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1 Introduction

Fractional calculus was originated from a question of L'Hospital, in which he asked about
the generalization of integral order differentiation. At the end of 17th century, Leibnitz
used a notation zc—mm g(t) for mth integral order derivative of a function g(¢). At that time
L'Hospital asked a question, “What should happen if the order is 1?" Leibnitz on 30th
September 1695 (the exact beginning of the fractional calculus) replied, “It will be a para-
dox, from which later useful consequences will be drawn” [1]. After that, in 1819, Lacroix
introduced fractional order derivative [2].

Fractional calculus is as old as the conventional calculus, and it is the generalization of
integral order differentiation and integration to arbitrary non-integer order. For detailed
study, see the books such as [3—7] and the papers [8, 9]. The attraction towards this subject
is due to the fact that fractional derivatives and integrals are not a local property. That is
why fractional differential and integral models captured the reality of the nature better, as
these models considered the history and nonlocal distributed effects; for details, see the
monographs [10-12]. Fractional calculus has a large number of applications in different
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branches of science, engineering as well as in medical fields. The fractional differential
models describe many real world phenomena in different fields, i.e., biology, dynamical
systems, physics, control theory, chemistry and in many other fields, in a more efficient
and realistic way.

In recent research work, several researchers of mathematics community studied impul-
sive fractional differential equations due to their applications in different fields of engineer-
ing and medical sciences [7, 10-12]. Impulsive fractional differential equations are used
to describe real world phenomena like evolutionary processes characterized by abrupt
changes of the state at certain instants and many others. The monographs [13-16] treated

fractional differential equations with instantaneous impulses of the following form:

Dy v(t) = u(t,v(t)), tel[0,TI\ {tn,t2... tm}, L1)
Av(t) = I(v(t)), k=1,2,...,m,
where °Df; is the Caputo fractional derivative of order @ € (n —1,n), n is any natural
number with lower bound 0, u : [0,T] x R — R is continuous, Iz : R — R are instan-
taneous impulses and #; satisfies 0 = to <t; < -+ <ty = T, T > 0, V(&) = limc_ o+ V(¢ + €)
and v(£;) = limc_, - V(¢ + €) denotes the right and left limits of v(¢) at ¢ = ;, respectively.
In [17] Mardanov et al. considered impulsive fractional differential equations with two

points integral boundary conditions of the following form:

°D§, p(t) = q(t, p(£)), te[0, TI\ {ttay... 1},
p(tf) = p(ty) = Ik(p(ti)), k=1,2,...,r, 1.2)
Ap(0) + Bp(T) = [ f(s,p(s)) ds,

where A, B € R"™* are given matrices and det(4 + B) # 0. Here ¢,f : [0, T] x R” — R
and [; : R” — R are given functions.

Problems (1.1) and (1.2) do not characterize completely the process like hemodynamic
equilibrium of a person, i.e., the introduction of the drugs in the bloodstream and the
consequent absorption for the body are gradual and continuous processes. Such situations
are characterized by non-instantaneous impulses, which begin from an arbitrary fixed
point and stay active on a finite time interval.

Motivated by the above-mentioned work, we consider nonlinear implicit fractional
differential equations with non-instantaneous integral impulses and nonlinear integral

boundary condition in the following form:

Dy y(0) = f(t,5(8),°Dy ¥(2)),  t € (tiosi),k=0,1,2,...,m,B € (0,1],
y(t) zlg(,l,tk(ék(try(t)))! te (Sk_l,tk],kZ 1! 2,...,1’}’1, (13)
(0) = 1§ 70 (t,y(®)),

where Cij,t is the Caputo fractional derivative of order 8 with lower limit 0, 0 = £y < sp <
h<s< - <by<Sy=T,T>0is pre-fixed number. The functionsf: [0,T] x Rx R — R,
n:[0,T] x R — R are continuous and & : [sx_1, ] X R — R is also continuous for all

k=1,2,...,m, which is known as non-instantaneous impulses. The notations b4 and

Sk-1tk
Ig r are given to fractional integrals of order 8 with limits si_; to £ and 0 to T, respectively,
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and

B 1 T p-1
Ion(t,(0) = Fﬁ)/o (T - 5)""n(s,5(s)) ds.

Since 1940, Ulam-type stability problems [18] have been studied by a large number of
mathematicians. This stability analysis is very useful in many applications, such as nu-
merical analysis, optimization, etc., where finding the exact solution is quite difficult. For
detailed study of Ulam-type stability with different approaches, we recommend papers
such as [19-33].

The aim of this paper is to establish sufficient conditions for the existence, uniqueness
and Ulam-type stability for a class of nonlinear implicit fractional differential equations
with non-instantaneous integral impulses and nonlinear integral boundary condition, via
generalized Diaz-Margolis’s fixed point theorem. This paper is presented as follows. Sec-
tion 2 contains some basic definitions, notations and lemmas regarding fractional differ-
ential equations. Section 3 contains the framework of the solutions for problem (1.3). In
Section 4 we show some existence and uniqueness conditions, along with different types
of Ulam stability for problem (1.3). Section 5 contains some examples.

2 Preliminaries
In this section we gather some basic facts, definitions and lemmas regarding fractional
differential equations, which we utilized throughout this paper, to obtain our main results.

Definition 2.1 ([34]) An arbitrary order fractional integral of a function § € L}([0, T],R,)
of order B8 € R, is defined as

I(’iﬁ(t) = %ﬁ) fot(t -5 18(s)ds, ¢>0,

where I' is the Euler gamma function defined by I'(8) = [~ p# e dp.

Definition 2.2 ([34]) The Caputo fractional derivative of order 8 € R,, for a function
§:[0,T] — R, is defined as

1 t
D},8)(t) = ———— f (t-9)"P L8 (s)ds, n=[B]+1,
(P0.d) I'(n-B) Jo
where [S] denotes the integer part of the real number 8.

Lemma 2.3 ([34]) For a nonnegative value of B, we have

n-1

Ig,t(CDg,t‘S(t)) =6(t) - Z

m=0

8'"(O)tm’ n=[p]+1
m!

Lemma 2.4 ([34]) For B >0, the Caputo fractional differential equation CDg’trS(t) =0 has
a solution of the following form:

8(t) =ag +at +ast> + - +a,t",

wherea; €R,i=0,1,...,n—1land n=[B] +1.
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Lemma 2.5 ([34]) For B8 >0, we have
15},(61)5},3@)) =8(t) +ag +at+ast® +- +a,1t",
wherea; €R,i=0,1,...,n—1land n=[B] +1.
Let J = [0, T] and C(J,R) be the space of all continuous functions from J to R. Let B =

PC(J,R) represent the space of piecewise continuous functions. Obviously, B = PC(J,R)

is a Banach space with the norm
I¥llg = sup{lyl}.
te]

Now, we introduce the concept of Ulam-type stabilities for problem (1.3).
Letxe B, 6 >0, ¥ >0, A > 0 and a nondecreasing function ¢ € C(J,R,). Let us consider

the following set of inequalities:

°Df x(8) - f(,2(8),° Dy () < &, t € (trosil,k=0,1,2,...,m,B € (0,1], 21

|x(t) _Isi,l,tk(gk(tiy(t)))' <e¢, te (Sk—lrtk]rk = 17 2,...,}’}’!, )

°Df () — (£, 2(8),° DYy x(D)] < $(8),  t € (trosx],k=0,1,2,...,m, 8 € (0,1], 22)

() =1, EEyO)] < ¥, te (sentil, k=1,2,...,m, ‘
and

°Df x(8) — (£, (1), ° Dl %)) < ep(8),  t € (troskl,k=0,1,2,...,m, B € (0,1], 23)

|x(t) _I‘ifl,tk(%'k(t;y(t))” < 81#7 te (Sk—lrtk]’k: 1’21’”777’1' '

Definition 2.6 Problem (1.3) is Ulam-Hyers stable if there exists a real constant cf,g, > 0
such that, for given ¢ > 0 and for each solution x € B of inequality (2.1), there exists a
solution y € B of problem (1.3) with

%) = y(8)| < crpeer tEJ.
Definition 2.7 Problem (1.3) is generalized Ulam-Hyers stable if there exists a function

Argg € CR,,R,), Argq(0) = 0 such that, for given & > 0 and for each solution x € B of
inequality (2.1), there exists a solution y € B of problem (1.3) with

|x(t) —y(t)| <Arpele), tel.
Definition 2.8 Problem (1.3) is Ulam-Hyers-Rassias stable with respect to (¢, ¥) if there

exists a real constant cg .y > 0 such that, for given ¢ > 0 and for each solution x € B of

inequality (2.3), there exists a solution y € B of problem (1.3) with

[6(6) = (O] < crpene(@@) + ), te).



Zada et al. Advances in Difference Equations (2017) 2017:317 Page 5 of 26

Definition 2.9 Problem (1.3) is generalized Ulam-Hyers-Rassias stable with respect to
(¢, V) if there exists a real constant cf,g,, > 0 such that, for each solution x € B of in-
equality (2.2), there exists a solution y € B of problem (1.3) with

|6(6) = y(0)| < ¢ pgy (@@ +¥), te].

Remark 2.10 From the above definitions clearly we see that: (1) Definition 2.6 implies
Definition 2.7 if Asg4(e) = cf,8,485 Ar,pg(0) = 0; (2) Definition 2.8 for & = 1 implies Defini-
tion 2.9; (3) Definition 2.8 for ¢(¢) = ¥ = 1 implies Definition 2.6.

Remark 2.11 A function x € B is a solution of inequality (2.1) if there exist a function
Qe % and an x-dependent sequence Q, k =1,2,...,m, such that

clRM)I=e te].

o |Qkl <&, k=1,2,...,m.

. CDj x(t) = f(t,x(t), D} () + Q(2), t € (tro5¢), k= 0,1,...,m.

e x(t) =10, (E6x(®) + Qo t € (ke te), k=1,2,...,m.

Remark 2.12 A function x € B is a solution of inequality (2.2) if there exist a function
Qe Banda sequence Qx, k=1,2,...,m, which depends on x, such that

« QI =9@),te].

e Qkl =Y, k=1,2,...,m.

o €D} x() = f(t,%(t), D} x(2)) + Q(2), t € (tr,5¢), k= 0,1,...,m.

e x(t) =10, (E6x®) + Qo t € (it k=1,2,...,m.

Remark 2.13 A function x € B is a solution of inequality (2.3) if there exist a function
Qe Banda sequence Qy, k =1,2,...,m, which depends on x, such that

« QI <ep(t), te].

o |Qrl<ev, k=1,2,...,m.

. CDg'tx(t) =f(t,%(2), CDgltx(t)) +Qt), te (te,skl, k=0,1,...,m.

e x(t) =10, (E6x(®) + Qo t € (ke i), k=1,2,...,m.

In order to use a fixed point approach for contractions on a generalized complete metric

space to obtain our main results, we need the following result.

Definition 2.14 ([35] (Generalized metric space)) Let Y be a nonempty set, a function
d:Y x Y — [0,00] is said to be a generalized complete metric on Y if and only if for all
u,v,w € Y the following conditions hold:

o du,v) >0,

e d(u,v)=0ifand only if u = v,

o du,v) =dv,u),

o d(u,v) <du,w) +dw,v).

Definition 2.15 ([35] (Generalized complete metric space)) Let Y be a generalized met-
ric space. If every d-Cauchy sequence in Y is d-convergent, then Y is called generalized
complete metric space, i.e., if {a,} is a sequence in Y such that lim,, ;- d(a,,a,,) = 0,
then there exists u# € Y such that lim,,_, o, d(a,, u#) = 0.
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Theorem 2.16 ([36] (Generalized Diaz-Margolis’s fixed point theorem)) Suppose that
(Y,d) is a generalized complete metric space, and an operator A : Y — Y is strictly contrac-
tive with Lipschitz constant L < 1. If there is an integer m > 0 such that d(A" %, A" %) < 00
for some x € Y, then we have the following:

(@) The sequence { A"x} converges to a fixed point x* of A.

(b) «* is the unique fixed point of A in Y* = {y € Y|d(A"x,y) < 00}.

(c) Ify e Y*, then d(y,x*) < ﬁd(Ay,y).

3 The solution of a linear impulsive fractional boundary value problem
In this section we find the solution of a linear impulsive problem, which is the correspond-
ing linear form of problem (1.3), using Lemma 2.5. Consider a linear form of problem (1.3),

ie.,

Dl ) =f(t),  teltosk=0,1,2,...,m B e (01],
yO) =15_ &), te(sintlk=12,...,m, (3.1)
2(0) = I (e, (8)),

where CDg’t is the Caputo fractional derivative (CDF) of order 8 with lower limit 0, 0 = £y <
So<ti<s1<--<ty<sy=T,T>0 is pre-fixed number, f : ] — R is a given continuous
function, & : [sk_1, 8] — R, k =1,2,...,m, are non-instantaneous impulses, 1 : [0, T] x

R — R is also a given continuous function, /, b and Ig,r are fractional integrals of order

Sk-1tk
B with limits sx_; to £ and O to T, respectively.

Lemma3.1 Let B € (0,1] andf :] — R be a given continuous function. A function y € B is
a solution of problem (3.1) ifand only if y € B is a solution of the following integral equation:

ﬁ fot(t —8)P1f(s)ds + %ﬁ) fOT(T —8)P (s, 9(s))ds, te[0,s0],

Ig(,l,tk (Ek(t))i te (sk—l) tk]’
k=12,...,m,
o) = (3.2)
i ot = 9O ds + iy [ 0= 6u(s) s
~ 5 Jo' t =) f(s)ds, t € (tr i,
k=1,2,...,m.

Proof For ¢ € [0,50], consider

DE (&) =£(2),  (0) =1IE ;0 (t,y(0)).
Using Lemma 2.5 and the initial condition, we can get

1
r'(g)

1 t T
y(t)zﬁﬁ)fo (t—s)’s’lf(s)ds+ ./o (T—s)ﬁ’ln(s,y(s))ds, t €[0,s0].

If ¢ € (so, 11], then y(¢) = I

o 51(2). For t € (t1,51], we consider

Dy () =f(8), y(t) =15, &(8).
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Applying Lemma 2.5 to the above equation and using the condition y(#;) = so n&1(t), we
obtain

i _B-1 _L " _\B-1
) = (=560 ds— /0 (61-5) () ds

1
gl
/(t s) f(s)ds+r(/3) ;

T(g)

If t € (s1,t2], then y(¢) = & (). When ¢t € (£, s2], we consider

s1 1)
DY y(0) =f(O), y(t2) =1 ,6(5).

With the help of Lemma 2.5 and condition y(£;) = I, tzéz(tz), we get

) = %ﬁ) /0 6=/ f(s)ds+ z(tz—s)‘-“*&(s)ds—%m /0 (=) ds

1
L) Jy

Generally, if t € (sx_1, ], then y(¢) = &, (t). For ¢ € (¢, s¢], we consider

Sk Ltk
Dhyy(®) =), yt0) =1, &t0).

Using Lemma 2.5 and condition y(¢) = &r(tx), we obtain

Sk 1tk

) = * s e(s) ds— —— / " (-9 () s

p-1
/(t 9 ﬂs)d“ (/3) Skt I'(B) Jo

T(g)

Conversely, lety € B be a solution of the impulsive fractional integral equation (3.2). Using

the fact that CDg‘t is the left inverse of 1{{ ,» We can easily get our required result. O

Remark 3.2 If x € B represents a solution of inequality (2.1), then x € B is a solution of

the following integral inequality:

ri Jo =S (6,5(6), DY (9) ds
i Sl (T = )P (s,x(s)) s

B
= r(ggu) t €[0,s0],
| < ) fsi k(b (O)] <, te(sintilk=12,...,m

w155 Jo (&= )P~ (s,2(s), DG 6(s)) ds
- F— f;;l(tk — )Pk (s,x(s)) ds
+ g [ (8 = )P (s, x(5), Dl x(s)) s
<t {t +( «—si_1)f + tk} te(t,sil,k=12,...,m.

As from Remark 2.11, we have

cpf tx(t) =f(&x(0),°D x(t) + Q(t), t€ (tisilk=0,1,...,m,
( ) SI< 1tk($k(t’x(t)))+Qk’ te (Sk—htk]rk:lrz’---’mr
x(0) = I (8, x(2)).
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Using Lemma 3.1, the solution of the above problem is

i Ji(E = 5P [f (5,2(5),°Dfx(s)) + Qo) ds

+ ﬁfoT(T—S)ﬂ_ln(S,x(s))ds, t € [0,s0],
Il E(6,%(0) + Qus o
k=1,2,...,m,

0= rigy Jo (6 = )P (5,x(5), °Df x(s)) + Q(s)] dis

* 5 fsik,l(tk = 5)P " [&x(s,(5)) + Qi s
oKt~ )P f (5,%(5), “Dlyx(9) + Q)] s, £ € (trosil,
k=1,2,...,m

With the help of the above solution and Remark 2.11, we verified Remark 3.2 in the fol-
lowing lines.
For t € [0, s0], we consider

1 ! 1 (7
‘x(t) - Wﬁ) /0 (t- s)’s_lf(s,x(s), Cngtx(s)) ds — Wﬁ) /0 (T - s)ﬁ_ln(s,x(s)) ds

= ' 1 /“(t =8P [f (s,(5), cpb x(s)) + Q(s) ] ds + 1 /T(T (s x(s)) s
F(IB) 0 0 F(,B) 0
1 t

1 T
(t- s)’s_lf(s,x(s),CDg’tx( )) ds — Tﬂ) / (T - s)ﬁ_ln(s,x(s)) ds

CT®) o

1t
fﬁ)/o(t‘s) Q)| ds

N AP
SF(/S)/O(t sy’ ds

stf
< —.
“T(B+1)

For t € (sg_1, 4], k=1,2,...,m, consider

|x(t) Isk 1fk$k(t x t))| |IS/< lfkék(t x(t)) + Q=1 1tkék(t)x(t))|
=|Qil<e, k=1,2,...,m.

For t € (tt,s¢], k=1,2,...,m, we consider

x(t)—%ﬁ) (t-s)P~ 1f(s,x(s) CDgtx(s)) ds—m/ (t —s)P~ Ek(s x(s))

i [ =00 Dl )

= ‘%ﬁ) /t(t — )Pt [f(s,x(s),cDg,tx(s)) + Q(s)] ds
/ (tr — )P [&x (s, %(s)) + Qi dis
Sk-1

- / (b6 - 5P [F (5,(5), °DE () + Q(s)] ds
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/ (t-s)P! (s x(s), CDOtx(s))

CT(B)
1 tr . p te o s )
—Tﬂ) S,H(tk_S) Ek(s,x(s)) S+r‘(’3) o (tx —s) f(S,x(s), O,tx(S)) s
1 ¢ 1 %
SFIB)/O (t_S)ﬂ_l|Q(S)|dS+WIB) Skil(tk_s)ﬂ—llQHds
73
+%ﬁ) /0 (= 9" [Q(s)| ds
N I L VR I L
Sr(ﬂ)/o(t 9) ds+r(ﬂ)/sk_l(tk s) dS+F(/3)/0 (L —s)" " ds

etb el - sk_l)ﬁ 8tf

< +
~ BL(B) BT(B) ' BT(B)

I‘(,38+ D {tﬂ + (e —si)? + tf}

Hence Remark 3.2 is verified.

Remark 3.3 If x € B represents a solution of inequality (2.2), then x € B is a solution of
the following integral inequality:

%(t) = w155 Jo (£ = )P~ f (5, %(s), °Df) x(s)) ds
gy Jo (T =P~ (s, x(5)) s
< w5 Jo (=97 (s) ds, t € 10,501,
lx(t) 15,1,tksk(t,x(t))| <, te (et k=12,...,m
5 Jo (E = )P (s,%(5), D} x(s)) dis
—r ff;l(tk 5/ (s, x(s)) ds
5 Jo b = $)P7f (5, %(s), D} x6(s) ds|
%f —S)ﬂ p(s)ds
.

5 (tk—s)ﬁl¢(s)ds+tkﬁ73kl)l), te sl k=12,...,m.

Remark 3.4 If x € B represents a solution of inequality (2.3), then x € B is a solution of
the following integral inequality:

fo $)PYf (s, x(s ),CDg,tx(s))ds
fo (T - )P n(s, (s)) ds|
< # f(f(t—S)’j‘lqﬁ(S) ds, t € 10,501,
| ( ) sk 1tkék(t;x(t))l <ey, te(skntelk=1,2,...,m
w57 Jo (€ =977 (5,%(s),“Dg x(s)) ds
- /;tkk (5= 9)P7 & (s, x(5)) s
+ 75 o 5 (8 — 5)PLf ( s,x(s),cDg,tx(s))dsl
< W)fo(t—s)ﬁ_%( s)ds

—sp_1)P
i Jo =P 1pls)ds + LIS te (sl k=1,2,...,m

By using Remark 2.12 and Remark 2.13, we can verify Remark 3.3 and Remark 3.4, respec-
tively, by the same procedure as we used for verification of Remark 3.2.
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4 Main results
In this section, we prove four different types of Ulam stability results for problem (1.3).
We also establish some conditions for the existence and uniqueness of the solutions of
problem (1.3) in view of Theorem 2.16.

First, we introduce the following assumptions:

(A1) The functionf:J x R x R — R is continuous.
(A,) There exist constants sz >0and 0 < L_f <1 such that

|f (&, w1, 1) = f(t, 3, @) | < Kylwy — 3| + Ly|ooy —

for all wy, w, w1, € Rand t €.
(A3) There exists a constant L, > 0 such that

|7I(t;60)—77(t;07)| ELn|a)_w|

forallw,mw e Rand t €.
(A4) There exists a constant Lg, > 0 such that

| Sk 1tkg(t w) sk 1tké(t:w)| §L§k|0)—ZD'

forall w,m e Rand ¢t € (sp_1, ], k=1,2,...,m
(As) Let ¢ :J — R, be any continuous nondecreasing function from the space of continu-
ous functions C(/,R,), there exist nonnegative constants c4 and cg such that

1 y
</ (¢(s))7 d. > <cpp(t), tej,

and

1 Y
(fo (D} ()" d. ) <cpplt), te],

where 0 <y <8 <1.

Theorem 4.1 Assume that (A1)-(As) are true and a function x € B satisfies inequality
(2.3), then there exists a unique solution xy of problem (1.3) such that

ﬁ fo $)P1f (5,20 (s), °Df %0 (5)) s
) Iy (T—S)’S ' (s, %0(s)) ds, t €[0,s0],
Ii_l,tgsk(t, %0(8))), te (ser il
k=12,...,m
0= L fo(t P11 (5,x0(5), DL xo(s) dis “D
+ 15 fkkl(tk —5)P 7 €k(s,%0(s)) ds
— 157 Jo" (tx = )P (5, %0(5), DY o (s)) s, ¢ € (b i,
k=1,2,....,m
and
¢ B-y (T
|(t) — xo(8)] < e I 5D+ T 100+ ) (4.2)

1-L
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forallte], 0<y < B <1, t, sk1 are considered to be maximum values and L =
max{Ly,L,} < 1, where

Krcy +Lecg (1-y \'7
L1=max{ i fﬁ( )/) (s,’fy+t,fV)+L§k‘k=0,l,...,m},
r'(B) B-v

K (5.8
Ly =max{r(,3+1)(sk +1;) + L,

k= 1,2,...,1/}1},
i.e., problem (1.3) is Ulam-Hyers-Rassias stable.
Proof Let Y be the space of piecewise continuous functions defined by
Y={p:] > RpeB), (43)
and let us introduce a generalized complete metric on Y as
d(p,q) = inf{Cy + C; € [0,00]||p(t) — q(£)| < (C1 + Cr)e(p(2) + V) }, (4.4)
for all ¢ € J, where
Ci e {Ce[0,]l|p(t) - q(t)| < Cegp(t)}, te (trsil,k=0,1,...,m
and
C, e {Ce[0,00]l|p(t) —q(t)| < Cey}, te(sicn,te)k=1,...,m.
Now, we define an operator A : Y — Y by

%ﬁ) Jo (&= 9P (s, (), cngty(s)) ds

+ T Jo (T = 9)P~In(s,3(s)) dis, t € [0,s0],
N CARTON L (et
k=12,...,m,

5 Jo (= $)P71f (s, 5(5),°Df 3(5)) dis (4.5)

+ r(l,s) /;ik_l (tx — )P &i(s,(s)) dis
- ﬁ fotk(tk —8)P7f (s, 9(s), ”Dg’ty(s)) ds, te (s,
k=12,...,m,

forally € Y. Clearly, A is a well-defined operator because y and f are continuous functions.
To achieve our goal, first we need to prove that A is strictly contractive on Y. For this
we take any p,q € Y and C;, C; € [0, 00], using Eq. (4.4), we get

Crep(t), te(tr,skl,k=0,1,...,m,

(4.6)
Cre, te (st k=1,2,...,m.

p(8) - q(®)] <

From the linearity property of Caputo fractional derivative, Egs. (4.5), (4.6) and assump-
tions (A3)-(As), we obtain the following.
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Case 1: For t € [0,s0], we have

\(Ap)(w—(Aqxt)y:‘ ! / (6 = 5V (5, p(5), DL p(s)) ds

Tﬂ)

B-1
5 / (T =) n(s,p(s)) ds

L
r®) Jo

ﬁl
F(ﬂ/(T 1(54(9) ds

) Ws)/o (=911 (5,09, Df.(5)) ~ £ (5,(5),°Dfa(5) | ds

(t — )81 (s,q(s), D} 1q(s)) ds

+L/T(T—s)ﬂ_l| (s (s))— (s (s))|ds
re) Jo TP e

< %ﬁ) /0 (¢ —s)P ! [Kr|p(s) —q(s)| + L_k|”D§,tp(s) e Dg,tq(S)I] s

+L/T(T—s)’3_1[L ’ (s) - (s)’]ds
I'(B) Jo LA

KfCle t I EfCIS t s
= '(B) /(t )7 ¢(s)ds + T'(B) /(;(t s) (Do,zd’(S))ds

L C18
+
r'(B)

KfC18 B {%} I—V( t % )y
rp) (/ (t-s) ds) /0 (¢>(s)) ds
LfCIS (/ (t—s) % ds) (/t(CDgﬂp(s))ll' ds)y
0
L,Ce % T % 14
S ([a-ota)” ([ oo’ a)

KfCls 1-y e LfCls 1-y =y -
= T) (ﬂ) o0 L (55) e

LCie (1-y\'7, 4
0 <ﬁ—y) T a0

I:[(-fc¢(ﬂ V)l ysﬂ—y . Lfcﬁ(lg V)l ) by . L C¢(,3 V)l 14 /3—}/]
reg ° re  ° r(g)
X C18¢(t)

/ (T = 9" (s) ds

IA

(1 V 1-y
=T (/3) [(Krcs + Licg)sh 7 + Lycy TP | Creg(2).

Case 2: For t € (sg_1, ), k=1,2,...,m, we have

(AP - (AQ®)| = |1, &(t.p®) -1, &(t,q®))|

< Lg |p(t) - q(t)| < Lg, Coe.
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Case 3(a): For t € (&, s¢] and s € (¢, 5¢], k =1,2,...,m, we have

(820~ (ha)0)] - ’ /o (t - )PV (s, p(s), D} ,p(s)) ds

1
r(p)

* %ﬂ) 5:(1 (6 - S)ﬂilgk (S’p(s)) ds

_ %ﬂ) /(‘) k(tk - S)ﬂ_lf(s,p(s), CDg,J(s)) ds

_ %ﬂ) ; (t - s)ﬂ‘lf(s, q(s):cDg,tq(s)) ds

B %ﬁ) /skkl(t" ~5)"&k(s,9(s)) ds

+ %ﬂ) /Otk(tk -5 (s, q(s),cDg‘tq(s)) ds‘

) ]%ﬁ) [ 716D pt0) s

_ %ﬂ) /:(t - s)ﬁ_lf(s’ q(s)’cDgltq(s)) s

i '%ﬁ) /skkl (tx —5)" & (s, p(s)) ds

S —

+ ‘%’3) /Otk (4 — s)ﬂ—lf(s, Q(S),cDg‘tq(s)) ds

) %ﬂ) /o =5 (5.p(5) Dpls) ds

(2yi-y

<7 [(Kfcqb +[fcl3)sf_y]C18¢(t) + Le, Coep

- re
(1__y)l—y

' ﬂI:JEﬁ) [(Rpcy + Lycp)t, " ]Creg(t)

Krcy + Lecg (11— 1-y
5[1‘«» fﬂ( V) (Sfy+t£y)+L§k]

I'(B) B-v
x (C1+ Co)e(p(2) + ).

Case 3(b): For t € (tx,si] and s € (sx_1, &), k =1,2,...,m, we have

|(AP)® - (Ag)(0)] = . t(t—S)ﬁflf(s,P(s),cDg,[P(S)) ds
') Jo

Tk

' Tﬂ) Sk-1

L
L(p)

(tx —5)P & (s,p(s)) ds

/0 (b= VP f (5,006, DL p(s)) dis

Page 13 of 26
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)L
- ﬂ) / (6 - )P (5,4(),“DL..q(s)) ds

- /S“(k 9P 1€ (5,q(s)) ds

/ (tx = 5)"7f (s,q(s),°D} ,q(s)) dis

")
=< ‘Tﬂ) /0 (t- S)ﬂflf(S’P(S)ng,tP(s)) ds

= / (- 9P 1f (s, q(5), Dl a(s)) ds

+’F(1ﬁ) /s“uk 9P 1€ (5,p(s)) ds

i | ) s

‘F(ﬂ / (tc — 9P (s, q(s), D} ,q(s)) dis

_ F[B) /0 (tr - S)ﬂ_lf(S’P(S),CDg_tp(s)) ds

K
< |:F(ﬂjjl— D (Sf + t][:) +Lgk:|C281ﬂ

K
=< [F(ﬂi 1) (Slé + t/f) +Lg:ki|(C1 + C2)8(¢(t) + W)-

From the above cases, for any p,q € Y and L <1, we obtain
(Ap)(&) ~ (A)(8)] <L(C + Cle(dp(®) + ¥),  te],
that is,
d(Ap, Aq) <L(Cy + Ce(op(®) + ), te],

which implies that A is strictly contractive on Y.
It follows from Egs. (4.3) and (4.5) that for any arbitrary p, € Y, there exists a constant
0 < A1 < 00 such that

|(Apo)(®) - po(d)] = ‘%ﬂ) /0 (¢ - )P (5,00(5), DL po(s)) ds

1 T
) /0 (T = P n(s,po(s)) ds — po(2)
< mep(t) <me(p(t) +v), te[0,s0],

also there is a constant 0 < A, < 0o such that

|(Apo)(8) = po(8)] = | ok (6p0(0)) = po (1)

<hey <he(p(O)+V), te(skntl,k=12,...,m
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Furthermore, we can also find a constant 0 < A3 < 00 such that

1(Ap)®) - po(®)] = | == [ (€ = 5V F (5.p0(5),DE po(s)) s
r'e) Jo

1 [
o (tx — )P & (s, po(s)) ds

Ry 0. Do) st
< Aze(p(t) + V)

forall t € (¢x,s¢], k=1,2,...,m.
Since f, & and po are bounded on J and ¢(-) + ¥ > 0, therefore Eq. (4.4) implies that

d(Apo, po) < 00.
By using Theorem 2.16(a), there exists a continuous function xy : / — R such that A”py —

x0 in (Y, d) as n — oo and Axg = x, that is, x, satisfies Eq. (4.1) for all £ € J.
Next, we verify that

{p € Y|d(po,p) < oo} =Y.

For any p € Y, since p and p, are bounded on J and min,; e(¢(¢) + ¥) > 0, there exists a
constant 0 < A, < oo such that

po(t) = p(&)| < dpe(p(®) +v), te].

Therefore, we get d(Apo, po) < 0o forall p € Y, that is,

{peYldpo,p) <o} =Y.

Hence, in view of Theorem 2.16(b), we conclude that x, is the unique continuous function
with property (4.1).
On the other hand, it follows from Remark 3.4 and assumption (As) that: for ¢ € [0, so],

we have

‘x(t) - %ﬂ) Ot(t - s)ﬁ’lf(s,x(s),cDg,tx(s)) ds

1 [T p1
_Tﬁ)/o (T = 5/ n(s,x(s)) ds
e ¢ el
S—F(ﬂ)fo (t-5)""¢(s)ds

& t Bl 1-y t 1 Y
<r([ -9 ) ([’ a)

< € <1_—V>1_Vtﬂ_yc¢¢(t)
T LB\B-vy
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<[ (1) g et
Slrp\g=y) * [

¢ (1-y\"7 —V:| .
[F(ﬁ)(ﬂ y) @)+ V)

for t € (sk-1,tx], k=1,2,...,m, we have

lx(t) ~ I, &(tx(®)| < ey

for t € (¢, sk], k=1,2,...,m, we have

1 ¢ 1 T
x(t) - N0 /0 (t- s)’s’lf(s,x(s),”Dg’tx(s)) ds - @) - (ti — )P & (s, %(5)) ds

' %ﬂ) /Otk(t" — )P (s,%(5), ° D}y ,x(s)) dis

B S N ey (tx — si1)”
Sl"(ﬂ)fo(t s) ¢(S)ds+1"(/3)/0 (tx — 8) ¢(s)ds+—r(ﬁ+1)

t 1 1-y 1 y

<m([ -9t a) ([ora)
e ([* g\ AN A
v o) ([ e a) T

— 1= — B
e A e R e

=TE \B- TG+
e [(1-y\'7" b e (l-y ey (tx — si-1)P
SF(ﬂ)(ﬁ—V) r yc¢¢(t)+l“(ﬂ)<ﬂ—y) b
¢y (1-y P boy LB ey (b — sk-1)?
< F(ﬁ)(ﬂ—y) (TP +67)eg0) + —1 2

o (1=v\"7 opey , pory, = si)
[Wﬂ)(ﬂ—y) T ) ) ]8(¢(t)+"’)‘

Using the definition of A given in Eq. (4.5), from the above cases we get

ﬂ_
’x(t) —(Ax)(t)| < [ “ (1—_)/) y(T’S’V + t,’ffy) + (tk_sk_l)ﬁ]e(qb(t) + W),

rB\B-y rp+1)
that is,
d(x, Ax) < Lo (1 L4 ) (T‘g—y + tﬂ_y) + (1~ 511)” , te] (4.7)
“TR\B-v , rg+1)

and #, sx_1 are considered to be maximum values. Hence, in view of Theorem 2.16(c)
together with (4.7), we obtain

dee Ax) _ Ly G5 V(TP 4 g7 + s

d(x,x0) <
W) == = 1-1
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implies that

[ (B2 (TF7 4 1) + Ul e (g(0) + )
1-L

|x(8) = x0(8)| <

forallt €], 0 <y < B <1, where f, si_; are considered to be maximum values and L < 1.

Hence problem (1.3) is Ulam-Hyers-Rassias stable with respect to (¢, ¥). O

Remark 4.2 By choosing ¢ = 1, problem (1.3) is generalized Ulam-Hyers-Rassias stable
with respect to (¢, V), in view of Definition 2.9.

Theorem 4.3 Let crg, > 0 be a real constant. Assume that (A1)-(As) are true and a
function x € B satisfies inequality (2.1), then there exists a unique continuous function
xo :J = R satisfying Eq. (4.1) and

|x(t) _xO(t)| = Cf.BgE» ¢ G], (4'8)
with
[r (TP + (= s10)” +))]
Cf:ﬁ:g - 1-L 4

where ty, sx_1 are considered to be maximum values and

K oy, L
L= t ti —si1)P [k =1,2,. 1,
max{r(ﬂ+1)(sk+ )+ TG 1)(k Sk-1) <
that is, problem (1.3) is Ulam-Hyers stable.

Proof First, define a set Y of all piecewise continuous functions p : ] — R in the following

way:
Y={p:]—>RlpeB), (4.9)
and let us introduce a generalized complete metric on Y as
d(p,q) =inf{C; + C; € [0, +00]||p(t) — q(t)| < (C1 + C)(28)}, (4.10)
for all £ € J, where
Cie{Cel0,00]l|p(t) —q(t)| < Ce}, te(tsil,k=0,1,...,m,
and

C, € {Ce[0,00]||p(t) - q(t)| < Ce}, te(sintelk=1,...,m.
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Define an operator A : /] — R by

w57 Jo (6= 9P f (s,9(5),°Df y(s)) dis

+ 15 fo (T =9)Pn(s,5(5)) s, te[0,s],
Ifkfl'tk(gk(t’y(t)))’ t € (Sk-1, i),
k=1,2,...,m

(Ay)() = (4.11)

1 fot(t —8)PLf (s, y(s), CDg (s)) ds
fskkl(tk —5)P k(s y(s)) ds
= w57 Jo =5 (5,9(), Dl () s, € (b4,
k=12,...,m

for all y € Y. Clearly, A is a well-defined operator, because y and f are continuous func-
tions.

Next, we have to prove that A is strictly contractive on Y. For any p,q € Y and C;,C; €
[0, +0o0], using Eq. (4.10), we have

’p(t)—q(t)|< Cie, te(t,skl,k=0,1,...,m, (4.12)
T | Ce, te(sk,tr),k=1,2,...,m. '

It follows from the property that the Caputo fractional derivative of a constant is always

zero, Egs. (4.11), (4.12) and from assumptions (A;)-(A4) that:
Case 1: For t € [0, 5], we have

Ap© - (400 = |5 [ (6 9 (5,09, DEp9) ds
i) (- 9 (s pls) ds
-5 ) (9P f(5, ), Df sa(s)) s
- %ﬁ) fo (T =5 (s, q(s) ds
< %ﬁ) /0 t(t — )27 f (s, p(5), D}y p(5)) — £ (5, q(5),° D}y ,q(s)) | dis

L/T(T_s)ﬂﬂ (5,0(5)) = n(s,q(s))| ds
L8 Js TP T

1

<—— [ (¢-s)P? [sz !p(s) - q(s)’ + L ’CDg’tp(s) - ”Dg,tq(s)‘] ds
') Jo

1 T .
' F(ﬂ)/o (T —5)P7'[Ly|p(s) - q(s)| ] ds

ﬁ t_ﬁ—l Ef t_ﬁ—lcts
< I‘(,B),/(t s) Clads+r(ﬂ)/0(t s) (DO'tCle)ds

_g)f1
F(,B)/ (T —s)P"Cieds,



Zada et al. Advances in Difference Equations (2017) 2017:317

which implies that
I<fC18 tﬁ + LnCIE Tﬁ
rp+1) rg+1)

Kesb +1, TP
B GAUREUEN FoOs
rg+1)

[(Ap)(®) - (A ()] <

Case 2: For t € (sx_1,t), k=1,2,...,m, we have

[(AP)®) = (AQ®)] = |, o &c(6.0(0) — I &k (8,0(0)]

<Ly |P(t) - Q(t)| <L Coe.

Case 3(a): For t € (tx,s¢] and s € (¢, k], k=1,2,...,m, we have

(AP)(©) - (M) = ‘%ﬁ) / (6= )P (5,p(5), DL p(s)) dis

. F(lﬁ) / (=965l d

/3 -1 cnf
F(ﬁ)/ (tr —s) f(sps) DOtp(s)) s
1

i
- %ﬂ) /skkl(tk =) (s,q(s)) ds

(t —5)P7f (s, q(s), D}y ,q(s)) ds

RN
’r(m/ (£ =" (5,(5), Dy () ds
) %/3)/ (£~ 9" (5q(s), “Dg,q(s)) ds
| /m 50

- %}3) sk_l(tk - S)ﬂilsk (s, q(s)) ds

+ '%’B) /(;tk = S)ﬁ—lf(s, q(S),CDg,tq(s)) ds

1 / (b= 5P (5, (6), DL () di

IA

rp+1) F(ﬂ 1)
Ky (L +

L
F(ﬁ+1) %) "TE+D

IA

K
f (tﬂ +tk)C1€ +—* (e —s51)PCre

(tx — Sk- 1)ﬂ:|(C1 +Cy)(2¢).

Page 19 of 26
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Case 3(b): For t € (t,s¢] and s € (sg_1, ], k =1,2,...,m, we have

[(Ap)(©) - (A9 ()] = ‘F(ﬂ) / (¢ = )" f (5, p(s),°Df p(s)) s

5 /Sk (=9 () s

W /0 (b - VP f (5,p(6),“DE p(s)) dis

_ %ﬁ) /Ot(t - s)ﬁ_lf(s, ‘1(5)»CD§,tq(s)) s

B %ﬂ) /Skkl(tk ~5) " &k(s,9(s)) ds

/ (tx — )" f (5, q(s), D}y ,q(s)) ds

F(ﬂ)
= ‘We)/o (£ = 5V f (5,p(5), D p(s)) ds

1 t
s [ €9 (s, DL at9) s

’ ‘%ﬁ) skkl (tx = )" &k (s, p(s)) ds
- /s“(tk 9P 1€ (5,q(s)) ds

’ ‘W / (1= 9)""f (5,4(5), DG ,q(6)) ds

5 [ =950 D 1)

Ky
T8+ 1)(

| /\

t# 4 tﬂ)Czs + (b — 55-1)P Cae

Lék
rp+1)

A

[ L5k
“ LT+ 1) ) T+

From above, we obtain

[(Ap)(&) = (Ag)(8)| < L(Cy + Cy)(2¢), t€],
that is,

d(Ap, Aq) <L(C; + Cy)(2¢), te],

which implies that A is strictly contractive on Y for any p,qg € Y and L < 1.

(b - sk_lﬂ(cl +C)(2e).

Page 20 of 26
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Let po € Y, it follows from the continuity property of po and Apy that there exists a
constant 0 < % < oo such that

(Ap0)®) - po(®)] = | == [ (€ = /P F (5.po(5),DE opo(s)) s
r'e) Jo
1

T
' /O (T = /"1 (s5,p0(s)) ds - pol?)

<t(2¢), tel0,s0],

also there exists a constant 0 < ¥, < 0o such that
[(Apo)(®) — po(8)] = ‘Ii,l,tkfk(t:Po(t)) -po(®)| <92(26), te (s tel, k=1,2,...,m.
Furthermore, we also can obtain a constant 3 between 0 and oo such that
1 ¢ 8
|(Apo)(®) — po(1)] = ‘—/ (t = )P (s,p0(s),“Dly 1po(s)) ds
I'(B) Jo
1

o (=P8 (s,p0(s)) ds

L) Jsy
1 bk
- @ A (t — S)ﬁ_lf(S,po (s), CDg,tpo (S)) ds — po(t)

<%3(28), te(tr,sl, k=1,2,...,m.
As f, & and p, are bounded on J and 2¢ > 0, therefore Eq. (4.10) implies that
d(Apo, po) < 0.
According to Theorem 2.16(a), there exists a continuous function xy : J — R such that

A"pg — x¢ in (Y, d) as n — 0o and Axg = xp, that is, x, satisfies Eq. (4.1) forall £ € ].
Next, we check that

{p € Yl|d(po,p) < oo} =Y.

Forany p € Y, since p and p, are bounded on J and 2¢ > 0, there exists a constant 0 < @, <
oo such that

|po(t) - p(t)| < 0,(26), te].
Thus we obtain d(Apy, pg) < oo for all p € Y, that s,
{p € Y|d(po,p) < oo} =Y.

Hence, in view of Theorem 2.16(b), we conclude that x is the unique continuous function
satisfying Eq. (4.1).
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On the other hand, it follows from the definition of A and Remark 3.2 that

() - (A%)(0)| < [ (TP + (6 — se)” + 8 }};,

rg+1)

that is,

d(x, Ax) <

<5 (ﬂ2+ 5 (TP + (e -s0)P + 1)), te), (4.13)

and &, sy are considered to be maximum values. From above Eq. (4.13) and Theo-

rem 2.16(c), we have

2 B
e TP + (t —sp_1)P + £
<d(x,Ax) < r‘(ﬂ+1){ (k kl) k},
- 1-L — 1-L

d(x,x0)
which implies that
|x(t) —xo(t)| < pef

forall £ €] and 0 < 8 <1, with

[ (TP + (6 —5i0)? + £4)]

Cf'ﬂ’g: 1-1 4

where i, sx_1 are considered to be maximum values and

&k
rp+1)

K
L = max S (s,’f+t,f)+
rpg+1)

(b — se1)? k:1,2,...,m} <1

Hence problem (1.3) is Ulam-Hyers stable. O

Remark 4.4 If A; g ,(e) = cr,546 With As5,(0) = 0, then problem (1.3) is generalized Ulam-
Hyers stable.

5 Examples

In this section we show the applicability of our main results by providing some examples.

Example 5.1 Consider

1
1 cp2
cD(ity(t) _ ly(@®)1+ Do,ty(tl)l ) te(0,1]U (23],

) (+e!) L+ |y ()| +1<DE y(B))
EY -1
YO = L6 (6)0) = 15 2 =97 loghe)lds,  e(1,2],

1 _
¥(0) = Iggn(6,(0) = s J;'3 =97 cos ly(s) ds,

(5.1)

1
where “Dy, is the Caputo fractional derivative of order } with lower limit 0, 0 = £y < so =
1<t1=2<s=3and ] =10,3].
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And

1
i [x()|+1°DZ x(8)]
°Dg % (t) - S| <ep(t),  te(0,1]U(2,3],
(L+et)(1+[x()|+DG x(0)])

(t) ~ gy [P 2 =5) ? log ()l dsl < ew, £ (1,2],

with condition

x(0) = 102377(1‘ x(t) / (3-5) 7 cos |x(s |ds

re)

Denote the continuous functions f, & and 7 as follows:

F(6y(0),DL () = PO Dol ¢ 0,11U2,3)

1L+ + |y + 1Dg y()])

with Ky = § and Ly = £,

wl\—-‘

&(t,y(0) = te(1,2]

with Lg, = 0.1, for k= 0,1and

€[0,3]

n(t,y(t)) = oS

with L, = 0.2.

We put y = % =y = %,(b(t):Set and cy =cg = %,wehave

(/t(es)3 ds) < é(Set) =ef, tel0,3]
0

ST

and

L1 g 3 1
(/ (”Dg,tes) ds) —(Se) e, te[0,3].
0

o

From the above considerations, we clearly see that (A4;)-(As) are satisfied.

As
1§c¢+£fcﬁ<1-y>l—y by }
L; = max S8 Py e L k= 0,1
1 { T'(B) B—y (k k ) Ek
Ky
Lzz{r(ﬂ+1)(sf+tf)+Lgl}.

By putting the above values, we get L; = max{0.1688214,0.2539802} ~ 0.25398 and L, =
0.4886639641~0.5,s0 L=0.5<1.
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By Theorem 4.1, there exists a unique solution %y : [0,3] — R such that

1
0 (5)|+1°D %0 (5)]

e -7 )ds

r(3) I
(L+€)(L+1x08)}+1<DZ, 0 (5)
-1
+ ﬁ%) J3(3=5)7 cos|xo(s)| ds, te[0,1],
3 2 -1
Iy (&i(t %0 (1)) = ﬁ%) [ 2-95)7 loglxo(s)lds, te(1,2],
xo(t) = ) ep? (5.2)
2, @D
i (e =) () g

(L+65)(L+1x0 ()| +1°Dg 30 (5)1)
3

+ % 0 (3 —s)771 cos |xo(s)| ds
rd) 1
(257 (00 gy (2,3
1 ’ ) )
(1+€5)(1+1x0 (5)|+1DG 0 ()

2
r()Jo

and

1(get 4 1
|x(2) — x0(8)| < %ﬁ?z) zz.%{%(sé + %)}

which implies that problem (5.1) is Ulam-Hyers-Rassias stable.
Remark 5.2 If we set ¢ =1, then problem (5.1) is generalized Ulam-Hyers-Rassias stable.

Example 5.3 Consider problem (5.1) and

I”Dé,tx(t) -f (t,x(t),cDévtx(t)H <eg, te(0,11U(2,3],
lx(t) — I, (6, x(0)| < e, te(1,2],

with condition
1 1 3 1
%(0) = Ig3n(6%(0)) = —~ / (3-5)7 cos |x(s)| ds.
’ r'(3) Jo
The continuous functions f, & and 7 are defined as follows:

lx(2)] + |6Dé,tx(t)| te(0,1U(2,3]

£y, D x(0)) = ;
(1 +e)(1 + |x(@)] + |<Dg x(1)])

with Iff = % and L_f = %,

£1(t,x(8)) =log |x(8)], te(1,2]

with Lg, = 0.1, for k = 0,1 and

n(t,y(t)) = Cos ‘y(t) , te]0,3]

with L, = 0.2.
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1
5

tions, we clearly see that (4;)-(A4) are satisfied.

We put y = = and ¢ is any positive real constant, i.e., ¢ > 0. From the above considera-

As we have

K Lg
L =max{wj;l)(sf +1]) + Wil)(h —so)ﬂ}.

By putting the above values, we obtain L &~ 0.506075 < 1.
In view of Theorem 4.3, there exists a unique solution x, : [0,3] — R satisfying Eq. (5.2)

and
’x(t) —xo(t)| <crpgts te]
with
%%)(3% +(2-1)% +2%)
Grs= 1 0506075 o020

which implies that
|x(£) — x0(8)] < (18.95)e.
Thus problem (5.1) is Ulam-Hyers stable.

Remark 5.4 If we consider Asgq(e) = ¢r,5,€, i.e., A g g(€) = (18.95)e with A¢ g,(0) = 0, then
problem (5.1) is generalized Ulam-Hyers stable.

6 Conclusion

In view of generalized Diaz-Margolis’s fixed point theorem, we established sufficient con-
ditions for the existence and uniqueness of the solutions of problem (1.3) and proved dif-
ferent types of Ulam stability results for nonlinear implicit fractional differential equations
of problem (1.3), taking into account the Caputo fractional derivative and its two proper-
ties, i.e., Caputo fractional derivative is a linear operator and its derivative of a constant is

Zero.
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