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Abstract

The square iterative roots for strictly monotonic and upper semicontinuous functions
with one set-valued point were fully described in (Li et al. in Publ. Math. (Debr)
75:203-220, 2009). As a continuation, we study both strictly monotonic and
nonmonotonic multifunctions. We present sufficient and necessary conditions under
which those multifunctions have nth iterative roots. This equivalent condition and the
construction method of nth iterative roots extend the previous results.
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1 Introduction
Given a mapping F : X — X and an integer #n > 2, the iterative root problem is to find all
self-mappings f : X — X such that their nth iterates satisfy the functional equation

f"=F. (1.1)

Babbage [2] investigated (1.1) for an identity mapping F as far back as the 1810s. After
that, (1.1) has been studied in various aspects and settings since it is an important subject in
the theory of functional equations; we refer to the survey papers [3-7], the monographs
[8, 9], and the book [10]. For all we know, strictly increasing roots of strictly increasing
and continuous functions were discussed by Bodewadt [11], and their strictly decreasing
roots were presented by Haidukov [12]. In 1961, Kuczma [13] gave a complete descrip-
tion of strictly monotonic and continuous functions having roots. However, even sim-
ple nonmonotonic functions can have no iterative roots, for example, the hat functions
f(x) = min{Z, L;’;} on the compact interval [0,1] for arbitrary a € (0,1). In 1983, Zhang
and Yang [14] investigated the roots of piecewise monotonic functions (abbreviated as
PM functions). The main difficulties to find roots of PM functions lie in the continuously
increasing number of nonmonotonic points under iteration (see [15]). Their method is
based on the ‘characteristic interval, which was developed in [7, 16]. In recent years, many
important results on iterative roots of PM functions were presented in [17-19]. It is worth
mentioning that those results are related to single-valued functions. In [20, 21] and [22],
it is illustrated that the set of continuous functions having a root is a non-Borel subset of
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C([0,1],R) and is small in C([0,1], [0,1]). That is to say, in the general case, no such roots
exist, and the theory becomes extremely complicated if F is not bijective [23]. Therefore,
it is a natural idea to extend the notion of iterative root.

In his survey paper [5], Targonski illustrated three ways to generalize iterative roots,
extending or restricting the domain of the function or embedding the semigroup of self-
mappings in a larger semigroup, and discussed the so-called phantom iterative root of
continuous functions in [23]. Powierza and Jarczyk [24-26] gave set-valued functions as
roots of single-valued functions. Maybe the best method to generalize iterative roots is
replacing single-valued functions by set-valued functions for both F and f in (1.1) (see
[4]). It seems that, up to now, there are only several results on set-valued iterative roots
of multifunctions, even with a unique set-valued point. In 2007, Jarczyk and Zhang [27]
considered the nonexistence of square iterative roots of multifunctions with exactly one
set-value point and presented two sufficient conditions for the purely set-theoretical sit-
uation. Later, Li, Jarczyk, Jarczyk, and Zhang [1] gave new nonexistence results for purely
set-theoretical case and fully described the square roots of strictly monotonic, upper semi-
continuous (abbreviated as usc) multifunctions.

As a continuation of [1], in this paper, we study all strictly monotonic usc multifunctions
having one set-valued point and partly nonmonotonic ones. We give sufficient and nec-
essary conditions for the existence of nth iterative roots and their construction method,
which extend the results on strictly monotonic usc multifunctions in [1]. In Section 2, we
recall the basic definitions and present Lemmas 1-3. In Section 3, we give equivalent con-
ditions for the existence of nth iterative roots and their expressions. Finally, in Section 4,

we apply examples to illustrate our results.

2 Preliminaries
Given topological spaces X and Y, a multifunction f : X — 2" is called upper semicontin-
uous at a point xy € X if for every open set V C Y with f(xy) C V, there exists a neighbor-
hood U C X of xg such that f(U) C V.Iff is upper semicontinuous at every point of B C X,
then it is called upper semicontinuous onaset BC X.Let F: X — X and G: Y — Y be
continuous functions. We say that F is topologically conjugate to G if there exists a home-
omorphism ¢ : X — Y satisfying the equation ¢ o F = G o ¢.

Let X be an interval I := [a,b] C R. For a multifunction f : I — 2/, the image f(A) for a
set A C I is defined by f(A) := |J,.,f(%). For a given positive integer 1, we define the nth

iterate of f : I — 2! as the composition of # copies of f:

&= o

yef"1(x)

where f0(x) := {x} for every x € I. Let #4 denote the cardinality of the set A. Then a point
x0 € (a,b) is said to be a set-valued point of f if the cardinality #f(x¢) > 2. Denote by
Sy, (I, 1) the set of all multifunctions f : I — 2! that are continuous on I except for the
single set-valued point xo. We say that f is one-to-one on [ if f(x;) #f(x3) for all different

x1,%2 € I\{xo0}.
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Definition 1 ([1]) Let y : I — I be a strictly increasing continuous function. Given a fixed
point & € I of y, we put

Ag={xecll:y(x)=x <&}, Bi={xecll:y(x)=x>¢&}.

Then & is called a regular fixed point of y if
(a) minAg =inf] if and only if max B = supI;
(b) there exists a strictly decreasing function 2 mapping A¢ onto Bg;
(c) for every component (a, b) of the set {x € clI: y(x) # x}, where a € A¢ U {inf]},
b € Ag, and a < b, the graphs of y | (45 and ¥ |(w(a),«()) lie on the opposite sides of the
diagonal.

Definition 2 ([1]) A multifunction f : I — 2/ is called strictly increasing (strictly decreas-
ing) if sup f(x1) < inff(x2) (inff (x1) < supf(x2)) whenever x1,x, € I and x; < x5. Multifunc-
tions that are either strictly increasing or strictly decreasing are called strictly monotonic.

It is clear that every strictly monotonic multifunction is one-to-one. Conversely, a one-
to-one multifunction is not necessarily strictly monotonic. In this paper, we investigate
the nth iterative roots of usc multifunctions F € S, (,I) of the form

F|., x e€l_:=[a,xp),
F(x) =3 [c,d] ([d,c]), x =0, (2.1)
F|I+) x€l, = (xO: b]:

where [c,d] ([d,c]) C I, and F|;_ and F|,, are strictly monotonic and satisfy

lim F(x)=c, lim F(x)=d.
x—>x0t

X—>X0~
The next lemmas describe the fundamental properties of the nth iterative roots of (2.1).

Lemmal IfF € S, (I,1) is one-to-one, then every nth iterative root f of F belongs to Sy, (I, 1)
and is also one-to-one.

Proof We first prove that f is one-to-one. Suppose on the contrary that there exist two
different points u,v € I such that f(u) = f(v). Then f*(u) = f"(v), and thus F(u) = F(v).
Since F is one-to-one, only the case u = v is possible, contrary to the assumption.

Now we show that f € S, (I,1). For any y € I\{xo}, suppose on the contrary that
#f(y) > 2. Then we have

#E(y) = #f"(y) = 2,
which contradicts F € Sy, (1,1). Thus, f(y) is a singleton for all y € I\{xo}. We claim that xg

is a unique set-valued point of f. Otherwise, let f(xo) = {po}. Then two cases are possible:

either py = xy or pg # x9. From the former we have

F(xo) = f"(x0) = %0,
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which contradicts #F(x) > 2. For the case py # xo,f € Sy, (I,1) implies that #f (p,) = 1 since
f is single-valued at I\ {xo}. Without loss of generality, assume that f(pg) = {p1}. Then there
again exist two cases: either p; = x or p; # x¢. If p1 = %9, a contradiction comes from

F(x0) = f"*(p1) = " (%0) = {x0}-

If p; # x, we have #f(p1) = 1 since f is single-valued except for xy. Repeating this progress,

we inductively obtain

# (pn2) =1 for p,_y #xo,

and, consequently, we have

#F (xo) = #f" (x0) = #f (pn-2) = 1,
which contradicts F € S, (I,1). Thus, we prove f € S, (I,1). This completes the proof. [

Lemma 2 IfF € S, (I,1) is one-to-one, then F has no nth iterative root f € Sy, (I,1) taking

the value {x,}.

Proof Assume that f is an nth iterative root of F. We claim that f € S,,(I,I) by Lemma 1.
Suppose on the contrary that f(yo) = {xo} for a point yo € I\{xo}. Then

F(y0) =f"(y0) =" (x0), (2.2)

whence

#E(y0) = #f" " (x0) = 2,
implying yo = %9, a contradiction. This completes the proof. d

Lemma 3 Suppose that F € Sy (1,1) is one-to-one.
(i) IfF is strictly increasing, then F has no strictly decreasing nth iterative root for odd n.
(ii) IfF is strictly decreasing, then F has no strictly increasing nth iterative root for even n.

This proof is trivial and omitted.

3 Main results

In this section, we give several sufficient and necessary conditions and expressions of nth
iterative roots of (2.1). Theorem 1 and Theorem 3 characterize the strictly monotonic usc
multifunctions, and nonmonotonic cases are investigated in Theorem 2 and Theorem 4.

For convenience, let f; := f|; , f> :=f11,-

Theorem 1 Suppose that the usc multifunction (2.1) has F(xo) = [¢,d]. If F|;_ and F|;,
are strictly increasing, then F has nth iterative roots if and only if F satisfies F(b) < xq or

F(a)>xgorc<xy <d.
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(i) If F(b) < x0, then F has a strictly increasing nth iterative root

i), xel,
- 3.1
e A" Vo Fw), xel, Uix), 3D

where fi : I_ — I_ is a strictly increasing function satisfying fi" = F|;_. Moreover, if n is even
and F|;_ has a regular fixed point, then F also has a strictly decreasing nth iterative root of
the form (3.1), in which fi is a strictly decreasing function satisfying fi" = F|;_.

(ii) If F(a) > xo, then F has a strictly increasing nth iterative root

fz‘("‘l) oF(x), xel_ U{xo},

fx) (3.2)

falx), xel,,

where f, : I, — I, is a strictly increasing function satisfying " = F|;,. Moreover, if n is even
and F|;, has a regular fixed point, then F also has a strictly decreasing nth iterative root of
the form (3.2), in which fs is a strictly decreasing function satisfying f," = F|j, .

(iil) If ¢ < x9 < d, then F has a strictly increasing nth iterative root

filx), xel,
@) =1 17" Y0, " V)], x=x0, (3.3)
o), xel,

where fi and f, are defined as in (3.1) and (3.2), respectively. Moreover, if n is even and
F|,, is topologically conjugate to F|;_ by a strictly decreasing function f : I — I, that is,
F|;, =fio F|;_ ofi”", then F also has a strictly decreasing nth iterative root

fix), xel,
f@&) =i oglr, o (FI1,)™Hd), (glr,) o fiogli o (Fl) o), x=x0, (3.4)
gl ofi” ), xel,,

in which g is a strictly increasing 5th iterative root of F.

Proof Necessity. If F has nth iterative roots, then F does not take the value {x,} by

Lemma 2. Therefore, only the following cases are possible:

Casel. F(I)C 1, 1ie., F(b)<xg, or
Case 2. F(I) C I, i.e., F(a) > xq, or
Case3. F(I.)CcI_and F(I,)C1I,,ie,c<xy <d.

Sufficiency. Consider case (i). Observing that F|;_: I — I_ is strictly increasing, it fol-
lows from Theorem 11.2.2 in [9] that there exists a strictly increasing function f; : I — I_
such that

A" =F|. (3.5)
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For every x € I, U {xp}, using that F(x) C I_ and f; is strictly increasing, from

F(x) =" (f®) =" (fx)) (3.6)
we get
fx) :ff(”’l) oF(x), xel,Uf{xg}. (3.7)

Furthermore, by the upper semicontinuity property at the set-value point x, we have

c=F(xo") =fi""of(x07),

(3.8)
d= F(x()*) =ﬁn_l Of(x()+).
Since f;"! is strictly increasing, it follows from (3.8) that
f(xo_) <f(x0+). (3.9)

Hence, formulas (3.5), (3.7), and (3.9) give a strictly increasing nth iterative root (3.1) of F.

Assuming that # is even, the left end-point a is not a fixed point of F|_ since it has a
regular fixed point, and there exists a strictly decreasing nth iterative root f; : I_ — I_ of
F|_ (see [9, p.427]). Moreover, since f is strictly decreasing, using (3.8), we have

f(xo_) >f(xo+). (3.10)

Thus, f; and (3.7) and (3.10) give a strictly decreasing nth iterative root (3.1) of F.
The proof of case (ii) is immediately obtained by the transformation

gx):=b-a-fx) forxel. (3.11)

Case (iii). The condition ¢ < xg < d implies that F(I_) C I_ and F(I,) C I,. Since F|;_ and
F|,, are strictly increasing, their strictly increasing nth iterative roots f; and f; exist and
are defined as in (3.1) and (3.2), respectively. Observing that f is one-to-one by Lemma 1
and fi and f; are strictly increasing, we have

c=F(xo7) =f"(x0") =/ (f(x07)) =" (f (x07)),

(3.12)
d= F(xo*) :fn(x0+) :fn—l(f(xo+)) :fzn—l(f(xOJr))’

which yields (3.9). Consequently, f; and f, together with (3.12) and (3.9) give a strictly
increasing nth iterative root (3.3) of F.

If n is even and F|;, is topologically conjugate to F|; by a strictly decreasing function
fi:I- — I,, then we will prove that F also has a strictly decreasing nth iterative root f of F.

In fact, this problem reduces itself to a solution of the system

(3.13)
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As in the previous argument, F possesses a strictly increasing 5 th iterative root g, and we
confine ourselves to the first equation f? = g to find a strictly decreasing solution f of F.
The given condition F|;, = f; o F|;_ of; " implies that the strictly increasing functions gy,
and g|;_satisfy the conjugacy equation

gl =fiogl ofi™h, (3.14)

and the equality g7 = F shows that

gl =fiof, gl =f20fi. (3.15)

The second equality in (3.15) yields that

fo=gliofi™h (3.16)
implying that f; : I, — I_ also is strictly decreasing. Moreover,

¢=Flxy")
=g (%)
= @l) e frofifxo)
=F|_o(gl) " ofsof(x07),s
d=F(x")

(3.17)

=g7(%0")
= (glr)? o fi o fo(%0")
= F|1+ o (g|1+)_1 Ofl Of(x0+)'

Since F and g are strictly increasing, f; : I_ — I, and f; : I, — [_ are strictly decreasing,
and f is one-to-one, it follows from (3.17) that (3.10) holds. Thus, the given f;, together
with (3.10), (3.16), and (3.17), leads to (3.4). Refer to Figure 1. This completes the proof. O

Theorem 2 Suppose that the usc multifunction (2.1) with F(xo) = [d, c] is one-to-one. If
F|;_and F|;, are strictly increasing, then F has nth iterative roots if and only if F satisfies
F(b) < F(a) < c <xq or F(a) > F(b) >d > x¢ or F(b) < xy < F(a).

(i) If F(b) < F(a) < ¢ < xo, then F has a nonmonotonic nth iterative root defined by (3.1).
Moreover, if n is even and F|;_ has a regular fixed point, then F also has a nonmonotonic

Figure 1 Three cases in Theorem 1.
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nth iterative root of the form (3.1), in which fi is a strictly decreasing function satisfying
A" =Fl.

(ii) If F(a) > F(b) > d > xy, then F has a nonmonotonic nth iterative root defined by (3.2).
Moreover, if n is even and F|;, has a regular fixed point, then F has also a nonmonotonic
nth iterative root of the form (3.2), in which f, is a strictly decreasing function satisfying
A =Fl..

(iil) If F(b) < x¢ < F(a) and n is odd, then F has a nonmonotonic nth iterative root

—

H—

Fll_og 2z (x), xel,
f@®=11@l) " @) (gl,) T (@], x=x (3.18)
Fl;, 0g~'T (), xel,

where g is a strictly increasing nth iterative root of F. If n is even, then F has no iterative

roots.

Proof The necessity directly comes from Lemma 2. In what follows, our attention is paid
to the sufficiency.

Sufficiency. For case (i), we first construct a strictly increasing function (3.5) and a mul-
tifunction (3.7) as in case (i) of Theorem 1. Since f] is strictly increasing, from (3.8) and
¢ > d we have (3.10). Thus, (3.5), (3.7), and (3.10) yield a nonmonotonic nth iterative root
(3.1) of F.

Assuming that # is even and F|;_ has a regular fixed point, we can construct a strictly
decreasing function f; and a multifunction (3.7) as in case (i) of Theorem 1. Since f; is
strictly decreasing, (3.8) and ¢ > d lead to (3.9). Therefore, f; together with (3.7) and (3.9)
gives a nonmonotonic #th iterative root (3.1) of F.

The proof of case (ii) is obtained from case (i) by the translation (3.11).

Case (iii). The assumption F(b) < xg < F(a) shows that

F(.)clI, F(l,)cL. (3.19)
If F has an nth iterative root f, then, whether # is odd or even, we assert that

fu)cir, fu,) clL. (3.20)
In fact, suppose on the contrary that f(I_) C I_, whether f(I,) C I_ or f(I,) C I,. Then we
always have F(I_) = f*(I_) C L, contrary to the first formula in (3.19). This implies that

f(_) C I,. The proof for f(I,) C I_ is similar, and thus we have proved (3.20). It follows
from (3.19) and (3.20) that

Fli = (fiof)T ofi,

el (3.21)
Fli, =(hofi) T ofa,
whence
F?|_=F|, oF|r = (fhofy)",
(3.22)

F|;, =F|;_ oFl;, = (hofo)".
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By Theorem 1(iii), (3.22) shows that there exists a strictly increasing nth iterative root g of
F? satisfying

gl=froh, gl =fiok. (3:23)
Substituting (3.23) into (3.21), we obtain

n-1
Sfi=@lL) 2 oF|L,

. (3.24)
Sr=@l)" 7 oFly,,
which implies that f; and f; are strictly increasing. Moreover, from (3.24) we have
n-1 n-1
Ailxo™) =(gl,)" 2 oF|L(x07) =(gls,)” = (¢)s
(3.25)

fxo®) =@l )T o Fly, (%) = @l )" (@),

implying fi(x07) > fa(xo™), that is, (3.10) holds. Thus, (3.24), (3.25), and (3.10) show that F
has a nonmonotonic #th iterative root (3.18).

If n is even, then suppose on the contrary that F has an nth iterative root f. Since g is a
strictly increasing nth iterative root of F2, we have

F(I)=(gl)2 (L) = (hofi) CL,
F(L,) = (gl1,)2(I,) = (fiofo)? C L,

contrary to the fact that F(I_) C I, and F(I,) C I_. Refer to Figure 2. This completes the
proof. d

Theorem 3 Suppose that the usc multifunction (2.1) has F(xo) = [d,c]. If F|;_ and F|,,
are strictly decreasing, then F has nth iterative roots if and only if n is odd and F satisfies
F(a) <xo or F(b) >x ord <x¢ <c.

(i) If F(a) < xo and n is odd, then F has a strictly decreasing nth iterative root of the form
(3.1), where f; is defined by

n-1
Flox 2 (%), a<x<xi,
LX) =1 . (3.26)
X2 o(Fl)x), x <x<xo,

in which x; is the unique fixed point of F|;_, and x is a strictly increasing nth iterative root

of (FI1)%.

[ F(x)
X0 0
i) (ii)

Figure 2 Three cases in Theorem 2.
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(ii) If F(b) > xo and n is odd, then F has a strictly decreasing nth iterative root of the form
(3.2), where f, is defined by

n-1
F 7 (%), <%,
ply= oY @ x<x=n (3.27)
¥z o(Fl,) (%), x<x<b,

in which x is the unique fixed point of F|;, , and s is a strictly increasing nth iterative root

Of(F|1+)2.

(ili) If d < xo < c and n is odd, then F has a strictly decreasing nth iterative root

F|. o¢‘"74(x), xel,
f@={1l)"T @), (@l1,)""T (O], x=x0, (3.28)
Fl;, 0¢~'T (), xel,

where ¢ is a strictly increasing nth iterative root of F>.

Proof Necessity. Suppose on the contrary that # is even and F has an nth iterative root f.
Then only the following cases are possible:

Casel. f(I)cCI,or

Case 2. f(I)CI,,or

Case3. f(I.)cCI,f(I,) CI,or
Case4. f(I.)CI,,f(I,)CL.

If either f(I) C I_ or f(I) C I, then it is clear that
F)=f"() 1, or F)=f"()CL,
contrary to the assumption on F.If f(I_) C I_ and f(I,) C I,, then
F(I)=f"-)CL, F(l)=f"1,) C L, (3.29)

which also contradicts the assumption on F. If f(I_) C I, and f(I,) C L_, then as n is even,
we again get (3.29) and a contradiction. Thus, we have proved that # is odd. The remainder
directly comes from Lemma 2.

Sufficiency. Case (i). Note that

Fli_(la,x1)) C (x1,%0),  Flr_(x1,%0) C [a,%1).

By Theorem 11.2.3 in [9] the strictly decreasing function F|;_ has a strictly decreasing nth
iterative root f; of the form (3.26). From (3.6) we still have (3.7), and, moreover, (3.8) and
d < cyield (3.10). Hence, (3.26), (3.7), and (3.10) show that F has a strictly decreasing nth
iterative root f of the form (3.1).

The proof of case (ii) is directly obtained from case (i) by the translation (3.11).

Case (iii). By the same argument as that of case (iii) in Theorem 2 we see that (3.21) still

holds and there exists a strictly increasing nth iterative root ¢ of the strictly increasing
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multifunction F? satisfying

Pl =froh, ol =fiofa. (3.30)

Substituting (3.30) into (3.21), we obtain

fi=(lL)"T oF|L,

. (3.31)
f=(@l)" % oF|L,

which implies both f; and f; are strictly decreasing. Moreover, since ¢ is strictly increasing,
from (3.31) we have

filxo™) = (@11,)"" o Fli(%07) = (@11,)""7 (o),

. . (3.32)
fa(x%0") =(P1)"2 oFls, (%0") = (#l) 2 (d),

implying (3.10). Thus, formulas (3.31), (3.32), and (3.10) show that F has a strictly decreas-
ing nth iterative root (3.28). Refer to Figure 3. This completes the proof. O

Theorem 4 Suppose that the usc multifunction (2.1) with F(xo) = [c,d] is one-to-one,
where F|; and F|;, are strictly decreasing. Then F has nth iterative roots if and only if
n is odd and F satisfies F(a) < F(b) <d <x¢ or F(b) > F(a) > ¢ > x¢ or F(a) <xo < F(b).
(i) IfF(a) < F(b) <d < xo and n is odd, then F has a nonmonotonic nth iterative root of
the form (3.1), where fi is defined by (3.26).
(i) IfF(b) > F(a) > ¢ > xg and n is odd, then F has a nonmonotonic nth iterative root of
the form (3.2), where f; is defined by (3.27).
(ili) IfF(a) < xo < F(b) and n is odd, then F has a nonmonotonic nth iterative root of the
form (3.3), where fi is defined by (3.26), and f, is defined by (3.27).

Proof The proof of necessity is similar to that of Theorem 3.

Sufficiency. Case (i). Using similar arguments as in the proof of case (i) of Theorem 3,
we say that F|;_ has a strictly decreasing nth iterative root f; of the form (3.26). Moreover,
(3.7) comes from (3.6), and (3.9) comes from (3.8) and ¢ < d. Thus, (3.26), (3.7), and (3.9)
prove that F has a nonmonotonic nth iterative root f of the form (3.1).

The proof of case (ii) is directly obtained from case (i) by the translation (3.11).

Case (iii). The assumption on F implies that F(I_) C I_ and F(I,) C I,. Since F|;_and F|;,
are strictly decreasing, we can obtain their strictly decreasing nth iterative roots f; and f;
defined by (3.26) and (3.27), respectively. Moreover, from (3.12) and ¢ < d we obtain (3.9).

F(x

0
(i) (i) (iii)

Figure 3 Three cases in Theorem 3.
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F(x)

NN N

(x) |

X X

0 0
0] (ii)

Figure 4 Three cases in Theorem 4.

Therefore, (3.26), (3.27), and (3.9) show that F has a nonmonotonic #th iterative root of
the form (3.3). Refer to Figure 4. This completes the proof. O

4 Examples
In this section, we give examples. For convenience, to demonstrate our main results and
avoid complicated computations, we only present a third iterative root of the given usc

multifunctions.

Example 1 Consider the usc multifunction ¢, : [0,1] — 2[%! defined by

122—75x+ %, X € 0,%),
— 67 1761 _1
¢1(x)— [ﬁ,m ) X =

3’

27 1407 1
s000* * 1e00» * € (3,1]-

Clearly, both ¢1]j01. and ¢1ljo, are strictly increasing. Since ¢1(%7) < % < ¢1(%+), in

view of case (iii) of Theorem 1, we say that ¢; has a strictly increasing nth iterative root

(3.3). In fact, ¢; has a third iterative root as follows:

3 1 1

§x+ 10’ x € |0, §),
(pl(x): [1%!%]’ x:é;

mx+3, xe(31]

Example 2 Consider the usc multifunction ¢, : [0,1] — 2[> defined by

8 87 1
mx-l- 1257 x € |0, 5),

o) =[x, x=3

21
8 6 1
DEX + 55, x€(5,1]

We see that ¢[00 and ¢zl[o,1], are strictly increasing. As ¢,(1) < % < ¢»(0), using
case (iii) of Theorem 2, ¢, has a nonmonotonic nth iterative root (3.18). Here, we give
a third iterative root as follows:

x€[0,3),
p@ =103, ==

2’
2 1
gx, xe(i,l]
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Example 3 Consider the usc multifunction ¢; : [0,1] — 2[% defined by

467 1
~350% * 5e0r X € [O’ 3)
_ )2 185
$3(®) = 1[50 381 ) =5
247 1
512’“+ 5127 €(3.1].

Note that ¢slj01_ and ¢sl[o,1), are strictly decreasing and ¢s(1) > % From case (ii) of
Theorem 3 we see that ¢3 has a strictly decreasing nth iterative root of the form (3.2). We

present a third iterative root by simple calculation:

3,4 1
—§x+ 57 S [0) §),
p3(¥) =113, 2], x=1,
1
—ix+ 33, xe(31]

Example 4 Consider the usc multifunction ¢y : [0,1] — 2[%U defined by

79 2

mx‘* 250 X*E [0, g),
w1 s
173 2

~505% *+ 5007 (§ 1].

Note that ¢4[0,1)_ and @401, are strictly decreasing and ¢4(0) < ¢4(1) < ¢4(2+) < 2. In
view of case (i) of Theorem 4, ¢, has a nonmonotonic #th iterative root of the form (3.1).

Here, a nonmonotone third iterative root of @4 is given as

3 2 2
_Ex"' 5 xe[(),g),
pax) = | [1, 2], x=2

37
el well
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