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Abstract
We investigate the collective dynamics of multi-quasi-synchronization of coupled
fractional-order neural networks with delays. Using the pinning impulsive strategy, we
design a novel controller to pin the coupled networks to realize the
multi-quasi-synchronization. Based on the comparison principle and mathematical
analysis, we derive some novel criteria of the multi-quasi-synchronization. Moreover,
we discuss the effects of coupling strength and pinning control matrix. Finally, some
simulation examples show the effectiveness of the presented results.
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1 Introduction
In the past decades, fractional-order derivatives have been drawn wide attention. Com-
pared with integer-order derivatives, it has a greater advantage in describing the memory
and hereditary properties of manifold materials and processes (see [–]). It is better to de-
scribe many practical problems by fractional-order dynamical systems instead of integer-
order ones. They are extensively applicable in many areas, such as physics, polymer rhe-
ology, electrical circuits, and engineering optimization [–]. In addition, the fractional
differentiation has been extended to the computational methods involved to traveling-
wave transformation [–]. Yang et al. [] investigated exact traveling-wave solutions of
nondifferentiable type with the generalized functions for the local fractional Korteweg-de
Vries equation. Exact traveling-wave solution for the local fractional Boussinesq equation
in fractal domain was studied in []. Yang et al. [] analyzed the exact travelling-wave
solutions for a family of the local fractional two-dimensional Burgers-type equation.

As one of the mostly important collective behaviors of complex dynamic networks, syn-
chronization has been extensively investigated [–]. The problem of synchronization
of coupled fractional-order neural networks has been well studied. For instance, Ma and
Zhang [] showed that two coupled networks can achieve a hybrid synchronization by
some proper conditions. Later, Ma and Zhang [] studied a new hybrid projective syn-
chronization of two different-size coupled fractional-order complex networks. A general-
ized chaos synchronization of coupled Mathieu-Van der Pol and coupled Duffing-Van der
Pol systems using fractional-order derivatives was shown in []. In addition, a general
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chaotic synchronization of fractional chaotic maps based on the stability condition was
investigated in [].

Various control techniques have been adopted to realize synchronization, such as pin-
ning control [], feedback control [], impulsive control [, ], adaptive control [],
intermittent control [], and so on. Jajarmi et al. [] analyzed a hyperchaotic financial
system and its adaptive control and synchronization. However, in real world, it is too costly
and impractical if all the nodes are controlled []. To reduce the control cost, it is ex-
tremely effective to control a complex network by controlling a certain time and pinning
part of nodes [, ]. Recently, some researchers have combined the advantages of pin-
ning control and impulsive control to investigate the synchronization problem. He et al.
[] studied the synchronization of coupled delayed dynamical networks via pinning im-
pulsive control. However, the above results are only concerned with complete synchro-
nization. Due to the external disturbances and internal uncertainty in networks, it is more
realistic that for nodes in each subgroup, only a quasi-synchronization can be achieved.
Just a few papers investigated multi-quasi-synchronization of coupled networks [, ].
To the best of our knowledge, there are no results on the multi-quasi-synchronization of
coupled fractional-order networks with delays via pinning impulsive control. Motivated
by the above discussion, in this paper, we investigate the multi-quasi-synchronization of
coupled fractional-order neural networks with delays via pinning impulsive control.

The main contributions of this paper can be summarized as follows:
• Developing the multisynchronization concept. Multi-quasi-synchronization

generalizes quasi-synchronization, cluster synchronization, etc.
• A new pinning impulsive control method is proposed to deal with the

multi-quasi-synchronization problem.
• By using the comparison principle and inequality techniques some weaker

conservative conditions are derived.
This paper is composed as follows. Section  describes some preliminaries. The main

results are presented in Section . Some examples are given in Section . Finally, some
conclusions are drawn in Section .

2 Preliminaries and model description
2.1 Preliminaries about fractional-order calculus
In the following, we introduce some notation, definitions, and lemmas.

The superscript T represents the transpose. Rn denotes the n-dimensional Euclidean
space, Rn×n is the set of n × n real matrices, R+ and Z

+ denote the sets of nonnegative
real numbers and positive integers, respectively, and �D indicates the number of elements
of a finite set D. For any vector d ∈ R

n and constant σ > , M(d,σ) = {x | ‖x – d‖ <
σ} denotes the set of vectors whose distance to d is less than σ. A ⊗ B represents the
Kronecker product of matrices A and B. We write that a real symmetric matrix Y >  (Y <
, Y ≥ , Y ≤ ) if Y is positive definite (negative definite, positive semidefinite, negative
semidefinite). For any matrix A, λmax(A) denotes its maximum eigenvalue, and its spectral
norm is defined as ‖A‖ = (λmax(AT A)) 

 .
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Definition . ([]) �(·) denotes the gamma function. The Caputo fractional derivative
of order α >  for a function f (t) is defined as

cDα
t,t f (t) =


�(n – α)

∫ t

t

(t – s)(n–α–)f (n)(s) ds, t ≥ t,

where n –  < α < n, n ∈ Z
+.

Definition . ([]) The fractional integral of order α >  for a function f (t) is defined as

Iα
t,t f (t) =


�(α)

∫ t

t

(t – s)α–f (s) ds, t ≥ t.

Definition . ([]) The one-parameter Mittag-Leffler function is defined as

Eα(z) =
+∞∑
k=

zk

�(kα + )
,

where α > , z ∈C.

The two-parameter Mittag-Leffler function is defined as

Eα,β (z) =
+∞∑
k=

zk

�(kα + β)
,

where α > , β > , and z ∈C.

2.2 Model
In this paper, we consider a delayed fractional-order neural network consisting of N iden-
tical nodes, which is described by

cDα
t,txi(t) = –Axi(t) + Bfi

(
xi(t)

)
+ Cfi

(
xi(t – τ )

)
+

N∑
j=

Gij�xj(t) + J , ()

where i = , , . . . , N , N ≥  is the number of subnetworks; xi(t) = (xi(t), xi(t), . . . , xin(t))T

denotes the state vector of the ith neural network; A = diag{a, a, . . . , an} >  represents
the self-feedback term of the jth neuron; B = (bpq)n×n and C = (cpq)n×n (p, q = , , . . . , n) are
the connection weight matrix and the delayed connection matrix, respectively; fi(xi(t)) =
(fi(xi(t)), fi(xi(t)), . . . , fin(xin(t)))T where fij(·), j = , , . . . , n, is the activation function; τ

represents the transmission delay; G = (Gij)N×N is the coupling matrix defined as follows:
if there is a link from node j to node i, then Gij >  and otherwise Gij = , the diagonal
elements are defined as Gii =

∑N
j=,j �=i –Gij; � = diag{γ,γ, . . . ,γn}, which represents the

inner coupling matrix; and J = (J, . . . , JN ) is a constant external input vector.

Assumption . The activation functions fi(·) are continuous, and there exist 
i >  such
that, for any vectors x, y, we have

∣∣fi(x) – fi(y)
∣∣ ≤ 
i|x – y|. ()
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Suppose that if for any initial state x(s) = (xT
 (s), xT

 (s), . . . , xT
N (s))T with xi(s) ∈

C([–τ , ],R), i = , , . . . , N , there exists a solution s(t) for any initial condition, then all
trajectories of network nodes fulfill limt→∞ ‖xi(t) – s(t)‖ = , i = , , . . . , N . Then the net-
work is said to be completely synchronized []. Moreover, if for error bound σ > , there
exists T >  such that, for any initial state and all t > T , ‖xi(t) – s(t)‖ < σ , i = , , . . . , N ,
then the network is said to be uniformly quasi-synchronized [].

Next, we give the definition of the multi-quasi-synchronization.

Definition . ([]) For any complex network with N nodes, let {C,C, . . . ,Cm} be
a disjoint division of the node set, that is,

∑m
k= Ck = {, , . . . , N}, Ck = {lk, lk, . . .},

and Ck ∩ Cu = ∅ for k �= u. Suppose that there exists a series of reference solution
{s(t), s(t), . . . , sm(t)}. The network is said to be multi-quasi-synchronized with an error
vector δ = {δ, δ, . . . , δm}T >  under any initial condition if for any small enough constant
ε > , there exists T such that, for all t > T , the nodes satisfy xi(t) ∈M(sk(t),σk) for i ∈ Ck ,
and M(sk(t),σk) �= M(su(t), σ̄u) for u �= k.

Remark . �Ck = ζk means that the group Ck has ζk nodes and ζk �= .

Remark . From Definition . we know that, for all of the nodes in group Ck , sk(t) is
the shared reference trajectory.

The desired trajectory of sĩ(t) satisfies

cDα
t,tsĩ(t) = –Asĩ(t) + Bfĩ

(
sĩ(t)

)
+ Cfĩ(sĩ(t – τ ) + J , ()

where sĩ(t) = sk(t) if xi(t) ∈M(sk(t),σk), i = , , . . . , N , k = , , . . . , m. Define the error signal
ei(t) = xi(t) – sĩ(t), i = , , . . . , N . The pinning impulsive controller is designed as

ui(t) =

⎧⎨
⎩

∑+∞
h= θkei(t)δ(t – th), i ∈Dk(th), �Dk(th) = ωk ,

, i /∈Dk(th),
()

where th (h = , , , . . .) are the impulsive instants satisfying  = t < t < · · · < th < · · · , and
limth→+∞ th = +∞, δ(·) is the Dirac impulsive function, and θk is the impulsive gain. Let∑m

k= Dk(th) = {D(th),D(th), . . . ,Dm(th)} ⊂ {C,C, . . . ,Cm} ⊂ {, , . . . , N} denote the set
of pinned nodes at t = th, and let  < ωk ≤ ζk , k = , , . . . , m, that is, Dk(th) is the subset of
Ck indicating the set of pinned nodes at t = th. We also assume that the error vector ei ≥
ei ≥ · · · ≥ ein. Under the proposed impulsive control (), the error system is formulated
as

⎧⎪⎪⎨
⎪⎪⎩

cDα
t,tei(t) = –Aei(t) + Bf̄i(ei(t)) + Cf̄i(ei(t – τ )) +

∑N
j= Gij�ej(t), t �= th,

ei(t+
h ) = ei(t–

h ) + θkei(t–
h ), i ∈ ∑m

k= Dk(th),

ei(t+
h ) = ei(t–

h ), i /∈ ∑m
k= Dk(th),

()

where h = , , , . . . , f̄i(ei(t)) = fi(xi(t)) – fĩ(sĩ(t)), f̄i(ei(t – τ )) = fi(xi(t – τ )) – fĩ(sĩ(t – τ )),
ei(t+

h ) = limt→t+
h

ei(t), and xi(t–
h ) = xi(th).
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The initial condition of () is defined as

ei(s) = φi(s), τ ≤ s ≤ , ()

where φi(s) ∈ C([–τ , ],Rn), i = , , . . . , N .

Definition . The pinning ratio at t = th is defined as

∑
i∈Dk (th) eT

i (t–
h )ei(t–

h )∑
i∈Ck

eT
i (t–

h )ei(t–
h )

= ηk .

The pinning ratio is time-varying and related to impulsive instants. We will determine
a lower bound of ηk .

Lemma . ([]) Let x(t) ∈ R
n be a continuous and differentiable vector function. Then,

for any time instant t ≥ t, we have the relationship




cDα
t,t

(
xT (t)Px(t)

) ≤ xT (t)PcDα
t,tx(t)

for all α ∈ (, ), where P ∈ R
n×n is a constant symmetric positive definite matrix.

Lemma . ([]) For any vector x, y ∈ R
n, scalar ε > , and positive definite matrix Q ∈

R
n×n, we have the inequality

xT y ≤ εxT Qx + ε–yT Q–y.

Lemma . ([]) Consider the system with time delay

⎧⎨
⎩

cDα
t,tV (t) ≤ –aV (t) + bV (t – τ ), t > ,

V (s) = �(s), s ∈ [–τ , ],

and the linear fractional-order differential system with time delay

⎧⎨
⎩

cDα
t,tW (t) = –aW (t) + bW (t – τ ), t > ,

W (s) = �(s), s ∈ [–τ , ],

where V (t), W (t) ∈ R are continuous everywhere except at some points tk , k = , , . . . , and
�(s) ≥  is continuous in [–τ , ]. If a >  and b > , then V (t) ≤ W (t), t ∈ [, +∞).

Inspired by Lemma ., we can get the following lemma.

Lemma . Consider the system with time delay

⎧⎨
⎩

cDα
t,tVk(t) ≤ –KVk(t) + KVk(t – τ ), t > , i ∈ Ck ,

Vk(s) = �k(s), s ∈ [–τ , ],
()
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and the linear fractional-order differential system with time delay
⎧⎨
⎩

cDα
t,tWk(t) = –KWk(t) + KWk(t – τ ), t > , i ∈ Ck ,

Wk(s) = �k(s), s ∈ [–τ , ],
()

where Vk(t), Wk(t) ∈ R
n are continuous everywhere except at some point th, h = , , . . . , and

�k(s) ≥  is continuous in [–τ , ]. If K >  and K > , then Vk(t) ≤ Wk(t), t ∈ [, +∞).

Proof For system () and for any i ∈ Ck , there exists a nonnegative function mk(t) such
that

⎧⎨
⎩

cDα
t,tVk(t) = –KVk(t) + KVk(t – τ ) – mk(t), t > ,

Vk(s) = �k(s), s ∈ [–τ , ].
()

Let l = [ t
τ

] + , where [ t
τ

] stands for the greatest integer smaller than t
τ

. Obviously,
[, t) ⊆ [, lτ ), and from [], we know that () has a unique solution expressed by Vk(t) =
Vjk(t),

Vjk(t) = λjkEα,
(
–Ktα

)
+

∫ t


(t – s)α–Eα,α

(
–K(t – s)α

)
�jk ds, t ∈ [

(j – )τ , jτ
]
, ()

where λjk is s constants, j = , , . . . , l. When j = , Vk(t) = �k(t), and �jk is represented as

�jk(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

KVk(t – τ ) – mk(t),  < t ≤ τ ,

KVk(t – τ ) – mk(t), τ < t ≤ τ ,
...

KV(l–)k(t – τ ) – mk(t), (l – )τ < t ≤ lτ .

()

From [] we know that both tα– and Eα,α(–atα) are nonnegative functions. Due to
Vk(t) = Vjk(t) and mk(t) > , from () and () we have

Vjk(t) ≤ λjkEα,
(
–Ktα

)

+
∫ t


(t – s)α–Eα,α

(
–K(t – s)α

)
KVjk(s – τ ) ds, t ∈ [

(j – )τ , jτ
]
. ()

At the same time,

Wjk(t) = λjkEα,
(
–Ktα

)

+
∫ t


(t – s)α–Eα,α

(
–K(t – s)α

)
KWjk(s – τ ) ds, t ∈ [

(j – )τ , jτ
]
. ()

When l =  and t ∈ [, τ ], we have t – τ ∈ [–τ , ] and Vk(t – τ ) = Wk(t – τ ) = �k(t – τ ).
From () and () we have

Vk(t) ≤ λkEα,
(
–Ktα

)
+

∫ t


(t – s)α–Eα,α

(
–K(t – s)α

)
K�k(s – τ ) ds = Wk(t),

and so Vk(t) ≤ Wk(t) for l = .
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Next, suppose that Vk(t) ≤ Wk(t), k = , , . . . , m, for t ∈ [(l – )τ , lτ ]. Then we have
Vjk(t) ≤ Wjk(t), j = , , . . . , l.

Now, we will prove that this also holds for l + . If t ∈ [lτ , (l + )τ ], then () can be
represented as

Vk(t) =
∫ t


(t – s)α–Eα,α

(
–K(t – s)α

)
KVk(s – τ ) ds

+ λ(l+)kEα,
(
–Ktα

)

=
∫ τ


(t – s)α–Eα,α

(
–K(t – s)α

)
KVk(s – τ ) ds

+
l∑

j=

∫ jτ

(j–)τ
(t – s)α–Eα,α

(
–K(t – s)α

)
KVjk(s – τ ) ds

+
∫ t

lτ
(t – s)α–Eα,α

(
–K(t – s)α

)
KV(l+)k(s – τ ) ds

+ λ(l+)kEα,
(
–Ktα

)
. ()

System () can be represented as

Wk(t) =
∫ t


(t – s)α–Eα,α

(
–K(t – s)α

)
KWk(s – τ ) ds

+ λ(l+)kEα,
(
–Ktα

)

=
∫ τ


(t – s)α–Eα,α

(
–K(t – s)α

)
KWk(s – τ ) ds

+
l∑

j=

∫ jτ

(j–)τ
(t – s)α–Eα,α

(
–K(t – s)α

)
KWjk(s – τ ) ds

+
∫ t

lτ
(t – s)α–Eα,α

(
–K(t – s)α

)
KW(l+)k(s – τ ) ds

+ λ(l+)kEα,
(
–Ktα

)
()

for s ∈ [lτ , t], s – τ ∈ [(l – )τ , t – τ ] ⊆ [(l – )τ , lτ ]. According to the assumption Vk(t) ≤
Wk(t), we have Vk(s – τ ) ≤ Wk(s – τ ), and from () and () we get that Vk(t) ≤ Wk(t),
t ∈ [lτ , (l + )τ ].

Denote l = [ t
τ

] + . Then, obviously, [t, t) ⊆ [t, lτ ). The initial conditions of () and
() can be represented as follows:

Vk(s) = �k(s), s ∈ [t – τ , t),

Wk(s) = �k(s), s ∈ [t – τ , t).

Similarly to the proof for t ∈ [, t), we get that Vk(t) ≤ Wk(t) for t ∈ [t, t).
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So, dividing the [, +∞) into a union of all subsets [, t) ∪ [t, t) ∪ · · · ∪ [tk–, tk) ∪ · · · ,
we prove that Vk(t) ≤ Wk(t) for t ∈ [, +∞). �

3 Main results
In this section, we derive several synchronization criteria. Under the impulsive control,
in any group Ck ∈ {C,C, . . . ,Cm}, for i ∈ Ck , the network () is able to synchronize with
sk(t) ∈ {s(t), . . . , sm(t)} and realize multi-quasi-synchronization.

Theorem . For any i ∈ Ck , k = , , . . . , m, system () can realize multi-quasi-
synchronization by pinning impulsive control () if Assumption . holds and there ex-
ist positive definite matrix P ∈ Rn×n >  and diagonal matrices � ∈ R

n×n >  and
� ∈ R

n×n >  such that

(
G 
 P�

)
< , ()

� = PA + AT P – PB�–
 BT P – 
T

i �
i – PB�–
 CT P ≥ KP > , ()


T
i �
i ≤ KP, ()

( + θk)ηk
λmax(P)
λmin(P)

+ ( – ηk)
λmax(P)
λmin(P)

≤ ρk ∈ (, ), ()

where K > , K > , K >
√

K, and
√

λmax(P)ε
λmin(P) < σk .

Proof Let us consider the Lyapunov function Vk(t) =
∑

i∈Ck
eT

i (t)Pei(t).
For t ∈ [th–, th), h = , , , . . . , from Lemma . we have

cDα
t,tVk(t) ≤ 

∑
i∈Ck

eT
i (t)PcDα

t,tei(t)

= 
∑
i∈Ck

eT
i (t)P

(
–Aei(t) + Bf̄i

(
ei(t)

)
+ Cf̄i

(
ei(t – τ )

)

+
∑
j∈Ck

Gij�ej(t)
)

= 
∑
i∈Ck

eT
i (t)(–PA)ei(t) + 

∑
i∈Ck

eT
i (t)PBf̄i

(
ei(t)

)

+ 
∑
i∈Ck

eT
i (t)PCf̄i

(
ei(t – τ )

)

+ 
∑
i∈Ck

eT
i (t)P

∑
j∈Ck

Gij�ej(t). ()

Clearly,


∑
i∈Ck

eT
i (t)PAei(t) ≤

∑
i∈Ck

eT
i (t)

(
–PA – AT P

)
ei(t). ()
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By Assumption . and Lemma ., for positive definite diagonal matrices � and �,
we obtain

∑
i∈Ck

eT
i (t)PBf̄i

(
ei(t)

) ≤
∑
i∈Ck

eT
i (t)PBf̄i(ei(t) +

∑
i∈Ck

f̄ T
i

(
ei(t)

)
BT Pei(t)

≤
∑
i∈Ck

eT
i (t)PB�–

 BT Pei(t)

+
∑
i∈Ck

f̄ T
i

(
ei(t)

)
� f̄i

(
ei(t)

)

≤
∑
i∈Ck

eT
i (t)PB�–

 BT Pei(t)

+
∑
i∈Ck

eT
i (t)
T

i �
iei(t)

=
∑
i∈Ck

eT
i (t)

(
PB�–

 BT P + 
T
i �
i

)
ei(t), ()

∑
i∈Ck

eT
i (t)PCf̄i

(
ei(t – τ )

) ≤
∑
i∈Ck

eT
i (t)PCf̄i

(
ei(t – τ )

)

+
∑
i∈Ck

f̄ T
i

(
ei(t – τ )

)
CT Pei(t)

≤
∑
i∈Ck

eT
i (t)PC�–

 CT Pei(t)

+
∑
i∈Ck

f̄ T
i

(
ei(t – τ )

)
� f̄i

(
ei(t – τ )

)

≤
∑
i∈Ck

eT
i (t)PC�–

 CT Pei(t)

+
∑
i∈Ck

eT
i (t – τ )
T

i �
iei(t – τ ). ()

From () it follows that

∑
i∈Ck

eT
i (t)

∑
j∈Ck

Gij�ej(t) = eT (t)(G ⊗ P�)e(t) ≤ . ()

Substituting ()-() into () yields

Dα
t,tVk(t) ≤

∑
i∈Ck

eT
i (t)

(
–PA – AT P

)
ei(t)

+
∑
i∈Ck

eT
i (t)

(
PB�–

 BT P + 
T
i �
i

)
ei(t)

+
∑
i∈Ck

eT
i (t – τ )
T

i �
iei(t – τ ) + eT (t)(G ⊗ P�)e(t).
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From ()-() we have

Dα
t,tVk(t) ≤

∑
i∈Ck

–eT
i (t)KPei(t) + eT

i (t – τ )KPei(t – τ )

≤ –KVk(t) + KVk(t – τ ). ()

When t = th, from Definition . and () it follows that

Vk
(
t+
h
)

=
∑
i∈Ck

eT
i
(
t+
h
)
Pei

(
t+
h
)

=
∑

i∈Dk (th)

eT
i
(
t+
h
)
Pei

(
t+
h
)

+
∑

i /∈Dk (th)

eT
i
(
t+
h
)
Pei

(
t+
h
)

= ( + θk)
∑

i∈Dk (th)

eT
i
(
t–
h
)
Pei

(
t–
h
)

+
∑

i /∈Dk (th)

eT
i
(
t–
h
)
Pei

(
t–
h
)

≤ ( + θk)λmax(P)
∑

i∈Dk (th)

eT
i
(
t–
h
)
ei

(
t–
h
)

+ λmax(P)
∑

i /∈Dk (th)

eT
i
(
t–
h
)
ei

(
t–
h
)

≤ ( + θk)λmax(P)
∑
i∈Ck

eT
i (th)ei(th)

+ ( – ηk)λmax(P)
∑
i∈Ck

eT
i (th)ei(th)

≤
(

( + θk)ηk
λmax(P)
λmin(P)

+ ( – ηk)
λmax(P)
λmin(P)

)
Vk(th)

≤ ρkVk(th). ()

Now, consider the system

⎧⎨
⎩

Dα
t,tWk(t) = –KWk(t) + KWk(t – τ ), t > ,

Wk(s) = �k(s), s ∈ [–τ , ].
()

If limt→∞ Wk(t) =  with �k(s) ≥ , then from Lemma . we have limt→∞ Vk(t) =  with
�k(s) ≥ .

Next, we will show that when K >
√

K (K > , K > ), limt→+∞ Wk(t) =  with
�k(s) ≥ .

To distinguish the imaginary unit i from the subnetwork subscript i, we denote the imag-
inary unit i by î.

By Corollary  in [] the characteristic equation of () can be written as

ϑα
k + K – Ke–ϑkτ = . ()
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If () has no purely imaginary roots and K >
√

K, then the zero solution of equation
() is Lyapunov globally asymptotically stable, that is, limt→+∞ Wk(t) =  with �k(s) > .

Suppose that equation () has a purely imaginary root ϑk = wkî = |wk|(cos π
 + î sin π

 ),
where wk is a real number; if wk > , then ϑk = wkî = |wk|(cos π

 + î sin π
 ), and if wk ≤ ,

then ϑk = wkî = |wk|(cos π
 – î sin π

 ).
Submitting ϑk = wkî into equation (), we obtain

(wkî)α + K – Ke–τwk î = ,

that is,

∣∣(wkî)α + K
∣∣ =

∣∣Ke–τwk î∣∣,

|wk|α + K cos

(
απ



)
|wk|α + K

 = |K cos wkτ
∣∣+

∣∣K sin wkτ |

≤ (K).

()

Let

gk(xk) = x
k + Kk cos

(
απ



)
xk + (K) – (K cos wkτ ) – (K sin wkτ ).

Then

gk() ≥ K
 – (K).

Since K >
√

K, K > , and K > , we have K –(K) >  and gk() > . We know that gk

is a polynomial of order , so that g(|wk|α) > , a contradiction with (). This means that
equation () has no solution, which implies that equation () has no purely imaginary
roots, that is, limt→+∞ Vk(t) = .

So for any ε > , there exists Tk such that, for all t > Tk ,

Vk(t) < λmax(P)ε, t > Tk , ()

that is,

λmin(P)
∥∥ei(t)

∥∥ < λmax(P)ε, ()

and thus

∥∥ei(t)
∥∥ ≤

√
λmax(P)ε
λmin(P)

< σk , ()

where i ∈ Ck and
∑m

k= Tk = {T, T, . . . , TN }. Therefore, for any arbitrary small positive
value σk > , there exits T = max{T, T, . . . , TN } such that, for all t > T ,  < ‖xi(t) – sk(t)‖ ≤
σk , k = , , . . . , m. The proof is completed. �
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Remark . Theorem . presents a general result on multi-quasi-synchronization of
fractional-order neural networks, and meanwhile the error level is clearly expressed. In the
existing literature, very few results have been reported about multi-quasi-synchronization
of coupled fractional-order neural networks. Unlike analytical methods in [–], model
() is a fractional-order system rather than the integer-order model in [–]. Obviously,
the method of analysis and design for integral-order systems cannot be referred to deal
with fractional-order systems.

Remark . Multi-quasi-synchronization contains quasi-synchronization. When m = ,
there is just one shared reference trajectory, and then the multi-quasi-synchronization
degenerates to the quasi-synchronization.

Remark . Jajarmi et al. [] solved synchronization problems via adaptive control
scheme. In this paper, to achieve pinning impulsive control, we just need to control par-
tial nodes into a bounded neighborhood of its shared reference trajectory. It is possible to
pin nodes with low-norm value if the control cost is reachable. In real world, nodes with
smaller error norm are preferred for a fast convergence. Then it is better to choose nodes
with smaller error norm.

4 Illustrative examples
In this section, we provide three numerical examples to substantiate the theoretical re-
sults.

Example . Consider the delayed fractional-order neural network

cDα
t,txi(t) = –Axi(t) + Bfi

(
xi(t)

)
+ Cfi

(
xi(t – τ )

)
+

N∑
j=

Gij�xj(t) + J , ()

where i = , , τ = , α = ., fi(xi(t)) = tanh(xi(t)), taking the networks with two nodes
and two neurons in every subnetwork. In more detail, the parameters of the subnetwork
are given as

A =

(
 
 

)
, B =

(
 –

–. 

)
, C =

(
. 
 

)
, G =

(
– .
. –

)
,

J =

(



)
.

Let m =  and τ = . Two shared reference trajectories can be expressed as

cDα
t,tsk(t) = –Ask(t) + Bfk

(
sk(t)

)
+ Cfk

(
sk(t – )

)
+ J , k = , ,

where fk(sk(t)) = tanh(sk(t)), k = , , α = ..
We choose � = diag(, ), impulsive gain θ = –., θ = –., ρ = ., ρ = ., η =

., η = .. We can verify that conditions ()-() in Theorem . hold. By exploiting
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Figure 1 The trajectories of error signals e11, e12,
e21, e22 for system in Example 4.1 without
control.

the MATLAB LMI Toolbox we get the matrices

P =

(
. .
. .

)
, � =

(
. .
. .

)
,

� =

(
. .
. .

)
,

and λmin(P)
λmax(P) = ., σ = ., σ = .. Set the pinning ratio ηk = .. Then system () can

achieve multi-quasi-synchronization. Figure  shows the disorganized behavior of error
signals ei(t) and ei(t) (i = , ) without controller. From Figure  we can obtain that the
whole network exhibits irregular behavior without controller. Based on Figure , it shows
that the error signals ei(t) and ei(t) (i = , ) always converge to different shared reference
trajectories with the proposed pinning impulsive control.

Example . Consider the delayed fractional-order neural network

cDα
t,txi(t) = –Axi(t) + Bfi

(
xi(t)

)
+ Cfi

(
xi(t – τ )

)
+

N∑
j=

Gij�xj(t) + J , ()

where i = , , , , τ = , α = ., fi(xi(t)) = tanh(xi(t)), taking the networks with four
nodes and two neurons in every subnetwork. In more detail, the parameters of subnet-
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Figure 2 The trajectories of error signals e11, e12,
e21, e22 for system in Example 4.1 with pinning
impulsive control.

work are given as

A =

(
 
 

)
, B =

(
 –

–. 

)
, C =

(
. 
 

)
, J =

(



)
,

G =

⎛
⎜⎜⎜⎝

   –.
–. .  

  . 
  – –

⎞
⎟⎟⎟⎠ .

Let m =  and τ = . Four shared reference trajectories can be expressed as

cDα
t,tsk(t) = –Ask(t) + Bfk

(
sk(t)

)
+ Cfk

(
sk(t – )

)
+ J , k = , , , ,

where fk(sk(t)) = tanh(sk(t)), k = , , , , α = .,

A =

(
 
 

)
, B =

(
 –

–. 

)
, C =

(
. 
 

)
, J =

(



)
.

We choose � = diag(, ), impulsive gain θ = –., θ = –., ρ = ., ρ = ., η = .,
η = .. We can verify that conditions ()-() in Theorem . hold. By exploiting the
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Figure 3 The trajectories of error signals ei1, ei2
(i = 1, 2, 3, 4) for system in Example 4.2 with
pinning impulsive control.

MATLAB LMI Toolbox we get the matrices

P =

(
. .
. .

)
, � =

(
. .
. .

)
,

� =

(
. .
. .

)
,

and λmin(P)
λmax(P) = ., σ = ., σ = .. Set the pinning ratio ηk = .. Then system () can

achieve multi-quasi-synchronization, and Figure  depicts the simulation results with 
random initial values.

Example . Consider Chua’s circuit system as an isolated node of the dynamical net-
work, which is described as follows:

Dα
t,tx(t) = ς

(
x(t) – �x(t) – g

(
x(t)

))
,

Dα
t,tx(t) = x(t) – x(t) + x(t),

Dα
t,tx(t) = –ςx(t),

()

with α = ., t ≥ t, the nonlinear function

g
(
x(t)

)
=




(� – �)
(∣∣x(t) + 

∣∣ –
∣∣x(t) – 

∣∣),

and the parameters � = – 
 , � = 

 , ς = . This system exhibits chaotic behavior, as
given in Figure . System () can be represented as the error system () consisting of four
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Figure 4 Chaotic behaviors of Chua’s system.

nodes (N = ) with parameters

A =

⎛
⎜⎝

–�ς ς 
 – 
 –ς 

⎞
⎟⎠ , B =

⎛
⎜⎝

  
–  
  –

⎞
⎟⎠ , C =

⎛
⎜⎝

� – �  
–  
�  

⎞
⎟⎠ ,

G =

⎛
⎜⎜⎜⎝

– . . –.
 –.  
  . 

–  – –.

⎞
⎟⎟⎟⎠ , J =

⎛
⎜⎝





⎞
⎟⎠ ,

fi(xi(t)) = 
 (|xi(t) + | – |xi(t) – |), � = diag{, , }, impulsive gain θ = θ = θ = ., ρ =

ρ = ρ = ., η = η = η = .. Let nodes , , and  be pinning controlled nodes. By
Theorem . we get the matrices

P =

⎛
⎜⎝

. . .
. . .
. . .

⎞
⎟⎠ ,

� =

⎛
⎜⎝

. . .
. . .
. . .

⎞
⎟⎠ ,

� =

⎛
⎜⎝

. . .
. . .
. . .

⎞
⎟⎠ .

The state trajectories of multi-quasi-synchronization errors ei(t), ei(t), and ei(t) (i =
, , , ) with  random initial values are depicted in Figure . Based on our analysis, the
effectiveness of the designed pinning impulsive control is verified.

5 Concluding remarks
In this paper, multi-quasi-synchronization of coupled fractional-order neural networks
with delays has been studied by applying pinning impulsive control. For this control
strategy, we divide the node set into several disjoint subsets. By using comparison prin-
ciple and Lyapunov method, several sufficient conditions have been derived to realize
multi-quasi-synchronization. In the future, it is very interesting to study the multi-quasi-
synchronization of coupled complex control systems [, ].
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Figure 5 The trajectories of error signals ei1, ei2,
ei3 (i = 1, 2, 3, 4) for system in Example 4.3 with
pinning impulsive control.
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