
p– + 


p–

∣
∣a(n)

∣
∣

p
p–

∣
∣u(n)

∣
∣

p(γ–)
p–

+ 
p+
p–

∣
∣b(n)

∣
∣

p
p–

:= g(n), ∀k ∈N, n ∈ Z. (.)

By (.) and the Hölder inequality, we obtain

∑

n∈Z
g(n) = 


p–

∑

n∈Z

[∣
∣a(n)

∣
∣

p
p–

∣
∣uk

 (n)
∣
∣

p(γ–)
p– +

∣
∣a(n)

∣
∣

p
p–

∣
∣u(n)

∣
∣

p(γ–)
p–

]

+ 
p+
p–

∑

n∈Z

∣
∣b(n)

∣
∣

p
p–

≤ 


p– ‖a‖
p

p–

l
p

p–γ

(∑

n∈Z

∣
∣uk

 (n)
∣
∣p

) γ–
p–

+ 


p– ‖a‖
p

p–

l
p

p–γ

(∑

n∈Z

∣
∣u(n)

∣
∣p

) γ–
p–

+ 
p+
p–

∑

n∈Z

∣
∣b(n)

∣
∣

p
p–

≤ 


p– ‖a‖
p

p–
lp/(p–γ)

∥
∥uk


∥
∥

p(γ–)
p–

lp + 


p– ‖a‖
p

p–
lp/(p–γ)‖u‖

p(γ–)
p–

lp

+ 
p+
p– ‖b‖

p
p–

l
p

p–

≤ 


p– ‖a‖
p

p–
lp/(p–γ) C

p(γ–)
p–

 + 


p– ‖a‖
p

p–
lp/(p–γ) C

p(γ–)
p–

 + 
p+
p– ‖b‖

p
p–

l
p

p–

< +∞. (.)

Since F is continuously differentiable in (x, x) ∈ R
N × R

N , (.) implies that, for all
n ∈ Z,

∣
∣∇u F

(
n, uk

 (n), uk
(n)

)
– ∇u F

(
n, u(n), u(n)

)∣
∣ → , as k → ∞. (.)

Then it follows from (.) and (.) that

∑

n∈Z

∣
∣∇u F

(
n, uk

 (n), uk
(n)

)
– ∇u F

(
n, u(n), u(n)

)∣
∣

p
p– → , as k → ∞. (.)

Hence, (.) holds. Similarly, we can obtain (.). Combining (.) and (.) with (.),
we conclude that J ∈ C(E,R).
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Finally, it is easy to check that J ∈ C(E,R) and

〈
J ′

(u), v
〉
:=

∑

n∈Z

[(
f(n), v(n)

)
+

(
f(n), v(n)

)]
. (.)

Combining (.) and (.) with (.), we deduce that (.) holds. By (A) and the Hölder
inequality, we obtain, for any given u = (u, u), v = (v, v) ∈ E,

∑

n∈Z
�

(
ρ(n – )φ

(
�u(n – )

)
, v(n)

)

≤
∑

n∈Z

[∣
∣ρ(n)

∣
∣
∣
∣φ

(
�u(n)

)∣
∣
∣
∣v(n + )

∣
∣ +

∣
∣ρ(n – )

∣
∣
∣
∣φ

(
�u(n – )

)∣
∣
∣
∣v(n)

∣
∣
]

≤ ρ
∑

n∈Z
k

∣
∣�u(n)

∣
∣p–∣∣v(n + )

∣
∣ + ρ

∑

n∈Z
k

∣
∣�u(n – )

∣
∣p–∣∣v(n)

∣
∣

≤ ρk

(∑

n∈Z

∣
∣�u(n)

∣
∣p

) p–
p

(∑

n∈Z

∣
∣v(n + )

∣
∣p

)/p

+ ρk

(∑

n∈Z

∣
∣�u(n – )

∣
∣p

) p–
p

(∑

n∈Z

∣
∣v(n)

∣
∣p

)/p

,

which, together with the definition of E, implies that the series
∑

n∈Z �(ρ(n–)φ(�u(n–
)), v(n)) is absolutely convergent and then it is easy to see that

∑

n∈Z
�

(
ρ(n – )φ

(
�u(n – )

)
, v(n)

)
= .

Similarly, we have

∑

n∈Z
�

(
ρ(n – )φ

(
�u(n – )

)
, v(n)

)
= .

Thus, for u, v ∈ E,

∑

n∈Z

[
ρ(n)

(
φ

(
�u(n)

)
,�v(n)

)
+ ρ(n)

(
φ

(
�u(n)

)
,�v(n)

)

+ ρ(n)
(
φ

(
u(n)

)
, v(n)

)
+ ρ(n)

(
φ

(
u(n)

)
, v(n)

)

–
(∇u F

(
n, u(n), u(n)

)
, v(n)

)
–

(∇u F
(
n, u(n), u(n)

)
, v(n)

)

+
(
f(n), v(n)

)
+

(
f(n), v(n)

)]

=
∑

n∈Z

[
�

(
ρ(n – )φ

(
�u(n – )

)
, v(n)

)

–
(
�

(
ρ(n – )φ

(
�u(n – )

))
, v(n)

)

+ �
(
ρ(n – )φ

(
�u(n – )

)
, v(n)

)

–
(
�

(
ρ(n – )φ

(
�u(n – )

))
, v(n)

)

+ ρ(n)
(
φ

(
u(n)

)
, v(n)

)
+ ρ(n)

(
φ

(
u(n)

)
, v(n)

)
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–
(∇u F

(
n, u(n), u(n)

)
, v(n)

)
–

(∇u F
(
n, u(n), u(n)

)
, v(n)

)

+
(
f(n), v(n)

)
+

(
f(n), v(n)

)]

=
∑

n∈Z

[(
–�

(
ρ(n – )φ

(
�u(n – )

))
+ ρ(n)φ

(
u(n)

)

– ∇u F
(
n, u(n), u(n)

)
, v(n)

)]

+
∑

n∈Z

[(
–�

(
ρ(n – )φ

(
�u(n – )

))
+ ρ(n)φ

(
u(n)

)

– ∇u F
(
n, u(n), u(n)

)
, v(n)

)]

+
∑

n∈Z

[(
f(n), v(n)

)
+

(
f(n), v(n)

)]
.

Using the above equation, it is easy to show that the critical points of J in E are weak
solutions of (.) with u(±∞) = . The proof is complete. �

Lemma . Assume that (ρ), (A), (A), and (F)′ hold. Then, for all λ > , f ∈ l
p

p– (Z,RN ),
and f ∈ l

q
q– (Z,RN ), the functional J : E → R defined by (.) is well defined and of class

C(E,R) and (.) holds. Furthermore, the critical points of J in E are weak solutions of
(.) with u(±∞) = .

Proof The proof is similar to Lemma .. In the proof of Lemma ., we only need to
replace γ, γ, ‖a‖lp/(p–γ) , and ‖a‖lq/(q–γ) with p, q, ‖a‖l∞ , and ‖a‖l∞ , respectively. We
omit the details. �

Next, we introduce two lemmas which will be used to prove our main results.
Assume that E is a real Banach space. For ϕ ∈ C(E,R), we say that ϕ satisfies the Palais-

Smale (PS) condition if any sequence {um} ⊂ E for which ϕ(um) is bounded and ϕ′(um) → 
as m → ∞ has a convergent subsequence.

Lemma . (see []) Assume that E is a real Banach space and let ϕ ∈ C(E,R) satisfy
the PS condition. If ϕ is bounded from below, then c = infE ϕ is a critical value of ϕ.

Lemma . (see []) Assume that E is a real Banach space and ϕ ∈ C(E,R) with ϕ even,
bounded from below, and satisfying the PS condition. Suppose ϕ() = . Then there exists
a set K ⊂ E such that K is homeomorphic to Sj– (j –  dimension unit sphere) by an odd
map and supK ϕ < . Then ϕ has at least j distinct pairs of critical points.

3 Proofs
Proof of Theorem . By Lemma ., we have J ∈ C(E,R). It follows from (ρ), (A), and
(.) that

J (u) =
∑

n∈Z
ρ(n)�

(
�u(n)

)
+

∑

n∈Z
ρ(n)�

(
�u(n)

)

+
∑

n∈Z
ρ(n)�

(
u(n)

)
+

∑

n∈Z
ρ(n)�

(
u(n)

)

– λ
∑

n∈Z
F
(
n, u(n), u(n)

)
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+
∑

n∈Z

(
f(n), u(n)

)
+

∑

n∈Z

(
f(n), u(n)

)

≥ ρ
∑

n∈Z
b

∣
∣�u(n)

∣
∣p + ρ

∑

n∈Z
b

∣
∣�u(n)

∣
∣q

+ ρ
∑

n∈Z
b

∣
∣u(n)

∣
∣p + ρ

∑

n∈Z
b

∣
∣u(n)

∣
∣q

– λ
∑

n∈Z
F
(
n, u(n), u(n)

)

– ‖f‖
l

p
p–

(∑

n∈Z

∣
∣u(n)

∣
∣p

)/p

– ‖f‖
l

q
q–

(∑

n∈Z

∣
∣u(n)

∣
∣q

)/q

≥ min{ρb,ρb}‖u‖p
p + min{ρb,ρb}‖u‖q

q

–
λ

γ
‖a‖lp/(p–γ)‖u‖γ

p –
λ

γ
‖a‖lq/(q–γ)‖u‖γ

q

– λ‖b‖lp/(p–)‖u‖p – λ‖b‖lq/(q–)‖u‖q

– ‖f‖lp/(p–)‖u‖p – ‖f‖lq/(q–)‖u‖q. (.)

Note that  < γ < p,  < γ < q. Then (.) and (ρ) show that J (u) → +∞ as ‖u‖ → +∞,
which implies that J is bounded from below.

Next, we show that J satisfies the PS condition. Suppose that {uk = (uk
 , uk

)}k∈N ⊂ E is
a sequence such that {J (uk)}k∈N is bounded and J ′(uk) →  as k → +∞. Then, by (.),
there exists a constant M >  such that

‖uk‖ =
∥
∥uk


∥
∥

p +
∥
∥uk


∥
∥

q ≤ M, k ∈N.

By (.), we have

∥
∥uk


∥
∥∞ ≤ ∥

∥uk

∥
∥

p ≤ M,
∥
∥uk


∥
∥∞ ≤ ∥

∥uk

∥
∥

q ≤ M. (.)

Hence, there exists a subsequence, still denoted by {uk}, such that uk ⇀ u for some u =
(u

 , u
) in E. Like the argument of Proposition . in [], it is easy to verify that

lim
k→+∞

uk(n) = u(n), ∀n ∈ Z. (.)

Hence, by (.), (.), and the lower semi-continuity of norm, we have

∥
∥u


∥
∥∞ ≤ M,

∥
∥u


∥
∥∞ ≤ M. (.)

Note that a ∈ lp/(p–γ)(Z, [, +∞)) and b ∈ l
p

p– (Z, [, +∞)). Then, for any given ε > ,
there exists an integer M >  such that

( ∑

|n|>M

∣
∣a(n)

∣
∣

p
p–γ

) p–γ
p

< ε,
( ∑

|n|>M

∣
∣b(n)

∣
∣

p
p–

) p–
p

< ε. (.)
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It follows from (.)-(.) and (F) that

M∑

n=–M

∣
∣∇u F

(
n, uk

 (n), uk
(n)

)

– ∇u F
(
n, u

 (n), u
(n)

)∣
∣
∣
∣uk

 (n) – u
 (n)

∣
∣ → , as k → ∞. (.)

On the other hand, it follows from (.), (.), (.), (F), and Young’s inequality that

∑

|n|>M

∣
∣∇u F

(
n, uk

 (n), uk
(n)

)
– ∇u F

(
n, u

 (n), u
(n)

)∣
∣
∣
∣uk

 (n) – u
 (n)

∣
∣

≤
∑

|n|>M

[∣
∣a(n)

∣
∣
(∣
∣uk

 (n)
∣
∣γ– +

∣
∣u

 (n)
∣
∣γ–) + b(n)

](∣
∣uk

 (n)
∣
∣ +

∣
∣u

 (n)
∣
∣
)

≤ 
∑

|n|>M

∣
∣a(n)

∣
∣
(∣
∣uk

 (n)
∣
∣γ +

∣
∣u

 (n)
∣
∣γ)

+ 
∑

|n|>M

b(n)
(∣
∣uk

 (n)
∣
∣ +

∣
∣u

 (n)
∣
∣
)

≤ 
( ∑

|n|>M

∣
∣a(n)

∣
∣

p
p–γ

) p–γ
p (∥

∥uk

∥
∥γ

lp +
∥
∥u


∥
∥γ

lp
)

+ 
( ∑

|n|>M

∣
∣b(n)

∣
∣

p
p–

) p–
p (∥

∥uk

∥
∥

lp +
∥
∥u


∥
∥

lp
)

≤ 
( ∑

|n|>M

∣
∣a(n)

∣
∣

p
p–γ

) p–γ
p (∥

∥uk

∥
∥γ

p +
∥
∥u


∥
∥γ

p

)

+ 
( ∑

|n|>M

∣
∣b(n)

∣
∣

p
p–

) p–
p (∥

∥uk

∥
∥

p +
∥
∥u


∥
∥

p

)

≤ ε
(
Mγ

 +
∥
∥u


∥
∥γ

p

)
+ ε

(
M +

∥
∥u


∥
∥

p

)
, k ∈ N . (.)

Then the arbitrariness of ε, together with (.), implies that

∑

n∈Z

(∇u F
(
n, uk

 (n), uk
(n)

)

– ∇u F
(
n, u

 (n), u
(n)

)
, uk

 (n) – u
 (n)

) → , as k → +∞. (.)

Similarly, we have

∑

n∈Z

(∇u F
(
n, uk

 (n), uk
(n)

)

– ∇u F
(
n, u

 (n), u
(n)

)
, uk

(n) – u
(n)

) → , as k → +∞. (.)

By (A), we have

(
φi(x) – φi(y), x – y

) ≥ , ∀x, y ∈ RN , i = , , , .
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Then

〈
J ′(uk) – J ′(u), uk – u

〉

=
〈
J ′(uk

 , uk

)

– J ′(u
 , u


)
,
(
uk

 – u
 , uk

 – u

)〉

≥ ρ
∑

n∈Z

(
φ

(
�uk

 (n)
)

– φ
(
�u

 (n)
)
,�uk

 (n) – �u
 (n)

)

+ ρ
∑

n∈Z

(
φ

(
�uk

(n)
)

– φ
(
�u

(n)
)
,�uk

(n) – �u
(n)

)

+ ρ
∑

n∈Z

(
φ

(
uk

 (n)
)

– φ
(
u

 (n)
)
, uk

 (n) – u
 (n)

)

+ ρ
∑

n∈Z

(
φ

(
uk

(n)
)

– φ
(
u

(n)
)
, uk

(n) – u
(n)

)

– λ
∑

n∈Z

[(∇u F
(
n, uk

 (n), uk
(n)

)
– ∇u F

(
n, u

 (n), u
(n)

)
, uk

 (n) – u
 (n)

)

+
(∇u F

(
n, uk

 (n), uk
(n)

)
– ∇u F

(
n, u

 (n), u
(n)

)
, uk

(n) – u
(n)

)]
. (.)

Moreover, since J ′(uk) →  and uk ⇀ u as k → ∞, we have

〈
J ′(uk) – J ′(u), uk – u

〉 → , as k → ∞. (.)

Since (φi(x) – φi(y), x – y) ≥  for all x, y ∈ RN , λ > , (.) and (.), together with (.)
and (.), imply that

∑

n∈Z

(
φ

(
�uk

 (n)
)

– φ
(
�u

 (n)
)
,�uk

 (n) – �u
 (n)

) → , as k → +∞, (.)

∑

n∈Z

(
φ

(
�uk

(n)
)

– φ
(
�u

(n)
)
,�uk

(n) – �u
(n)

) → , as k → +∞, (.)

∑

n∈Z

(
φ

(
uk

 (n)
)

– φ
(
u

 (n)
)
, uk

 (n) – u
 (n)

) → , as k → +∞, (.)

∑

n∈Z

(
φ

(
uk

(n)
)

– φ
(
u

(n)
)
, uk

(n) – u
(n)

) → , as k → +∞. (.)

If  < p ≤ , then it follows from (A) and the Hölder inequality that

∑

n∈Z

∣
∣�uk

 (n) – �u
 (n)

∣
∣p

=
∑

n∈Z

∣
∣�uk

 (n) – �u
 (n)

∣
∣

p


≤ 

c
p



∑

n∈Z

(
φ

(
�uk

 (n)
)

– φ
(
�u

 (n)
)
,�uk

 (n) – �u
 (n)

) p


· (∣∣�uk
 (n)

∣
∣ +

∣
∣�u

 (n)
∣
∣
) p(–p)



≤ 

c
p



(∑

n∈Z

(
φ

(
�uk

 (n)
)

– φ
(
�u

 (n)
)
,�uk

 (n) – �u
 (n)

)
) p
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·
(∑

n∈Z

(∣
∣�uk

 (n)
∣
∣ +

∣
∣�u

 (n)
∣
∣
)p

) –p


≤ 
p(–p)



c
p



(∑

n∈Z

(
φ

(
�uk

 (n)
)

– φ
(
�u

 (n)
)
,�uk

 (n) – �u
 (n)

)
) p



·
(∑

n∈Z

(∣
∣�uk

 (n)
∣
∣p +

∣
∣�u

 (n)
∣
∣p)

) –p


≤ 
p(–p)



c
p



(∑

n∈Z

(
φ

(
�uk

 (n)
)

– φ
(
�u

 (n)
)
,�uk

 (n) – �u
 (n)

)
) p



· (∥∥uk

∥
∥p

p +
∥
∥u


∥
∥p

p

) –p
 . (.)

Similarly, we have

∑

n∈Z

∣
∣uk

 (n) – u
 (n)

∣
∣p

≤ 
p(–p)



c
p



(∑

n∈Z

(
φ

(
uk

 (n)
)

– φ
(
u

 (n)
)
, uk

 (n) – u
 (n)

)
) p



· (∥∥uk

∥
∥p

p +
∥
∥u


∥
∥p

p

) –p
 . (.)

If p > , then it follows from (A) and the Hölder inequality that

∑

n∈Z

∣
∣�uk

 (n) – �u
 (n)

∣
∣p

≤ 
c

∑

n∈Z

(
φ

(
�uk

 (n)
)

– φ
(
�u

 (n)
)
,�uk

 (n) – �u
 (n)

)
, (.)

∑

n∈Z

∣
∣uk

 (n) – u
 (n)

∣
∣p

≤ 
c

∑

n∈Z

(
φ

(
uk

 (n)
)

– φ
(
u

 (n)
)
, uk

 (n) – u
 (n)

)
. (.)

By (.)-(.), it is easy to see that uk
 → u

 in Ep for any p > . Similarly, we can obtain
uk

 → u
 in Eq for any q > . So, uk → u in E, that is, J satisfies the PS condition.

Let ϕ = J . By Lemma ., c = infE J (u) is a critical value of J , that is, there exists a
critical point u∗ ∈ E such that J (u∗) = c.

Finally, we show that u∗ 	= . Let u∗(n) = (u∗(n), u∗(n)) where u∗(n) = (, . . . , ,
. . . , )τ ∈ R

N with  is the ith component of the vector, u∗(n) = (, . . . , , . . . )τ ∈ R
N

with  is the jth component of the vector, and u∗(n) =  for n 	= n, where i, j are defined
in assumption (f ). Then, by (F) and (.), we have

J (su∗) =
∑

n∈Z

[
ρ(n)�

(
�su∗(n)

)
+ ρ(n)�

(
�su∗(n)

)

+ ρ(n)�
(
su∗(n)

)
+ ρ(n)�

(
su∗(n)

)]
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– λ
∑

n∈Z
F
(
n, su∗(n), su∗(n)

)
+

∑

n∈Z

(
f(n), u∗(n)

)
+

∑

n∈Z

(
f(n), u∗(n)

)

≤ ρspd
∑

n∈Z

∣
∣�u∗(n)

∣
∣p + ρsqd

∑

n∈Z

∣
∣�u∗(n)

∣
∣q + ρspd

∑

n∈Z

∣
∣u∗(n)

∣
∣p

+ ρsqd
∑

n∈Z

∣
∣u∗(n)

∣
∣q – λF

(
n, su∗(n), su∗(n)

)

+
(
f(n), su∗(n)

)
+

(
f(n), su∗(n)

)

≤ ρspd
(∣
∣�u∗(n)

∣
∣p +

∣
∣�u∗(n – )

∣
∣p)

+ ρsqd
(∣
∣�u∗(n)

∣
∣q +

∣
∣�u∗(n – )

∣
∣q)

+ ρspd
∣
∣u∗(n)

∣
∣p + ρsqd

∣
∣u∗(n)

∣
∣q

+ ληsγ
∣
∣u∗(n)

∣
∣γ + ληsγ

∣
∣u∗(n)

∣
∣γ + sfi (n) + sfj (n)

= (ρd + ρd)sp + (ρd + ρd)sq + ληsγ + ληsγ

+ s
(
fi (n) + fj (n)

)
, (.)

for all  < s < δ. Since p, q,γ,γ ∈ (, +∞), it follows from (f ) that J (su∗) <  for s > 
small enough. Hence, J (u∗) = c = infE J (u) < , which implies that u∗ ∈ E is a nontrivial
critical point of J and so u∗ = u∗(n) is a nontrivial homoclinic solution of system (.).
The proof is complete. �

Proof of Theorem . By the proof of Theorem ., we know that there exists a critical
point u∗ ∈ E such that J (u∗) = c. Next, we prove that u∗ 	=  when (F)′ and (f )′ hold. We
define the same u∗ as Theorem .. Then, by λ > , (F)′, and (f )′, we have

J (su∗) =
∑

n∈Z

[
ρ(n)�

(
�su∗(n)

)
+ ρ(n)�

(
�su∗(n)

)

+ ρ(n)�
(
su∗(n)

)
+ ρ(n)�

(
su∗(n)

)]

– λ
∑

n∈Z
F
(
n, su∗(n), su∗(n)

)
+

∑

n∈Z

(
f(n), u∗(n)

)
+

∑

n∈Z

(
f(n), u∗(n)

)

≤ ρspd
∑

n∈Z

∣
∣�u∗(n)

∣
∣p + ρsqd

∑

n∈Z

∣
∣�u∗(n)

∣
∣q + ρspd

∑

n∈Z

∣
∣u∗(n)

∣
∣p

+ ρsqd
∑

n∈Z

∣
∣u∗(n)

∣
∣q – λF

(
n, su∗(n), su∗(n)

)

+
(
f(n), su∗(n)

)
+

(
f(n), su∗(n)

)

≤ ρspd
(∣
∣�u∗(n)

∣
∣p +

∣
∣�u∗(n – )

∣
∣p)

+ ρsqd
(∣
∣�u∗(n)

∣
∣q +

∣
∣�u∗(n – )

∣
∣q) + ρspd

∣
∣u∗(n)

∣
∣p

+ ρsqd
∣
∣u∗(n)

∣
∣q – ληsγ

∣
∣u∗(n)

∣
∣γ

– ληsγ
∣
∣u∗(n)

∣
∣γ + sfi (n) + sfj (n)

= (ρd + ρd)sp + (ρd + ρd)sq – ληsγ – ληsγ , (.)

for all  < s < δ. Since  < γ < p and  < γ < q, J (su∗) <  for s >  small enough. Hence,
J (u∗) = c = infE J (u) < , which implies that u∗ ∈ E is a nontrivial critical point of J
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and so u∗ = u∗(n) is a nontrivial homoclinic solution of system (.). The proof is com-
plete. �

Proof of Theorem . By Lemma ., J ∈ C(E,R). Similar to (.), it follows from (ρ),
(A), (F)′, and (.), by replacing γ, γ, ‖a‖lp/(p–γ) , and ‖a‖lq/(q–γ) with p, q, ‖a‖l∞ ,
and ‖a‖l∞ , respectively, that

J (u) ≥ min{ρb,ρb}‖u‖p
p + min{ρb,ρb}‖u‖q

q

–
λ

p
‖a‖∞‖u‖p

p –
λ

q
‖a‖∞‖u‖q

q

– λ‖b‖lp/(p–)‖u‖p – λ‖b‖lq/(q–)‖u‖q

– ‖f‖
l

p
p–

‖u‖p – ‖f‖
l

q
q–

‖u‖q. (.)

Note that λ < min{ p min{ρb,ρb}
‖a‖∞ , q min{ρb,ρb}

‖a‖∞ }. Then (.) shows that J (u) → +∞ as
‖u‖ → +∞, which implies that J is bounded from below.

Next, we show that J satisfies the PS condition. Suppose that {uk = (uk
 , uk

)}k∈N ⊂ E is
a sequence such that {J (uk)}k∈N is bounded and J ′(uk) →  as k → +∞. Similar to the
proof of Theorem ., by (.), there exists a constant M >  such that (.)-(.) hold.
Note that a(n) →  as n → ∞ and b ∈ l

p
p– (Z, [, +∞)). Then, for any given ε > , there

exists an integer M >  such that

sup
|n|>M

∣
∣a(n)

∣
∣ < ε,

( ∑

|n|>M

∣
∣b(n)

∣
∣

p
p–

) p–
p

< ε. (.)

It follows from (.)-(.) and (F)′ that (.) holds. On the other hand, it follows from
(.), (.), (.), (F)′, and Young’s inequality that

∑

|n|>M

∣
∣∇u F

(
n, uk

 (n), uk
(n)

)
– ∇u F

(
n, u

 (n), u
(n)

)∣
∣
∣
∣uk

 (n) – u
 (n)

∣
∣

≤
∑

|n|>M

[∣
∣a(n)

∣
∣
(∣
∣uk

 (n)
∣
∣p– +

∣
∣u

 (n)
∣
∣p–) + b(n)

](∣
∣uk

 (n)
∣
∣ +

∣
∣u

 (n)
∣
∣
)

≤ 
∑

|n|>M

∣
∣a(n)

∣
∣
(∣
∣uk

 (n)
∣
∣p +

∣
∣u

 (n)
∣
∣p) + 

∑

|n|>M

b(n)
(∣
∣uk

 (n)
∣
∣ +

∣
∣u

 (n)
∣
∣
)

≤  sup
|n|>M

∣
∣a(n)

∣
∣
(∥
∥uk


∥
∥p

lp +
∥
∥u


∥
∥p

lp
)

+ 
( ∑

|n|>M

∣
∣b(n)

∣
∣

p
p–

) p–
p (∥

∥uk

∥
∥

lp +
∥
∥u


∥
∥

lp
)

≤  sup
|n|>M

∣
∣a(n)

∣
∣
(∥
∥uk


∥
∥p

p +
∥
∥u


∥
∥p

p

)

+ 
( ∑

|n|>M

∣
∣b(n)

∣
∣

p
p–

) p–
p (∥

∥uk

∥
∥

p +
∥
∥u


∥
∥

p

)

≤ ε
(
Mp

 +
∥
∥u


∥
∥p

p

)
+ ε

(
M +

∥
∥u


∥
∥

p

)
, ∀k ∈ N .
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Then arbitrariness of ε, together with (.), implies that

∑

n∈Z

(∇u F
(
n, uk

 (n), uk
(n)

)

– ∇u F
(
n, u

 (n), u
(n)

)
, uk

 (n) – u
 (n)

) → , as k → +∞.

Similarly, we have

∑

n∈Z

(∇u F
(
n, uk

 (n), uk
(n)

)

– ∇u F
(
n, u

 (n), u
(n)

)
, uk

(n) – u
(n)

) → , as k → +∞.

Following the argument of Theorem ., we can obtain uk → u in E, that is, J satisfies
the PS condition.

Let ϕ = J . By Lemma ., c = infE J (u) is a critical value of J , that is, there exists a
critical point u∗ ∈ E such that J (u∗) = c.

Finally, with the same argument as Theorem ., we know that u∗ 	= . The proof is com-
plete. �

Proof of Theorem . In view of Lemma . and the proof of Theorem ., J ∈ C(E,R) is
bounded from below and satisfies the PS condition. It follows from (A), (F), (F), and (f )′′

that J is even and J () = . In order to apply Lemma ., let ϕ = J . We prove now that
there is a set K ⊂ E such that K is homeomorphic to Sm– by an odd map and supK J < .
The proof is motivated by [] and []. Let

J = {n, n, . . . , nm},

where n < n < · · · < nm. Note that m ≤ N . Define

ui
j(n) =

⎧
⎪⎨

⎪⎩

(, . . . , , 
↓
i

, , . . . , )τ ∈R
N , n = ni,

, n 	= ni,
i = , , . . . , m, j = , ,

ui(n) =
(
ui

(n), ui
(n)

)τ , i = , , . . . , m,

and

Em = span
{

u, u, . . . , um}
, Km =

{
u ∈ Em : ‖u‖() = δ

}
, (.)

where ‖u‖() is defined by ‖u‖() = ‖u‖l + ‖u‖l . For any u ∈ Em, there exist λi ∈ R,
i = , , . . . , m, such that

u =
m∑

i=

λiui and
(
u(n), u(n)

)
=

m∑

i=

λi
(
ui

(n), ui
(n)

)
, for n ∈ Z. (.)
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Then

‖u‖lγ =
(∑

n∈Z

∣
∣u(n)

∣
∣γ

)/γ

=

( m∑

i=

|λi|γ
∣
∣ui

(ni)
∣
∣γ

)/γ

,

‖u‖lγ =
(∑

n∈Z

∣
∣u(n)

∣
∣γ

)/γ

=

( m∑

i=

|λi|γ
∣
∣ui

(ni)
∣
∣γ

)/γ

.

(.)

Note that |ui
(ni)| = |ui

(ni)| = , i = , , . . . , m. Hence

‖u‖
() =

(‖u‖l + ‖u‖l
)

= ‖u‖
l + ‖u‖l‖u‖l + ‖u‖

l

=
∑

n∈Z

∣
∣u(n)

∣
∣ + 

(∑

n∈Z

∣
∣u(n)

∣
∣

)/(∑

n∈Z

∣
∣u(n)

∣
∣

)/

+
∑

n∈Z

∣
∣u(n)

∣
∣

=
∑

n∈Z

( m∑

i=

λiui
(n),

m∑

i=

λiui
(n)

)

+
∑

n∈Z

( m∑

i=

λiui
(n),

m∑

i=

λiui
(n)

)

+ 

(
∑

n∈Z

( m∑

i=

λiui
(n),

m∑

i=

λiui
(n)

))/

·
(

∑

n∈Z

( m∑

i=

λiui
(n),

m∑

i=

λiui
(n)

))/

=
m∑

i=

λ
i
∣
∣ui

(ni)
∣
∣ +

m∑

i=

λ
i
∣
∣ui

(ni)
∣
∣

+ 

( m∑

i=

λ
i
∣
∣ui

(ni)
∣
∣

)/( m∑

i=

λ
i
∣
∣ui

(ni)
∣
∣

)/

= 
m∑

i=

λ
i . (.)

Since all the norms of a finite dimensional normed space are equivalent, there are con-
stants Ri > , i = , , , , such that

‖u‖p ≤ R‖u‖l , ‖u‖q ≤ R‖u‖l ,

R‖u‖l ≤ ‖u‖lγ , R‖u‖l ≤ ‖u‖lγ , for u, u ∈ Em.
(.)

Note that δ ∈ (, ). Then, for all u ∈ Km, we have

min
{
λη(sR)γ ,λη(sR)γ

}(‖u‖l + ‖u‖l
)max{γ,γ}

≤ max{γ,γ} min
{
λη(sR)γ ,λη(sR)γ

}(‖u‖γ
l + ‖u‖γ

l
)

≤ max{γ,γ}[λη(sR)γ‖u‖γ
l + λη(sR)γ‖u‖γ

l
]
. (.)
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Note that F(n, , ) =  for all n ∈ Z and λ > . Then, by (A), (F)′′′, (f )′′, (.), (.),
(.), (.), and (.), we have

J (su) =
∑

n∈Z
ρ(n)�

(
�su(n)

)
+

∑

n∈Z
ρ(n)�

(
�su(n)

)

+
∑

n∈Z
ρ(n)�

(
su(n)

)
+

∑

n∈Z
ρ(n)�

(
su(n)

)

– λ
∑

n∈Z
F
(
n, su(n), su(n)

)

≤ ρdsp
∑

n∈Z

∣
∣�u(n)

∣
∣p + ρdsq

∑

n∈Z

∣
∣�u(n)

∣
∣q

+ ρdsp
∑

n∈Z

∣
∣u(n)

∣
∣p

+ ρdsq
∑

n∈Z

∣
∣u(n)

∣
∣q – λ

m∑

i=

F
(
ni, sλiui

(ni), sλiui
(ni)

)

≤ max{ρd,ρd}sp‖u‖p
p + max{ρd,ρd}sq‖u‖q

q

– λ

m∑

i=

[
η

∣
∣λisui

(ni)
∣
∣γ + η

∣
∣λisui

(ni)
∣
∣γ]

= max{ρd,ρd}sp‖u‖p
p + max{ρd,ρd}sq‖u‖q

q

– ληsγ
m∑

i=

|λi|γ
∣
∣ui

(ni)
∣
∣γ – ληsγ

m∑

i=

|λi|γ
∣
∣ui

(ni)
∣
∣γ

= max{ρd,ρd}sp‖u‖p
p + max{ρd,ρd}sq‖u‖q

q

– ληsγ‖u‖γ
lγ – ληsγ‖u‖γ

lγ

≤ max{ρd,ρd}(sR)p‖u‖p
l + max{ρd,ρd}(sR)q‖u‖q

l

– λη(sR)γ‖u‖γ
l – λη(sR)γ‖u‖γ

l

≤ max{ρd,ρd}(sR)p‖u‖p
l + max{ρd,ρd}(sR)q‖u‖q

l

–


max{γ,γ} min
{
λη(sR)γ ,λη(sR)γ

}

· (‖u‖l + ‖u‖l
)max{γ,γ}

≤ max{ρd,ρd}(sR)pδ
p
 + max{ρd,ρd}(sR)qδ

q


–
λ

max{γ,γ} min
{
η(sR)γ ,η(sR)γ

}
δ

max{γ,γ}


≤ max
{
ρdRp

δ
p
,ρdRp

δ
p
,ρdRq

δ
q
,ρdRq

δ
q

}

smin{p,q}

–
λ

max{γ,γ} min
{
η(sR)γ ,η(sR)γ

}
δ

max{γ,γ}
 , (.)

for all u = (u, u)τ ∈ Km and  < s < min{, δ(
∑m

i= |λi|)–}. Note that γ,γ ∈ (, min{p, q}).
Then (.) implies that, for any given λ > , there exist sufficiently small sλ ∈ (, ) and
ε >  such that

J (sλu) < –ε, ∀u ∈ Km. (.)
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Let

Ksλ
m = {sλu : u ∈ Km}

and

Sm– =

{

(λ,λ, . . . ,λm)τ ∈ Rm :
m∑

i=

λ
i = 

}

. (.)

Then

Ksλ
m =

{ m∑

i=

λiui :
m∑

i=

λ
i =

s
λδ






}

. (.)

Define the map ψ : Ksλ
m → Sm– by

ψ(u) =


s
λδ




(λ,λ, . . . ,λm)τ , ∀u ∈ Ksλ
m . (.)

It is easy to verify that ψ : Ksλ
m → Sm– is an odd homeomorphic map. On the other hand,

by (.), we have

J (u) < –ε, for u ∈ Ksλ
m , (.)

and so supKsλ
m

J ≤ –ε < . Therefore, by Lemma ., J has at least m distinct pairs of
critical points, so system (.) possesses at least m distinct pairs of nontrivial homoclinic
solutions. The proof is complete. �
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