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1 Introduction

Nowadays, Huanglongbing (HLB) is one of the most serious problems of citrus worldwide
caused by the bacteria Candidatus Liberibacter spp., whose name in Chinese means “yel-
low dragon disease” [1]. The main symptoms on HLB include chlorosis of leaves, dieback
and, in extreme cases, tree death. Additionally, infected trees develop fruit that is of poor
quality and drops early, reducing yields of edible and marketable fruit from diseased trees
[2]. The infected trees are usually destroyed or become unproductive in 5 to 8 years [1].

Most of the known plant viruses are transmitted by insect vectors. HLB, a destructive
disease of citrus, can be transmitted by grafting from psyllid to citrus. The primary vector
of the spread of the disease is the psyllid (Diaphorina Citri Kuwayama) [3].

In order to control HLB effectively, most of growers usually take the following measures:
pesticides, tree removal, antibiotics [4], changes to tree spacing, natural enemies of psyllid.
A few new intervention strategies are explored, including heat treatment [5], new toler-
ant or resistant tree stocks [6], nutrient additions [7], cross protection, intercropping [8].
Cross protection is one of biological methods. In recent years, cross protection is widely
considered and applied in prevention and control of plant diseases.

Cross protection, first shown by McKinney [9] with tobacco mosaic virus (TMV), is a
phenomenon whereby prior infection with one (protecting) plant virus will prevent or in-
terfere with superinfection by another, usually related (challenging) virus [10]. In [11], the
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authors explored the cross protection between MAYV (protecting) virus and PAV (challeng-
ing) virus in cereal, which belong to barley yellow dwarf viruses (BYDVs). By vaccinating
M6 CTYV strains (protecting) in citrus aurantif olia, Cui et al. [12] proved the obvious ef-
fect of cross protection on Bendizao mandarin. Van Vuuren et al. [13] studied the effect
of cross protection on HLB of Africa by vaccinating multiple citrus recession viral strains.
Hartung [14], who improved T36 CTV strains, described the resistance effect of cross
protection on citrus HLB.

In recent years, some mathematical models on plant disease have been studied by many
researchers (see [15-19]). Meng and Li [15] discussed the effect of cultural control on the
healthy growth of the host plant. Local stability for the free periodic solution and persis-
tence of the disease are key issues in the study of epidemic models. In fact, these issues are
solved. In [16], Meng et al. illustrated that biological control may be a better way for pest
management strategies by adopting a new mathematical model. Zhang et al. [17] proposed
and compared two different control strategies in the model. In [18], Zhao et al. proposed a
plant disease model with Markov conversion and impulsive toxicant input. Then thresh-
olds of extinction and persistence in mean were obtained.

To the best of the authors’ knowledge, there has been little work on plant disease mod-
els with cross protection (see [10, 20, 21]). Gao et al. [20] took seasonality into account
and put forward a nonautonomous plant disease model with cross protection. The results
showed that cross protection played an important role in controlling the spread of the
challenging virus in plants. Zhang et al. [21] proposed a model to study cross protection
between the viruses in 1999. Zhang and Holt [10] improved the model in [21], in which
cross protection can occur both naturally and through artificial intervention. Our main
purpose is to investigate the transmission of HLB between citrus tree and psyllid popula-
tions with cross protection and evaluate the effect of cross protection in controlling the
spread of HLB.

To achieve the above goals, we formulate a HLB model with cross protection and an-
alyze the dynamical behavior theoretically including a backward bifurcation. Recently,
there have been a number of studies on a backward bifurcation in the epidemic litera-
ture, for example, see [22—26]. Garba et al. [22] considered a dengue model with standard
incidence formulation undergoing the phenomenon of backward bifurcation. Ahmed et al.
[23] modeled the spread and control of dengue with limited public health resources, which
exhibited the phenomenon of backward bifurcation. Li et al. [24] constructed an SIR epi-
demic model with nonlinear incidence and treatment. The results show that a backward
bifurcation occurs if the capacity is small, and there exist bistable endemic equilibria if the
capacity is low [27].

The paper is organized as follows. We formulate our HLB model with cross protec-
tion in Section 2. In Section 3, we determine the existence and stability of equilibrium
point of the model. Moreover, we prove the existence of a backward bifurcation around
the disease-free equilibrium. In Section 4, we discuss the persistence of the disease. Nu-

merical simulation and discussion are given in Section 5.

2 Model formulation

We now study the impact of cross protection with vector as described above on the trans-
mission dynamics and control strategies. We firstly formulate a deterministic model of
HLB by considering citrus trees totalling Nj, in a grove, which we divide into four cat-
egories: healthy, infected with the protecting virus alone, infected with the HLB virus
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Figure 1 A schematic of the model system showing transitions to different categories for trees and
psyllids. Black arrows show the transitions between compartments. Orange dashed arrows show the
necessary interactions between trees and psyllids to obtain transmission.

(challenging) alone, and infected with both, designated as X(¢), Y (¢), Z(¢), and U(¢), re-
spectively. Thus the total number of trees Nj,(¢) = X(£) + Y (¢) + Z(¢) + U(t). We divide the
vector population into a susceptible class S(¢) and an infected class I(¢). Let N, = S(¢) + I(¢)
be the total number of psyllids. The model flow diagram is depicted in Figure 1. The model
is a system of six ordinary differential equations:

L — o1 (K = Ny) —aX —dX - pi.XI,
@~ aX —dY - BY1,

’fi—f =pBXI-(d+m)Z,

A = B, YI - (d + m)U,

B = A= B3SZ — BaSU - i,

U = B3SZ + PaSU — ul,

(2.1)

where o is the rate of replanting a citrus tree, « is the vaccination rate, B is the probability
that a susceptible tree becomes infected from contact with an infected psyllid with HLB
virus, B, is the probability that a tree with protecting virus becomes infected from contact
with an infected psyllid, S5 is the probability that a susceptible psyllid becomes infected
from contact with an infected tree, 4 is the probability that a susceptible psyllid becomes
infected from contact with an infected tree with two kinds of viruses, u is the natural
mortality of psyllid population, m is the roguing rate of infected trees, d is the natural
death rate of a citrus tree, A is the constant recruitment rate of a psyllid, K is the maximum
total number of citrus trees that can be planted in the grove. By the biological meaning,
we assume that all parameters in model (2.1) are positive, and @ <1 and oy <1.

Page 3 of 21
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The initial conditions for (2.1) are

X(0) =0, Y(0) =0, Z(0) >0, 0
2.2
u)=>o, S(0) >0, 1(0) > 0.

We will study the transmission dynamics of HLB disease in the rest of this paper. Before

giving the main result, we present the following lemmas.

Lemma 2.1 Suppose (X(£),Y(£), Z(t), U(¢), S(¢),1(t)) is a solution of system (2.1) with initial
conditions (2.2), then (X(¢), Y (¢), Z(¢), U(¢), S(t),1(t)) > O for all t > 0.

Lemma 2.2 Every solution (X(t), Y (t), Z(¢), U(t),S(t), 1(¢)) of system (2.1) eventually enters

6 o K A
Q=1X,Y,Z,USeR:0<X+Y+Z+ U< ,0<S+I<—4,
(031 n

and 2 is a positively invariant set for (2.1).
Proof From model (2.1), we get

th(t)

o =K = (d+ a)Ny(0) - m(Z(2) + (1)) (2.3)
and
dN,
—dt(t) = A — uN,(¢). (2.4)

Thus, th < 0if Ni(¢) > O‘IK and dNV <O0ifN,(t) > 7, A which implies that Q is posi-

tively 1nvarlant with respect to system (2.1). This completes the proof. d

3 Existence and stability of equilibrium points
To better organize the analysis, in the following we denote k; =d + o, ko =d +ou, ks =d +m,

ki=d+m+o, ks=d+a+a,and kg =d +m + 1.

3.1 Existence of equilibrium points
In this subsection, we determine the existence of the equilibrium points of model (2.1). It
is straightforward to establish that there is, for all parameter values, a disease-free equi-
librium Eo = (Xo, Yo, Zo, Uo, So, Io) = (‘gfj ,%4X,0,0,2,0).

The stability of Ey can be described by using the next generation operator method [28,

29]. According to the notation in [29], the Jacobian matrices F (of new infection terms)

and V (of remaining transition terms) are given, respectively [30]. We have

0 0 BiXo ks 0 0

F= 0 0 ﬂz YO and V= 0 k3 0
BsA  Pad

m m 0 0 0 u



Luo et al. Advances in Difference Equations (2017) 2017:355 Page 5 of 21

Therefore, the basic reproductive number for system (2.1) is

_ Bafacoan KA + B1Bza1 KAd
Ry =p(FV7) = ) 3.1
0 10( ) \/ /Jzzklkzkg ( )

here p is the spectral radius of a matrix.

Now we turn to discussing a possible endemic equilibrium point E*(X*, Y*, Z*, U*, §*, I*)
in the interior of the feasible region Q2. Here X*, Y*, Z*, U*, S*,I* > 0 satisfy the following

equilibrium equations:

a1(K - Nj) —aX* —dX* - B X*T" =0, (32)
aX*—dY* - BY*I* =0, (3.3)
BX T —(d+m)Z* =0, (3.4)
BoY*I* - (d + m)U* =0, (3.5)
A= B3S*Z* - BuS*U* — uS* =0, (3.6)
B3S*Z* + BuSTU* — uI* = 0. (3.7)

Adding (3.6) and (3.7), the coordinates of an endemic equilibrium point (X*, Y*,Z*, U*,
S*,I*) must satisfy

s=2 p
U

According to (3.3)-(3.7), we get

Y* = Ol,uzkg
" BiBs(A — uI*)(d + BoI*) + aPafa(A — ul*)’

Thus
X* = wks(d + BoI*) ’
BiB3(A — ul*)(d + BoI*) + B fa(A — ul*)
. _ W Bul*(d + Bol*)
BiB3(A — uI*)(d + BoI*) + afa fa(A — pul*)’
. ap’ol*

us = .
BrBs(A — uI*)(d + BoI*) + afa fa(A — ul*)

Substituting X*, Y*, Z*, U*, S* into (3.2), we obtain that the coordinates I* of an equi-

librium solution will be the positive root of the quadratic equation
h()=al®> + bl +c=0, (3.8)
where

a = Kup1pafs + 1> piporks >0,
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b= Kpifs(dp — ABa) + o K uPafa + > oksks + > Prdks + ccs i1 Ba,

¢ = wkikoks (1 - R3).

If the discriminant A = b? — 4ac is positive, equation (3.8) has two real roots
-b-J/A Lo h VA
= ) 2= .

L
2a 2a

Since all the state variables in model (2.1) are nonnegative, so S*(I*) > 0 requires the
coordinate I* to satisfy the inequality
I < A
"

To completely determine the existence of the positive equilibrium of system (2.1), we

must consider the following three possible cases:

(1) Assume Ry > 1, then ¢ < 0 and thus A > 0. It is clear that /4(I) = 0 has a simple
positive root, which we denote by . In this case system (2.1) has a unique endemic
equilibrium, which we denote by E;.

(2) Suppose Ry =1, then ¢ = 0, and the equation A(I) = 0 has two roots, which are 0 and
—s. Hence system (2.1) has a unique endemic equilibrium, denoted by E,, if and
onlyif b < 0.

(3) Suppose Ry <1, then ¢ > 0, and there are two possible subcases:

(i) Ifb> 0, h(I) = 0 does not have any positive root.
(ii) /() = 0 has two positive roots I; and I, if and only if A > 0 and b < 0; further,
h(I) = 0 has a double positive root I* if and only if A =0 and b < 0.

We can summarize the previous calculations in the following theorem.

Theorem 3.1 System (2.1) can have up to two positive equilibria. More precisely,

(1) if Ry > 1, there exists a unique endemic equilibrium Ej;

(2) ifRo =1, there exists a unique endemic equilibrium E, if and only if b < 0; otherwise,
there is no endemic equilibrium;

(3) ifRo <1, and
(i) if b> 0, there is no endemic equilibrium;
(ii) system (2.1) has two endemic equilibria E, and E, if and only if A >0 and b < 0;

and these two equilibria coalesce into E* if and only if A =0 and b < 0;

otherwise, there is no endemic equilibrium.

3.2 Stability of the disease-free equilibrium point

In this subsection, we show the stability of the disease-free equilibrium for model (2.1).

Theorem 3.2 For system (2.1), the disease-free equilibrium E is locally asymptotically
stable if Ry < 1 and unstable if Ry > 1.
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Proof The Jacobian matrix of system (2.1) about Ej can be computed as

ks -ay - -y 0 - ﬁlk‘f;(fd
@« -d 0 0 o0 -Zf
e - 0 0 -k 0 0o Hufd
0 0 0 -k o0 Pk
0 o -BA AL o, 0
o o 52 A8 0 -

One eigenvalue of J(Ey) is —u, which is negative, the others are the roots of the following
quintic polynomial equation:

A+ (A+0OAt+ (D+AC+B)A> + (E+AD + BC)A? + (AE + BD)A + BE =0,

where
A=d+ks>0,
B=k1k2>0,
C=k3+k6>0,

D = kske + ks (1 - R2),
E = uk;(1-R),
CD - E = kskg [/(3 +ke + (1 —R(Z))],
AC -2B =2m(o + a1) — 201 + o + oy + 2d(m + ke),
A? —2B=0a* + &} + 2da + 2da; +2d* > 0.
Obviously, if Ry <1,then D>0,E>0,CD—-E>0.Inviewof 0 <o <land 0 <o <1, we

can get AC-2B> 0.

The Hertz determinants of the first to fifth order polynomial are as follows:

A1=A+C>0,
Ay =A’C+AB+AC?>+CD-E>0,
A3 =(CD-E)[A® + A(AC - 2B) + E + AD] + A>C*B + ACB® + ABC®,
A4 =(CD - E)[A*E + ABD(A® - 2B) + A’DE + ABD* + AB® + A’B*C
+A’E(AC - 2B) + AE* + AB*C* + A’B(CD - E)],
As = BEA,.
If Ry < 1, then we know Az > 0, Ay >0, As > 0. According to the criterion of Routh-

Hurwitz, we can obtain that the disease-free equilibrium Ej is locally asymptotically stable
ifand only if Ry < 1. O
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Theorem 3.3 For system (2.1), if R < 1, then the disease-free equilibrium Eq is globally
asymptotically stable, where

Ro BaBaoat KA + B1 3o KAd
w2dksks ’

Proof Obviously, Ry < R. It follows from Theorem 3.2 that the disease-free equilibrium is
locally asymptotically stable if R < 1. Thus we only show that it attracts all nonnegative
solutions of model (2.1).

From the first, second, and fifth equations of system (2.1), we have

fff <aiK-(d+a+wm)X,

dy
dt <aX-dY,
Thus we get that
K K A
limsup X(¢) < al—, limsup Y (¢) < Fon , limsup S(¢) < —.
t—00 ks t—00 dks t—>00 12

From the third, fourth, and sixth equations of system (2.1), we have

az ﬂlqu
dt < 1-k3Z,

ﬂgaoth
dt < I1-k3U,

dl /331\ ﬂ41\
o= m Z+ Uu—pul.

Consider the following comparison system:

dn _ /310!11<

dr y3 - k?)yly
2 - ﬂzwlkys — k32, (3.9)
dys

A
=By g By, s,

System (3.9) is a linear and monotone system. The characteristic equation corresponding
to system (3.9) is

(A +k3)[2* + keh +a1] = 0, (3.10)
where

2d/(3k5 — /32/340[0[1](1\ ,31,330[1[(1\6[
udks

a =

It is easy to know that real parts of all eigenvalues of (3.10) are negative provided that R<1.
So any solution which passes a nonnegative initial value of system (3.9) must satisfy the
following equation:

tlim yi(£)=0 (i=1,2,3).
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Let 0 < Z(0) < »1(0), 0 < U(0) < y2(0), 0 < 1(0) < y3(0). If (y1(2), y2(2), y5(¢)) is any solution
of system (3.9) which passes a nonnegative initial value (y1(0),y2(0), y3(0)), according to
the comparison principle of differential equations, we can obtain that Z(¢) < y;(£), U(t) <
yo(t), I(t) < y3(t), for all £ > 0.

Therefore, in view of Lemma 2.1, we have

lim Z(¢t) = 0, lim U(t) =0, lim I(¢) = 0.
t—00 t—00

t—>00

The proof is completed. d

3.3 Existence of a backward bifurcation
In most epidemiological models, the disease-free equilibrium loses its local stability
through a forward bifurcation at Ry = 1, at the same time a stable endemic equilibrium
appears at this parameter value. This phenomenon can also be described as a supercriti-
cal transcritical bifurcation. However, under certain circumstances, such as nonlinear in-
cidence, nonlinear recovery rate, and vector-borne transmission, a backward bifurcation
may occur although Ry < 1 (see [31]). The system exhibits an endemic equilibrium along
with a stable disease-free equilibrium. There is then a subcritical transcritical bifurcation
at Ry = 1.

Now we take the vaccination rate of a citrus tree « as a bifurcation parameter. Solve for
i from Ry =1, giving

_ }32/340!0!11(1\ + ,31ﬁ3(¥1]<1\d
= .
k1k2k3

We can use Theorem 4.1 in [32] to explore when system (2.1) undergoes either a for-
ward or a backward bifurcation when Ry = 1. So two quantities, labeled A and B, need to
be computed. In order to compute A and B, a change of coordinates involving the right
and left eigenvectors of the Jacobian matrix J(Ey) associated with the eigenvalue A = 0 is
required. We will express A and B in terms of parameters.

The Jacobian matrix J(Eo) has a right eigenvector given by w = (w1, wy, w3, wa, ws, we) 7,

where
= mo BrYows — PrXodkaws W = —apiXokaws — B2 Yo(aro + ksks)we
! /(1/(2/(3 ’ > k1k2k3 ’
BrXows B2Yows
W3 =—""7" Wy =—7" Ws = —Ws, We = We.
ks ks

It should be noted that w, < 0 and ws < 0. The Jacobian matrix J(Ey) has a left eigenvector

given by v = (v1, vo, V3, V4, V5, V), Where

_ B3Soves
k3

_ BaSovs

V1=V2=V5=O, V3 P
3

’ Vy ’ Ve = V6.

We can choose wg and v satisfy

BoBaccn KA + p1Bsai KAd -1
Ve - We = 5 +1) >0
M/<1k2/<3

such thatv-w=1.
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In order to follow the notations introduced in the literature [32], we set x; = X — %4

xz—Y—

K
"}("‘}Q Jx3 =2, x4 =U,x5=5—

system (2.1) can be rewritten as follows:

aw

—=F=)77:1T~
dr (f12345f6)

A T
[_l’ X6 :11 W= (xl’x2;x31x4;x5;x6) ’

kiko ?
¢ =p—fi. Thus

By direct computation we can get the associated non-zero partial derivatives of F at the

disease-free equilibrium:

A P’ ’fs
0, 0)=- N 0, 0)=- 5 0; 0)= )
Smiome (0,0) =-B Sy (0,0) = -5, e (0,0) =B
8%, 82, 8%f;
0, 0) = N 0, 0)=- ) 0; 0)=- )
3y e (0,0) = B, Y. (0,0) =-p3 Bradme (0,0) = —p4
3%fs 3%f
0, 0) = N 0, 0)=- )
Tmadne (0,0) = B3 Sxadme (0,0) = —pa

and all other derivatives are equal to zero.

Consequently, we can compute the two quantities A, B.

—g(a) 2
k%k]kz veWe:

kaW,W,8 % (0,0) =
where

= Alaz +A20l +A3,

gla)
= BoBalBaAks + pkoks] > 0,

Az = BiBoBaldks + BoBakoks(Bo A + pud) + pd Py Bskoks — mon B BaBs A,

Az = B2 B3 Ad*ky + p1B3ud*koks > 0.

—Ax—v A

Denote A’ is discriminant of g(«). Then g(«) = T

0 have two positive real roots o™ =
A”‘ﬁ ifand only if A’ > 0 and A, < 0.

and o**

2
Note that 6?CS—J;~‘5¢(0, 0) = aj%{? 3 (0,0) = 1, and all other derivatives %(0, 0) are equal to
zero. So we can calculate B by substituting the vectors v and w and the respective partial
derivatives into the expression

kawl 0 0) WeVe > 0.

i

According to the above discussion, we can conclude that A > 0 and B > 0 if and only if
A >0,4;<0,ando* <@ < **
[32].

, which is the defining condition for a backward bifurcation

Theorem 3.4 System (2.1) undergoes, at Ry = 1, a backward bifurcation if and only if

A'>0,A; <0, and o* <a <a™; otherwise, system (2.1) undergoes a forward bifurcation.



Luo et al. Advances in Difference Equations (2017) 2017:355 Page 11 of 21

Remark 3.1 In the case of a backward bifurcation, there exists a saddle-node bifurcation
point Rj such that for 0 < Ry < Rf, a unique stable disease-free equilibrium point exists,
and, for Rf < Ry < 1, the stable disease-free equilibrium point coexists with two endemic

points. We can determine Rf by setting A = 0, and get

b2
Ri= [1-———. 3.11
0 46l/,L2k1k2k3 ( )

Remark 3.2 From Remark 3.1, we know that the backward bifurcation gives a further
sub-threshold condition beyond the reproduction number for the control of HLB, i.e.,
Ry < R < 1. The existence of the backward bifurcation illustrates that the long term HLB
activity in a citrus orchard depends on the initial population sizes of citrus trees and psyl-
lids.

4 Permanence
In this section, we demonstrate the permanence of system (2.1). We first give some nota-
tions and a lemma.
Let K be a matrix space, f K — K be a continuous map, and Ky C K be an open set.
Define

IKo = K\Ky, and M, = {xedKy:f"(x) € 3Ko,Vn e N}.

Ay is a maximal compact invariant set of f in dKy. A finite sequence {M,..., My} are
disjoint, compact, and invariant subsets of 9Ky, and each of them is isolated in dKp.

Lemma 4.1 (See [33]) Assume that
() f(Ko) C Ko and f has a global attractor A.
(I) The maximal compact invariant set Ay = A\ M, of f in 3Ky, possibly empty, has an
acyclic covering M = {My, ..., My} with the following properties:
(2) M, is isolated in K.
(b) WS(M;)(\Ko =0 foreach1<i<k.
Then f is uniformly persistent with respect to (Ko, dKy), i.e., there is n > 0 such that for
any compact internally chain transitive set L with L SZ {M;, foralll < i <k}, inf,c; d(x,
0Kyp) > 1.

Theorem 4.1 If R, > 1, system (2.1) is permanent.

Proof Since Ry > 1, then we can choose sufficiently small ¢ > 0 such that

Nty o1
pkoks(d + Bag)(d + o + Br&)(Bse + Bag + 1)

T2 (4.1)

where

v = B1B3(A — e(Bse + Bae + 1)) (d + Bag) (nKd — koe(d + a + fr€)),
V2 = BaBa(A — e(Bse + Pae + ) (0o Kd — kye(d + Bae)(d + o + Pre)).
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To apply Lemma 4.1, for system (2.1), we define K = {(X,Y,Z,U,S,I) € R%}, K, =
{X,Y,Z,U,S,I) K:X>0,Y>0,Z>0,U>0,S>0,I> 0}, and 0Ky = I~(\K0, and de-
note u(t, x°) as the unique solution of system (2.1) with the initial value x° = (X°, Y°, Z°, 11°,
S9,19).

Define the Poincaré map P : K — K associated with system (2.1) as follows:

P(xo) = u(l,xo), val e K.

It is easy to see that both K and Kj are positively invariant and P is point dissipative.
Set

My ={(X°,Y°,2°,U°, 8°,1°) € 9Ky |P"(X°,Y°, Z2°,UU°,S°,I°) € 0K, Vm € N}.
We claim that
M, ={(X,Y,0,0,5,0)|[X >0,Y >0,5> 0}.
Obviously, {(X,Y,0,0,S,0)|X >0,Y > 0,S > 0} € M,. Next we want to show
My\{(X,Y,0,0,5,0)[X >0,Y >0,5>0} =4.

If it does not hold, then there exists a point (X°, Y°,2°, 1/°,5°,1°) e M,\{(X,Y,0,0,S,0)|
X>0,Y>0,8>0}.

Case (i). Z° =0, U° > 0, I° > 0. It is obvious that X(¢) > 0, I(¢) > O for any ¢ > 0. Then,
from the third equation of system (2.1), ‘fi—fb:o = $1X(0)I(0) > 0 holds. It follows that
(X,Y,Z,U,S,I) ¢ 0K, for 0 < t « 1.This is a contradiction.

Similarly, we can prove the other cases: (a) Z° > 0, UU° =0, I° > 0, and (b) Z° > 0, U° > 0,
1°=0.

Case (ii). Z° = U° = 0, I° > 0. It is obvious that X(¢) > 0, Y(¢) > 0, I(¢) > O for any ¢ > 0.
Then, from the third, fourth equations of system (2.1), we get %'ho = B1X(0)I(0) > 0,
‘Z—Lt[h:o = B,Y(0)I(0) > 0 hold. It follows that (X, Y, Z, U, S,I) ¢ 0K, for 0 <t < 1. This is a
contradiction.

Similarly, we can prove the other cases: (c) Z° =1° =0, U° > 0, and (d) U° = I° = 0,
Z%>0.

That is to say, for any (X°, Y°,2°, u°,8°,1°) ¢ {(X,Y,0,0,S5,0)|X > 0,Y > 0,S > 0}, then
(X°,Y°,2° 10,8°,1% ¢ M. Therefore we have

M, ={(X,Y,0,0,5,0)|X >0,Y > 0,5 > 0}.
In the following, we need to prove

W*(Ep) N Ko = 0.
We write x° = (X°, Y0, 20, U°,S°,1°) € K. By the continuity of the solutions with respect
to the initial conditions, we know that, for any given ¢ > 0, there exists § > 0 such that for

all x° e Ky with [x° — Eo| < 8, it holds that

||u(t,x0) - u(t,EO)” <e, Vtel0,1].
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Now we proceed by contradiction to prove that

limsupd(P" (x°), Eo) > 0. (4.2)

t—00

If (4.2) does not hold, then

lim sup d(P”‘ (xo),Eo) < 8o,

t—00

for some x° € K.

Without loss of generality, we suppose that
d(P"(x°),Eo) <80, VmeN.
By the continuity of the solutions with respect to the initial values, we obtain
|u(t, P"(x°)) — u(t,Eo)| <&, Vte[0,1],VmeN.

For any #; > 0, there exists an integer m > 0 such that #; = m + ¢/, where t’ € [0,1].
Then we have

J0(21,5%) — (@i, Eo) | = [u(t, P (x°)) —u(t' Eo) | <e,
for any #; > 0, which implies that
0<Z@) <e, 0<U(t)<e, 0<I(t) <e. (4.3)

From (2.1) and (4.3), we have

2
fi—)f > K - % —(d+a+ pre)X,
> aX - (d+pre)Y,

9B > A~ (Bse + ac + W)S.
Consequently, we can easily obtain that there exists 7" > 0 such that forall £ > T

X(t) > alin —&, Y(t) > acnKd —g
T ky(d +a + Bie) T ky(d+a+ Be)d + Bre)

(4.4)

St)> ——— —=.
Bse + Bac +

Substituting (4.4) into the third, fourth, and sixth equations of system (2.1), we have that

fort>T
az a1 Kd
@ 2 Pl Ggass — ) —keZ,
au oo Kd
@ Z Pl @i pean —6) ksl (4:5)
dl A A
@t = PsZ (g — &) + Pall (g — &) — 1.
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Consider the following comparison system:

dZ _ p 7§ a1 Kd ~

@ = PG arsm — &) — k2,

di _ 7 aoq Kd ~

G = Pl G po@mn — &) — kU, (4.6)
dl _ p 5 A ¥ A 7

dt ~ ﬁ3Z(ﬂ3£+ﬁ46+# —e)+ ’34U(f53€+ﬂ4s+u — &)~ ul.

Denote the coefficient matrix of system (4.6) by H, here

a1 Kd
—ks 0 Pr(G@asse —©)
aaKd
H= 0 _k3 ﬁZ(kz(d+a+ﬁ16)(d+ﬂzE) - 8)

A A
Ps(grevprern =€) Palgrmprenn —©) s

Thus, we get the characteristic equation of H:
A+ /(3)()\.2 + ke + c) =0,
where
ke=d+m+ >0, ¢ = pkyks(d + Bre)(d + a + B1e)(Bs3e + Bae + )1 = T).

It follows from (4.1) that ¢ < 0 provided that Ry > 1. Then there exists a unique positive
root A* of characteristic polynomial of H. By [34], there exists a positive characteristic
vector denoted by (Zy, Uy, 1) such that e*"“(Zy, Uy, ) is a solution of system (4.6). Further,
for any given initial values (Z(0), t(0),1(0)), there exists sufficiently small positive g such
that gZ; < Z(0), qll; < U(0), gI; < I(0). Any solution (Z(@), U(#),1(t)) of system (4.6) which
passes initial value Z(0) = qu, () = qul, 1(0) = gl must satisfy Z(t) — o0, U(t) — oo,
I(t) = 00, as t — o0o. According to the comparison principle in differential equations, the
solution (Z(t), U(t),1()) of system (4.5) with initial values (Z(0), U(0),1(0)) must satisfy
Z@t) > Z(t), U(¢) > U(2), 1(¢) > I(¢). Therefore, Z(¢) — 0o, U(t) — 00, I(t) — 00, as t — 00.
This is a contradiction. Thus, we have proved that (4.2) holds and P is weakly uniformly
persistent with respect to (Ko, dKp).

We can easily obtain that P has a global attractor Ey. It is easy to obtain that E is an iso-
lated invariant set in K and W* (Eo) N Ky = 9. We know that Ej is acyclic in My, and every
solution in M, converges to Ey. According to Zhao [33], we have that P is uniformly per-
sistent with respect to (Kp, dKj). This implies that the solution of system (2.1) is uniformly
persistent with respect to (Ky, 3Kp). This completes the proof. d

5 Numerical simulation
In this section, we first provide results from numerical simulations of model (2.1) that
demonstrate and support our theoretical results. The model will be applied to study the
transmission of HLB in the South of Jiangxi, China. We need to estimate the model param-
eters in order to carry out the numerical simulations. The values of parameters of model
(2.1) are given in Table 1. We explain the parameter values as follows:
+ The average life expectancy of trees was from 20 years to 30 years [35]. We can take
25 as the current average life expectancy. Thus, the natural death rate of citrus trees
d =5 =0.04.
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Table 1 Parameter values used for numerical simulations of the HLB model

Parameters Values Unit References
d 0.04 year™! [35]

m 5.7394 year™! [36]

K 2,000 - (36]

a; 0.6 year™! Estimation
B 0.000243333 year™! [36]

B> 0.00000365 year™! Estimation
B 0.000194667 year™! [36]

Ba 0.000214133 year™! Estimation
A 6,028,433 year™! [36]

o 0~1 year™! -

m 0~ 1 year™! -

+ The annual average temperature of Jiangxi Province is from 8.6 to 20.6 degree
centigrade in 2010. So we can choose the average temperature T = 17°C.

« It follows from the literature [36-38] that the natural mortality of psyllids is taken as
the form u = %365, in which L = —0.14221 % T? + 4.31998 % T + 31.25498. Thus, we
can get u = 5.7394.

+ The maximum number of trees that can be planted in the grove is 2,000, i.e.,

K =2,000. According to the implementation of control measures for HLB in the

South of Jiangxi, we take the replanting rate a; = 0.6.

«+ Using the same transmission forms in [36], we get B; = %5}(‘“‘”) =0.000243333,
Bs = % =0.000194667. Further, we take B, = 0.0158; and 4 = 1183, then

B2 =0.00000365 and B4 = 0.000214133.
+ From literature [36] and [37], we know the recruitment rate of psyllid
A = 2alesiobarlDR | where EFD = 0.0107 %365 % T (T —13) % /30.8 - T,
P,, =0.47192 + 0.0109 T, MDR = 5.286 % 10™° % 365 T % (T —10.02) % +/34.17 — T,
then we can calculate A = 6,028,433.

All citrus trees infected by HLB must be removed in the South of Jiangxi. But HLB has an
incubation period during which the infected trees do not show symptoms, so we take the
removing rate m = 0.6 by empirical estimation. If we choose the vaccination rate « = 0.1,
by (3.1), we can obtain the basic reproductive number for the South of Jiangxi Ry = 2.75.
Sensitivity analysis of all constant parameters that are included in Ry is performed (see
Figure 2). For the parameters, including A, u, K, m, Ba, Bs, B2, B1, &, d, a1, we vary their
value by 10% and plot the effects on Ry. From Figure 2, we can clearly observe that the
natural mortality of psyllid population (u) has the most effects on R, of all the constant
parameters. The reason is the parameter is involved in both directions of transmission:
from a tree to a psyllid and vice versa. Note that parameters «, m, u have the opposite
effects on Ry. For example, an increase in o decreases Ry, whereas other parameters are
positively correlated with Ry. Apart from o (invariability), parameters B, B3, K have the
effect on Ry. By increasing the rate of vaccinating protecting virus «, the roguing rate m,
the mortality of psyllid population p, it is possible to reduce the prevalence of the disease.

In addition, from Figure 2 we can find that the replanting rate («;) is less sensitive to
Ry, but the different values of o; can affect the peak values of the infected trees and the
times to reach peak value. Figure 3 reflects that, along with the increase in value «;, the
peak value delays in time and increases in value. Therefore, the risk of HLB spread would

reduce with the decrease of replanting magnitude.
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R

Figure 2 The sensitivity of Ry to changes in constant parameters. Each parameter is varied by 10% to
assess the impact on Ry. Decreasing each parameter by 10% (e.g., 0.9¢) is indicated in blue; increasing each
parameter by 10% (e.g., 1.1) is indicated in orange.
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Figure 3 Time series plot of infectious tree population with different replanting rates.

Figure 4 shows the dependence of the basic reproductive number Ry on two control
strengths of vaccination and removing the infected tree. Ry decreases as m and « increase
from O to 1, and it is more sensitive when m and « are small. It implies that proper cross
protection or removing infected trees can effectively control the spread of HLB.

Next, in order to show the effects of cross protection on the total infective population,
we fix the vaccination rate o = 0, 0.4, 0.8, respectively. The numerical results (see Figure 5)
show that there is high infected value without cross protection (« = 0); however, there are
low density values after inoculating the protecting virus strains. It shows that the protect-
ing virus without causing undue harm plays a key role in HLB virus control in plants. It
appears to offer a promising measure for HLB control.
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Figure 4 The dependence of the basic reproductive number on the strength of vaccination and
removing infected tree.
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Figure 5 Time series plot of the total infectious tree population with different vaccination rates.

Finally, numerical simulations are carried out to illustrate the effectiveness of the ob-
tained results. For the simulations that follow, we applied this set of parameters shown in
Table 1 unless otherwise stated.

Set m = 0.988. According to the result of Theorem 3.4, we know that if & € [0.81,0.86],
a backward bifurcation can occur, that is, for Ry < 1, a unique disease-free equilibrium and
two subcritical endemic equilibria coexist, but for Ry > 1, a unique endemic equilibrium
exists (see Figure 6(a)). Moreover, if o € [0,0.81) U (0.86,1], a forward bifurcation occurs,
that is, for Ry < 1, a unique disease-free equilibrium exists, which is stable, but its stability
is lost at Ry =1, in which a stable endemic equilibrium arises by a transcritical bifurcation
(see Figure 6(b)).
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Figure 6 Bifurcation diagram in (Ry, /) plane. (a) Backward bifurcation (0.81 < o < 0.86). (b) Forward
bifurcation (0.2 <a <0.7).
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Figure 7 Time series plots with different initial values.

Time series of I are plotted in Figure 7(a)-(d) showing the disease-free equilibrium
and two endemic equilibria. Fix o = 0.5, then Ry = 1.1886 > 1; and fix o = 0.6, then
Ry =1.1103 > 1. By Theorem 4.1, we have that the disease will be endemic (see Figure 7(a)-
(b)). Taking o = 0.85, by (3.1) and (3.11), we can calculate Ry = 0.9797, R{ = 0.9708, then
R§ < Ry < 1. If initial values close to Eq = (84,1,790,0,0,1,050,367,0) are chosen, then the
solution of system (2.1) converges to the stable disease-free equilibrium Ey (see Figure 7
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Figure 8 The trajectories of infected psyllid in (2.1) with o = 0.85 for different selection of initial
values.

(d)). Further, if initial values close to endemic equilibria E; = (99,1,253,172,32,1,042,977,
7,390) are chosen, then the solution of system (2.1) converges to the endemic equilibria E;,
(see Figure 7 (c)). So the outbreak of HLB depends on the initial size of every population.
The disease can die out if the initial values lie in the basin of attraction of Ey, or it can
persist if the initial values lie in the basin of attraction of E,. Figure 8 shows that the bigger
endemic equilibrium is stable, the smaller is unstable, and the disease-free equilibrium is
stable. This clearly shows the co-existence of two locally-asymptotically stable equilibria
when Ry < 1.

6 Conclusions

In this paper, a deterministic model with bilinear incidence is formulated to study the im-
pact of cross protection on the spread and control of HLB. When we choose appropriate
parameters, there exists a backward bifurcation. If Ry > 1, then there is a unique endemic
equilibrium and the disease is uniformly persistent. If Ry < 1, there may be two endemic
equilibria, and the endemic equilibrium can coexist with the disease-free equilibrium.
This illustrates that Ry < 1 cannot ensure the eradication of the disease, and decreasing
R, below the sub-threshold Rf would be a propositional control strategy. If Rf < Ry < 1,
only when the numbers of infected cases are small enough, it is a sufficient condition to
eliminate HLB. Numerical examples are given to demonstrate the effectiveness of the the-
oretical results.

Our investigations suggest that cross protection and removing infected trees play an
important role in controlling the spread of HLB. Cross protection also dramatically affects
the disease transmission dynamics. Moreover, increasing the replanting rate is bad for
disease control. The result strongly suggests and supports the previous observations [39,
40].
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