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1 Introduction

The quantum calculus, known as calculus without the consideration of limits, involves
sets of non-differentiable functions. There are many types of quantum difference opera-
tors such as the Jackson g-difference operator, the forward (delta) difference operator, the
backward (nabla) difference operator, and so on. These operators are employed in many
applications, for example, combinatorics, orthogonal polynomials, basic hypergeometric
functions, hypergeometric series, complex analysis, the calculus of variations, the theory
of relativity, quantum mechanics, and particle physics [1-9].

In 1949, Hahn [10] introduced the Hahn difference operator D, , as follows:

_flgt+w)-f(t) w
Dyuf () 1= tg-+o ’ t#l—q'

This operator is created with a combination of two well-known operators, the forward

difference operator and the Jackson g-difference operator. We observe that

Dyof (t) = Auf(¢) wheneverg =1,
Dg,f(t) =D,f(t) wheneverw=0, and

Dyof(t)=f'(t) wheneverg=1,0— 0.

Particularly, the Hahn difference operator has been employed to construct families of or-
thogonal polynomials as well as to examine some approximation problems (see [11-13]
and the references therein).

In 2009 Aldwoah [14, 15] (PhD thesis supervised by Annaby and Hamza) defined the
right inverse of D, in terms of both the Jackson g-integral containing the right inverse
of D, [16] and the N6rlund sum involving the right inverse of A, [16].
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Malinowska and Torres [17, 18] studied the Hahn quantum variational calculus in 2010.
Moreover, in 2013, Malinowska and Martins [19] studied the generalized transversality
conditions for the Hahn quantum variational calculus. In the same year, Hamza et al. [20—
22] studied the theory of linear Hahn difference equations. They established the existence
and uniqueness results for the initial value problems for Hahn difference equations by
using the method of successive approximations. In addition, they proved Gronwall’s and
Bernoulli’s inequalities with respect to the Hahn difference operator and investigated the
mean value theorems, Leibniz’s rule and Fubini’s theorem for this calculus. For the bound-
ary value problems, in 2016, Sitthiwirattham [23] considered a nonlinear Hahn difference
equation with nonlocal boundary value conditions

D;,wx(t) +f(t,x(t),Dp,9x(pt + 9)) =0, telwo Tlyws
x(wo) = p(x), (L1)

x(T) = )"x(n)! ne (w07 T)q,w:

where 0 < g <1, 0<w< T, wy:= ﬁ,1§k< gjsg,p:q’”,meN,G:a)(t—‘;),f:
[wo, T]g0 x R x R — R is a continuous function, and ¢ : C([wo, T4, R) — R is a given
functional. Moreover, in this year 2017, Sriphanomwan et al. [24] studied a nonlocal
boundary value problem for second-order nonlinear Hahn integro-difference equation

with integral boundary condition

D;,wx(t) :f(trx(t),Dp,Qx(pt + 9): \ij,ﬁx(pt + 9))) te [600, T]q,(u,

x(wo) = x(T), (1.2)

T
() = f g6)%(8) dyos, 1 € (@0, T)gor

0

where 0<g<1,0<w< T, wy:= ﬁ,Mfwz;g(r)dq,wr#l,ueR,p:qm,meN,G :a)(t—g),
feC(lwy, Tgo x R x R x R — R), and g € C([wo, T14,. x R*) are given functions, and
for (S C([a)O’ T]q,w X [(,()0, T]q,a), [0: OO))

W, 0x(t) = / @(t, ps + 0)x(ps + 0) dys. (1.3)

0

In particular, the fractional Hahn difference equations have not been studied. We ob-
serve that in 2010, Cermdk and Nechvatal [25] introduced the fractional (g, /)-difference
operator and the fractional (g, /)-integral for g > 1. Cermak et al. [26] studied discrete
Mittag-Leffler functions in linear fractional difference equations for ¢ > 1 in 2011. In the
same year Rahmat [27, 28] investigated the (g, i)-Laplace transform and some (g, k)-
analogues of integral inequalities on discrete time scales for g > 1. Recently Du et al. [29]
studied the monotonicity and convexity for nabla fractional (g, #)-difference forg > 0,4 #1
in 2016. However, these operators are not satisfied with fractional Hahn operators because
fractional Hahn operators require the condition 0 < g < 1.

The gap mentioned above is the motivation for this research. The aim of this paper is
to introduce new concepts of Hahn difference operator, the fractional Hahn integral, the
fractional Hahn difference operators of Riemann-Liouville and Caputo types. We organize
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this paper as follows. In Section 2, some basic formulas of the Hahn difference operator
and the associated Jackson-Norlund integral calculus are briefly reviewed. In Section 3,
we present the fractional Hahn integral and develop some fundamental properties. The
fractional Hahn difference operators are presented in Sections 4 and 5.

2 Preliminary definitions and properties
The following notations, definitions, and lemmas will be used in proving the main results.
Letg€(0,1), >0, wy = %1, and define

n 1_ k
1] g = (1], 1= —q rgel and [nlgel= ]t [

l1-¢g el 1-¢g

The g-analogue of the power function (a — b)g with n € Ny :=[0,1,2,...] is
n-1
(a—h)%:: 1, (a—b)gzzl_[(a—hqk), a,beR.

k=0

The g, w-analogue of the power function (a — b)%w with n € Ny :=[0,1,2,...] is

n-1
(a—b)%wzzl, = H bq + o ]q)], a,beR.
k=0
More generally, if « € R, we have
= 1-(0)g"
(@a-b)g=a"| | —7~—, a#0,

) (b 20}

) "
(@D, = @00 [ =20 (a-o0) - (-0 a7on.

w0 1= (GE)q™

Note that ag—‘ =a” and (a - wo);—,w = (a — wy)*. We use the notation (O)Z— = (wo)%w =0 for
a>0.Fora, B,y,r € R, we have

(Al) (B -yNg=v*(B-Ng

(A2) (B=¥)go = (B=7)iwlB 4" 2)g0

(A3) (t-5)70=0,t>sa ¢ Ny fort,se 1,:= {g"T + k], : k € No}.
The g-gamma and g-beta functions are defined by

1-qi

Fq(x) = W’

xeR\{0,-1,-2,...},

1
B,(x,s) := /0 £ 1 - qo)itdyt
oo

O S0 G S Ly )

— q Cylx+5)

respectively.
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The g, w-forward jump operator, g, w-backward jump operator, and ¢, w-forward grain-

iness function are defined by

t—w
040(t) = qt + o, Pgolt) = T, and

Hgo(t) :=t(g—1)+w, respectively.

Definition 2.1 For g € (0,1), w > 0, and f defined on an interval I; » € R containing wg :=
ﬁ, the Hahn difference of f is defined by

f(aqw( ) _f(t)

q wf(t) Mq,w(t)

fort el {wo},
and Dg.f(wo) = f'(wo), provided that f is differentiable at wy. We call D, f the g,w-
derivative of f and say that f is g, w-differentiable on [ qT, w

Lemma 2.1 ([15]) Let f,g be q, w-differentiable on IqT, o The Hahn difference operator has
the following properties:
Dyolf(£) + g(8)] = Dygof (£) + Dg,og(t);
) Dy olaf ()] = aDy.f(t) for a e R;
(©) Dgolf(0)g(®)] = f(1)Dgug(t) + g(oqw)D of (8);

(d) DyolL5] = 0P ETO0ED for g(t)g(04,0) 70,

Lemma 2.2 Lettel’ 70 4 € (0,1), 0>0,and a, B € R. Then the following statements are
true:

(2) Dyt = Biaw = [y Py = B’

(b) Dyor(B = ) = ~laly (B - o

Proof Lett:=t(1-q) - o, B:=p1- q) — w. Since

Slog0(8) =f(2) :f (,qu(t)) -f(2)
Mg (£) ;- D=2

’

Dy f(t) =

we have

Hko -ﬁk)]

Dq,w(t — ﬁ)%w = Dq,a) I:(t - a)o)" 1_[ (1 B-wo k+a)
k=0\"" t—ag

~

_g( i )[ [T - §4) nzioa—éq@}
f l—q q(xl_[k o 1_ £ k+o¢+1) H;(’io(l_ quﬂx)

( ¢ )‘” [T~ £4*) [(1 ~ By g é)}
:q - _
[T - éqk“’) ¢

_( 7 )O( IHkO /f k+1)|:1_qa:|
“\ql-9 Hk:0(1—7qk*°‘) 1-¢q
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B k
e o= 2755504 [1- g
l_[liio(l __B-wo qk+a—1) 1- q

Pq,w (t)-wo

= (/Oq,w(t) - wO)

= [o)g(Pgl®) - B)-

So, (a) holds. Proceeding similarly as above, we find that (b) holds. O

k

Letting a,b € I C R with a < wy < b and [k], = 11%, k € Ny := N U {0}, we define the

q, w-interval by

[a,b),, = {q"a+wlkl; ke No} U{q"b + o[k, : k € No} U {wo}

= [a, w0l U [wo, b]

9w

= (a,b),, U{a, b} = [a, b)q,w U {b} = (a, b]q,w U {a}.

9w

Observe that, for each s € [a, b],,, the sequence {o;w(s)},fio = {f's + w[k] 4} ioo is uniformly
convergent to wq.
Also we define the forward jump operator aq’fw(t) =gkt + wl[k], and the backward jump

operator p;w(t) = ‘—f;][(k]‘f for k e N.
Definition 2.2 Let [ be any closed interval of R containing a, b, and w,. Assuming that
f 1 — Risa given function, we define g, w-integral of f from a to b by

b b a
/f(t)dq,wt:: FWdgot— [ O dyut,

where

o]

fOdgot = [x(1-q) - 0] Y 4*f(xq" + 0lkly), x€l,

k=0

provided that the series converges atx = a and x = b. f is called g, w-integrable on [a, b], and
the sum to the right-hand side of the above equation will be called the Jackson-Nérlund

sum.

We note that:
(1) The actual domain of function f is defined on [a, b];,., C I.
(ii) For each x € [a, b,., we have limy_, o a;w(x) = wy. It implies that

x Pq,w(wo)
[ r0dut= Y [sa-a-olo.

Lemma 2.3 ([15]) Letg € (0,1),w >0, a,b € IqT,w, and f, g be q, w-integrable on IqT’w. Then
the following formulas hold:

@) [°f(t)dgot = 0;

b) [P af () dgut = [P f(£)dyot, @ € R;

(© fabf(t) dq,a)t = _f:f(t) dq,wt}

@) [2fOdgut = [ fO dgut + [f O dgot, c €1, a<c<b;
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© LTI ) +g®O)dgot = [P F©) dgut + [ g(t) dyots
) [P ODgug®] dgut = [FOLON — [ 1g(040(E)Dyuf (£)] dgot.

We next introduce the fundamental theorem and Leibniz formula of Hahn calculus.

Lemma 2.4 (Fundamental theorem of Hahn calculus [14]) Let f : I — R be continuous at
wo. Define

X
F(x):= / f()dgot, xel
o]
Then F is continuous at wy. Furthermore, D, F(x) exists for every x € I and

Dy F(x) =f(x).

Conversely,

b
/Dq,azf(t)dq,a)t:f(b)—f(d) foralla,bel.

Lemma 2.5 (Leibniz formula of Hahn calculus [22]) Let f : Igw X I;w — R. Then

Dq,w|: f(t,s) dq_ws:| = / tDguf (t,8) dgws +f (aq,w(t), t),

0

where Dy, is Hahn difference with respect to t.
Next, we give some auxiliary lemmas used for simplifying calculations.

Lemma 2.6 ([23]) Let q € (0,1), > 0 and f : I — R be continuous at wy. Then

t r t t
/ f(8)dgwsdyor = / f(8)dgwr dgws.
wo J wg wo J gs+w

Lemma 2.7 ([23]) Let g € (0,1) and w > 0. Then

t ¢ t—wo)?
/ dyos=t—wo and [£ - (s + )] dyos = : 1 :UO)
[eN)

wQ

3 Fractional Hahn integral
Now, we introduce fractional Hahn integral.

Definition 3.1 For «,w > 0, g € (0,1) and f defined on [wy, T'],,., the fractional Hahn
integral is defined by

T2 f(0) = Fql(a) / (t—aq,a,(s));;wlf(s)dq,ws

[t(l—q)—a)] S n n+ [L4md 3 n
ST oo ) 0, 0),

and (29, f)(t) = f(2).
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Since (1 - g)t — w = (1 — g)(¢ — wy), associated with (A1), we have

1

(t-opnO)5 = (6= @0) = (07210) - )™

o

= ((t-wo)—q"(t- a)o));1

q
= (t-wo) (1= ")
It implies that
72, f(0) = L DEZ N S i el ),
Fq(a) n=0

Next, we provide some auxiliary lemmas for simplifying calculations.

Lemma 3.1 Letw,B>0,p,q€(0,1), and o > 0. Then

/ (£ = 0409) 25 — 00 s = (£~ 00) P By(B + L),

(t — wo)**P

/w/w t apw(x) (x qu(s)) qwsdpwx—WBp(ﬂ+l,a).

Proof From the definition of g, w-analogue of the power function and Definition 3.1, we
obtain

t
-1 B
f (t —Ogw (5)):,7(5 — Wy )aa) dq,ws

0

= (t - wo)*(1 - q)Zq (1-g™)(q" (¢ - o)

n=0

o]

= (-0 A=) Y ¢ (1-4") ")
n=0

=(t- a)O)OHﬂBq(IB +1,0),

and

// t apw(x (x oqw(s)) 1dqwsdpwx
wqo J o

=/ t apw(x) [/ (x O'qw(S)) dqws]dp,wx

[ﬂ] /(t Upw(x)) (x wo)? ApwX
q Jay

_ (E— )P
Bl

S

B,(B +1,a). 0

In the next theorems we introduce the properties of fractional Hahn integral as the fol-
lowing theorem.
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Theorem 3.1 Forf:I, — R,a>0,q€(0,1), >0, andae]

Sf(wo)

T,@+1) (£ = o).

Taof (€)= T3 [Dyuf (0] +
Proof Using Lemma 2.2(b) and Lemma 2.4, we obtain

I;af(t)— 7f Dy(t - s) of (8)dgws

[a]q

1 t
= m |:(t —wo)g.f (@o) + /; (t = 04w)gwDaaf (5) dq,ws]

TP 0]+ 2 s - o
=Tgo [Daaf ()] + f((j)())l)(t—wo)“. .

Theorem 3.2 Forf:I],— R,a,>0,4q€(0,1),0>0,andacl],,

/(t aqw(s)) 7, .S () dgws =0

0

Proof For n e Ny,

0Gw(@)
Iyf (0, (@) = f (0410(@ = 940(5)),, ) dgos

wQ

1

q(a)

[0 (d)1 q) o]
Z

g (o0 (@) — ok @) f (oK (@)).

Employing (A3) implies that (o (@) — on*k(a))qw = 0. Thus,
ze f (o, (@) = . 3.1

Finally, using Definition 3.1, we have

[ (=00 T ) s
=[0-qa-w quk k+1(ﬂ - I[Iawf(o;,w(“))]zo' O
=0

Theorem 3.3 Forf:I;w —-R,a,8>0,4€(0,1),w>0,anda elgw,

T2 [ 28 ()] = T8 [ T2 f (O] = T2:FF(2).
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Proof Fort e IqT,w,
o 1 ¢ a-1,
Iquq'Bwf(t m/ (t qu(s)) IIﬁaf(S qws

1 t s o _
g /w 0 /w 0 (£ = 000(9)) (5 — 0g0 (@) 1o f (6) gk dgos

q(a)l q(ﬁ)./ |:fa )(t aqw(s));(—;(s—oq,w(x)){'i‘:dq,ws}/(x)dqvwx

qﬁ{[;f;t 040(5))g, (5 = 040 (0)) 1o (5) o5y
_/ /”’”’ (t- oq,w(s))ﬁ( Uqw(x)) f(x)dqwsdqwx}

From Theorem 3.2, we have

0gq,w(% o B
/ / t g )q—wl(s - 0w (x))ZTUIf (%) dgwsdgwx=0.
wo

Therefore,

o 1 t t w1
Iq ngwf( ) ) m ~/wo /(;0 (t ~ e (S))%wl( ~ O x)) f(x) dq w$ dq wX-

Similarly, we have I,‘;, ng, of () = If, wI;" S ().
Next, we show that Z¢, Z0.f(t) = Tg. f (¢),

1 t ¢ o )
I:;wﬂ;wf( ) = m ; |:/a (x)(t_"qv“’(s))q,wl(s_Gq,w(x))i_wldq,wS}/(x) dyor
1 b B
= TS B) oy it =000 Y dr
1 (1 Ty(B) - »
B Cg(B) Jug Fq(z +B) (t Og0(% )) . 1f(x)dq,wx=quw f(t). O

Theorem 3.4 Forf : I;w — R, a,0>0,and g <(0,1),

(t — wo)*™

Ty o [Dguf )] = Dy | Z ()] - ) f (wo).

Proof Using Lemma 2.1(c) and Lemma 2.2(b), we have

(t- Uqw(s)) Dyaf (5) = [ =14 (t = 040(9)),,, F(5) + Dy (£ - )5 (5)].

So, we obtain

Ig,qu,aLf(t) =

/ (£ = 040(9)) s, [Pyt ()] dgos

0

1
1—‘q(05)

t 1 o
_ ‘L@ 7100y OV dyas + s €= RFOL,
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-1
= Dyo| I, f (0] - %f (@o)
q
" ( 0)“ !
= Dyo| L f (O] - ————f(@0). O

Theorem 3.5 Forf : Iqu —-R,a,0>0,q€(0,1),and p €N,

-1
p (t _ wo)a—p+k

o [P f©] = D5 [To f 0] -

= Fyla—p+k+1)

[Dfof (@o)]-

Proof Substituting f as D, f into Theorem 3.4, we have

)a—l

Iy, [Dyf ©)] = Dyo[ T, Dauf ] - T

[D azf(wo)]

[ o Zgof )] = f( o):|

q()

_ o-1
_ %[Dwf(wo)]

(If wo )oz—2+k

1
=D, [Te.f()] - Z e

k=0

Repeating the same procedure as above p — 1 times, we obtain

-1
p (t - wo)a—p+k

T, (D80 = D, [ T2,/ 0] -

k
k=0 m [Dq,wf(wo)]. _

4 Fractional Hahn difference operator of Riemann-Liouville type
In this section, we introduce a fractional Hahn difference operator of Riemann-Liouville

type.

Definition 4.1 For o,w > 0, g € (0,1), and f defined on [wy, T],,., the fractional Hahn
difference operator of Riemann-Liouville type of order « is defined by

DG f(#) = (D), Ty, f)®)

1 t
= Toce) J,, (ol T s

andDoaf(t =f(¢), where N-1<a <N,N eN,

Theorem 4.1 Fora >0,q€(0,1), >0, and f : IqT,w - R,

Daaf() [(1 Q)t w] Zq (t—O’;Z}(t))

Fo-e) 15

= f ok, (1)

90

(1 Q)L‘ wg)™® qu k+1 (0 ().

q( —o)
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Proof For some N —1<a <N, N €N, by using Definition 4.1 and Lemma 2.5, we have

D f(8) = Dy, T3 f () = Dy, Dy Ty, f (8)

1 ! o=
= D;\f;l {Dq,w [m » (t Uqw(S))N 1f(S) dq,ws] }

:qu\,[wl{;)/ (t qu(s))N o Zf(S)dqu

r,N-a-1
* v o (a0 ~ 000 (), SO }
q
- Dg{;l{m /w (=040 () g f(5) dq,ws}.

Repeating N — 1 times, we obtain

D2 f(t) = Dng{ - 1 (t- oq,w(s));;—‘lf(s) dyos

q(_a) o

—(~a - 1) wf(t+oz+1)}

q(l— )
B Fq(l—ot) o (£ =000 (9); (O
- W D d (e =0 0) 2 f (o4, (0)
g k=0
L= )t —w) e & n
= (?):#L)OO) qu(l _ qk+1)q,w lf(O'qk,w(lf)) .
k=0

In the following theorem, we introduce the properties of fractional Hahn difference op-

erator of Riemann-Liouville type.

Theorem 4.2 Fora >0,qg < (0,1), w >0, andf:lgw — R,
D} T (&) =f(8)

Proof Forsome N -1<a <N,N €N,

D‘;wfgwf(t) =Dy, qw“I“wf(t)
[qu\[wzgw]( q,ajaf(t)) = DIq\,[wIzII\,[uf(t) :f(t)~ g

Theorem 4.3 Fora>0,q¢€(0,1), 0>0,andf:I] , — R,

o o - (t - wO)a_N+k w—N+k
Iquqaf(t) :f(t) - Z m [Dq,w (wO)]’
k=0

where N -1<a <N, N eN.
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Proof From Definition 4.1, we have

Ie,D8 () = T2 [Dy I f (0] = Zg DY [0 F (0)].
Using Theorem 3.5, we obtain

N-1

T D _ DN « TN-o (t a)O)u—N+k N-a
Pl )= Do [T 7" 0] = 2 ey Pl ™)

k=0
N-1
(t— )a—N+k .
DT O = L s ey (D6
k=0

N-1 )a—N+k

(t — wo —N+k
=f(t) - —  |D¥V* .
Yo kX:O: (" —N+k+1)[ K ()]
Corollary 4.1 Leta >0,4<€(0,1), 0 >0, and f : IT — R,
T Dy f ©) = f(0) + Cut = 00)* ™! + - + Cy(t = w)* ™
forsome C;eR,i=Nyyand N-1<a<N,NeN.

5 Fractional Hahn difference operator of Caputo type

Now, we introduce a fractional Hahn difference operator of Caputo type.

Definition 5.1 For o, >0, g € (0,1), and f defined on [wy, T],, the fractional Hahn
difference operator of Caputo type of order « is defined by

CD‘;J(::) = (I;\{;“Dﬁ;,’wf)(t)

1 t o
- m/% (t—oq,w(s)):w IDQ{J(S)dq,ws,

and “D) f(t) = f(t), where N -1<a <N, N e N.

Theorem 5.1 Fora>0,q€(0,1),w>0, andf:IqT,w — R,

o (A - )t - o] . -
D f(t) = T,N-a) kzzoqk(t - ‘T;wl(t)):w ngJ(U;w(t))

1— f— N-a o
e S - Do)

where N -1<a <N,N eN.
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Proof Fort el , by Definition 5.1, we have

qw’

D0 =T D0 = s [ (oD dys
M0t 0] i g Nt
N k%;q (=040 (©), " Dyuf (04,(0)

_ (1 _q)(t_wO)Nia qu(l qk+1)N o— lDwa(O' (t )

Iy(N -«a) Py O

In the following theorem, we introduce the properties of fractional Hahn difference op-
erator of Caputo type.

Theorem 5.2 Foroa >0,q € (0,1), w >0, omdlegw — R,
CD‘; oLy @) =f(2).
Proof For some N —1<a <N, N €N, under Definition 5.1 and Theorem 4.3, we have

°pe T f() = T DY T8 () = T DY f(8)

4074, 40”4,
N-1

 k-a
=0~ 3 e Dl T e
k=0 1

From (3.1), we have

N-1

— (t- wo)k_a Dk
T =
,g(; L k- +1) [P e qu(wO)]
It implies that

°Dg T2 f(6) = (). O

Theorem 5.3 Fora>0,4€(0,1), w>0,andf : IqT,w - R,
N-1 k
7o CDa t) =f(t) - M Dk )
v D f () =f () g F (s 1y Do (@0)]

where N -1<a <N,N eN.

Proof From Definition 5.1 and Theorem 5.1, we have
T3, Dy f () = Ty, [Ty Dy f(9)] = T\, Dy f (1)

(t = wo)*
=fe- Z (l<w+01 [Phaf (@] 0
Pl



Brikshavana and Sitthiwirattham Advances in Difference Equations (2017) 2017:354 Page 14 of 15

Corollary 5.1 Leta>0,q€(0,1),w>0,andf: IqT,w — R,
Ig’wCDg‘mf(t) :f(t) + C() + Cl(t — LL)()) + -0+ CN_l(t - wo)N_l
forsome C; eR,i=Non_1,and N-1<a <N, N eN.

6 Conclusions

In this paper, we have introduced a fractional Hahn integral, Riemann-Liouville and Ca-
puto fractional Hahn difference operators. Many properties of these fractional Hahn oper-
ators have been proved. This work is certainly not complete and should be a starting point
of many other works. For example, in future works, one could define the Laplace trans-
form for Hahn calculus. Also, another work will be to find the Hahn-convolution product
and compute its Hahn-Laplace transform, so we could be able to solve many more Hahn
difference equations.
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