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Abstract

This paper investigates the impacts of state-dependent impulses on the stability of
switching Cohen-Grossberg neural networks (CGNN) by means of B-equivalence
method. Under certain conditions, the state-dependent impulsive switching systems
can be reduced to the fixed-time ones. Furthermore, a stability criterion for the
considered CGNN using the proposed comparison system is established. Finally, two
numerical examples are provided to illustrate the efficiency of the theoretical results.
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1 Introduction

The well-known Cohen-Grossberg neural networks (CGNN), which is a large class of arti-
ficial neural networks including the Hopfield neural network, the cellular neural network,
the shunting neural networks, and some ecological systems, were initially proposed and
studied by Cohen and Grossberg [1] in 1983. Due to their promising potential diverse ap-
plications, such as pattern recognition, signal and image processing, associative memory;,
combinatorial optimization, and parallel computing, CGNN have attracted increasing in-
terest for the past few decades. In particular, a CGNN optimization solver is desired to
have a globally asymptotically stable equilibrium point that corresponds to the globally op-
timal solution of the objective function [2]. For that purpose, the global stability of CGNNs
has been extensively studied and developed [3-11].

The instantaneous perturbations and abrupt changes at certain instant are exemplary of
impulsive phenomena that can affect the evolutionary process of many complex systems.
Impulsive phenomena widely exist in many fields such as epidemic prevention, popula-
tion dynamics, economics [12—15], and so forth. Especially in real neural networks, im-
pulsive perturbations are likely to emerge since the states of neural networks are changed
abruptly at certain moments of time [16-18]. On the other hand, switched systems are
systems with dynamic switching and can be used to model real systems whose dynam-
ics are chosen from a family of possible choices according to a switching signal [19]. In
[20], Li et al. studied the exponential stability of the switching systems. Recently, switch-
ing neural networks have been also proposed [21-23]. In [23], the authors introduced
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the Cohen-Grossberg neural networks into the switching systems and established the so-
called switching Cohen-Grossberg neural networks.

In general, the impulsive systems can be classed into two types: impulsive systems
with fixed-time impulses and impulsive systems with state-dependent impulses. State-
dependent impulses are usually of state dependence, and thus, different solutions have
different moments of impulses. Up to now, numerous monographs and articles have fo-
cused on the fixed-time impulsive systems [24—33], and only few publications have dealt
with state-dependent impulses [34—37]. However, in real world problems, the impulses of
many systems do not occur at fixed times [38], for example, biological and physiological
systems including artificial neural networks, saving rates control systems, and some circuit
control systems. In addition, we can also utilize the state-dependent impulses in some sit-
uations. In [39], the authors studied state impulsive control strategies for a two-language
competitive model with bilingualism and interlinguistic similarity. It is evident that the
state-dependent impulsive systems are much more difficult in modeling and control than
the fixed-time impulsive systems.

Recently, Akhmet [40] proposed and developed a powerful analytical method, B-
equivalence, which can reduce the state-dependent impulsive system to the fixed-time
one that is expected to be the comparison system. However, the jump operator in the
comparison system might be a very complex map and can hardly be used to analyze sta-
bility. Sayli and Yilmaz tried to investigate the stability of a state-dependent impulsive
system using B-equivalence method in [34, 35]. Unfortunately, they could not estimate
the relationship between the original jump operator and a new jump operator of the com-
parison system, just simply assumed that the new jump operator is linear with respect to
system state. One should emphasize that there are few results in the literature where the
reduction principle based on B-equivalence is effectively applied to stability analysis of
state-dependent impulsive systems.

In the light of above discussion, it is of great importance to consider both state-
dependent impulses and switching in the neural network models. In recent years, hybrid
impulsive and switching systems have been extensively studied [41-43]. In [41], Li et al.
investigated the global stability of impulsive switching HNN. However, they only consider
the fixed-time impulse, and the impulses occur at switching instants, as well as in [42] and
[43]. In [44], the authors also consider the fixed-time impulse, despite the fact that the im-
pulses do not occur at the same time as the switching signals. In [45], Song et al. discussed
the state-dependent impulses in nonlinear fractional-order systems. In [46] and [47], the
authors investigated the impacts of state-dependent delay on the stability of nonlinear dif-
ferential systems. In the present paper, we study the global stability of switching CGNNs
with state-dependent impulses, where the switches occur at the fixed time, while the im-
pulses do not occur at fixed times. To the best of our knowledge, this is the first switching
CGNNs model that takes into account the state-dependent impulses. Firstly, we give the
sufficient conditions that ensure every solution of system intersects each surface of dis-
continuity exactly once. Nextly, we prove the existence of solution to switching CGNN
with state-dependent impulse. Then, we obtain the quantitative relation between new
jump operators and system state and show that the global stability of the corresponding
comparison system implies the same stability of the considered state-dependent impul-
sive switching CGNN. Finally, we establish a stability criterion for the considered CGNN
using the proposed comparison system.
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The rest of this paper is organized in this fashion. In Section 2, the problem is formulated
and some preliminaries are given. We state the conditions of absence of beating and in-
troduce B-equivalent method in Section 3. The existence of solution to switching CGNN
with state-dependent impulse is shown in Section 4. We establish a criterion for the global
stability of switching CGNNs with state-dependent impulses in Section 5. In Section 6,
two numerical examples are provided to demonstrate the effectiveness of the theoretical
results. Finally, Section 7 concludes the contributions of this work and points out some

problems and challenges.

2 Problem formulation and preliminaries
Throughout this paper, R, and R” denote, respectively, the set of nonnegative real numbers
and the n-dimensional Euclidean space, Z, represents the set of positive integers, and
we denote by I'; = {(t,x(t)) e R, x G:t=06; + 1;(x(£)),t €R,,i € Z,,x € G,G C R"} the
ith surface of discontinuity. We denote by I the identity matrix, by P? the transpose of
matrix P, diag{- - - } the block-diagonal matrix. For x € R", ||x|| denotes the Euclidean norm
of x. For matrix A € R™", ||A|| = /max{|A(ATA)|}, where A(-) represents the eigenvalue
value.

In the present paper, we consider the following switching Cohen-Grossberg neural net-

works with state-dependent impulses:

x(t) = —Ay, (x(0)) [B, (x(2) — Cfy; x(2)], ¢ € (6;,6;], and £ #6; + Ti(x(2)),

Ax(t) = Ji(x(2)),  t=0; + 1:(x(2)), v
with the switching Cohen-Grossberg neural networks as their continuous subsystem:
x(t) = —Ay, (%)) [B, (x(0)) = Cufy, (x(8))], € (6:,60:1], and £ #6; + ;(x(2)), 2)
and the state jumps as their discrete subsystem:
Ax(t) :]i(x(t)), t=0;+ ri(x(t)), (3)

where x is the state variable, x = (x1,...,%,)T € G,G C R", I; € {1,2,...,m} is a dis-
crete state parameter, where m is a positive integer. The time sequence {6;} satisfies
Op=0<6 << <6 <by1<---,and 6 — oo asj— oo. For k € {1,2,...,m}, Ax(x) =
diag(a{” (x1), a3’ (x2), ..., @ (6)), Br(®) = (B0 (1), 6 (x2), ..., b ()T, Bi(0) = 0, C =
(c,(ﬁ,)) € R™" and fi(x) = (fl(k)(xl),..., fn(k)(xn))T € R” being activation functions satisfy-
ing fx(0) = 0. Ax|;g; = x(&+) — x(&;) with x(§;+) = lim,_¢.0x(t) denotes the state jump
at moment §&; satisfying & = 6; + 7;(x(&;)). Without loss of generality, we suppose that
x(&;—) =lim;_, ¢, x() = (&), i.e., the solution x(t) is left continuous at the impulse point.

0o is the initial time, especially, we have

x(2) = —Aj, (6(0)[By, (x(2)) — Ciofiy ®(0)], ¢ € [60, 611,

x(@o) =Xp.

Next, we introduce the following assumptions.
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Assumption A Let /2 = [;, A, (x(t)), By(x(t)), and activation functions f;(x(¢)) are globally
Lipschitzian, i.e., there exist positive constants L, Lyy, L, such that
(i) 1AR((@) = Ay < Lanllx(2) — ()| for any x(¢), y(2) € R”;
(i) 11Bn(x(8)) = Ba(y@))Il < Lon|lx(2) — y(@)|| for any x(¢), y(2) € R";
(iii) [fiu(x(@)) = fu V@I < Ly lIx(2) — y(2)| for any x(£), y(¢) € R".
And A (x(2)) are bounded, that is, ||A,(x(2))| < ay for any x(¢) € R”.

Assumption B Foreachie Z,,x € G, J;(x) : G — G is continuous, satisfying that J;(0) = 0,
7;(0) = 0, and there exists a positive constant L; such that ||x + J;(x)|| < L;||x||.

Remark 1 Let x(¢) be a solution of system (1) at the impulsive point &, x(&x+) = (&) +
Je(x(&x)). We get ||x(&c+) || < Ly||lx(&k)|| by Assumption B. Generally, when L; < 1, the im-
pulse at & is of stabilizing effect on system stability, it is referred to as stabilizing impulse.
Otherwise, if ||x(&x+)|| > Ly ||x(&x) || and L; > 1, the impulse at & is of destabilizing effect on
system stability, it is usually referred to as destabilizing impulse.

Remark 2 From Assumption B and the previous discussions, one can easily see that the
origin of system (1) is an equilibrium point. The uniqueness of this equilibrium point can
be concluded from the global asymptotic or exponential stability constructed in Section 5.

Finally, we present several definitions.

Definition 1 ([41]) We say that a piecewise continuous function x(¢) = x(¢; 6y, o) is a so-
lution of system (1) if
(i) for t € [6,61], x(t) satisfies the following system:

x(t) = —Au, (x(£)) [By, (x(2)) — Cifiy (1)), ¢ € [60, 611,

x(eo) = X0,

(i) assume that the solution has already been determined in the interval [0y, 6;], it is
x(£), then for (0;,0;,1], x(¢) satisfies the following system:

x(t) = Ay, (x(£)) [By, (x(2)) — Cpfy, (x(E))],
t € (6;,0:1], and ¢ #0; + T;(x(2)),
Ax(t) = Ji(x(t)), t=06;+Ti(x(2)),

(iii) x(2) is continuous except for ¢ = §;, and it is left continuous at ¢ = §;, and the right
limit x(&;+) exists fori € Z,.

Definition 2 ([32]) Let V: R" — R,, then V is said to belong to class € if
(a) V is continuous in (7;_1, ;] X R" and for eachx € R",i=1,2,3,...,
lim) (o1 V(8,9) = V(7/7, %) exists.
(b) V islocally Lipschitzian in x.

From this definition, we can see that V associated with system (1) is the analog of Lya-
punov function for stability analysis of ODE. Since these Lyapunov-like functions are gen-
erally discontinuous, a generalized derivative should be defined, which is known as the
right and upper Dini’s derivative.
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Definition 3 ([32]) For (¢, %) € (ti_1, 7;] X R”, the right and upper Dini’s derivative of V €
with respect to time variable is defined as

D'V(t,x) = lirr(} sup(l/u){ V[t + X+ uf(t,x)] - V(t,x)}.
pu—0*

Definition 4 ([41]) A dynamical system of the form x(¢) = f(¢,x(¢)) is said to be a 7;-
class system if there exist a positive-definite Lyapunov function V(¢) = x’ Px and a positive
constant « such that the Dini’s derivative of V along the solution of the dynamical system
satisfies D*V (t) < —a V().

Definition 5 ([20]) The origin of system (1) is said to be globally exponentially stable if
there exist some constants y > 0 and M > 0 such that ||x(¢, £, x(¢p)) || < Mexp(—y (t — tp))
for any ¢ > ¢.

3 The conditions for absence of beating and B-equivalent method
In this section, we will seek the conditions which ensure that each solution of system (1)
intersects each surface of discontinuity exactly once. Then we will formulate a fixed-time
impulsive switching analog as the comparison system of (1) by using B-equivalent method.
For this purpose, the following assumptions are stated.
(C1) Foreachie Z,,t;i(x) is continuous and there exists a positive constant v such that
0<1i(x) <v.
(C2) There exist two positive numbers 6 and 6 such that 6 < 6;,; — 6; < &, where 8 > v,
forallie Z,.
(C3) Fixanyje Z,, and let x(¢) : (6;,6; + v] = G be a solution of (1) in time interval
(6,6; + v]. One of the following two conditions is satisfied:

0 T Ay () By (x(0) - Cufy, x(@O)]) > 1, x€ G,
Tj[x(gj) +/;(x(§))] = Tj(x(%—/))r t=§,
(i) dr’ =1 —Ay(x(@))[B,(x(0) - Cufy, ()]} <1, x€G,
Tj[x(??j) +Ji(x(€))] < 7(x(§))), t=§,

where ¢ = §; is the discontinuity point of (1), i.e., § = 6; + 7;(x(§))).

Lemma 1 Assume that conditions (C1) and (C2) are satisfied, and x(t) : R, — G is a solu-
tion of (1). Then x(t) intersects every surface I';, i € Z,.

The proof of Lemma 1 is quite similar to that of Lemma 5.3.2 in [40], so it is omitted
here.

Lemma 2 Let (C3) hold. Then every solution of system (1) intersects the surface I'; at most
once.

Proof Assume the result is not true, then there is a solution x(¢) which intersects the sur-
face T'; at (s,x(s)) and (s;,%(s1)), without loss of generality, s < s1, and there exists no dis-
continuity point of x(t) between s and s;. Then s = 6; + 7;(x(s)) and s; = 6; + 7;(x(s1)). For the
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case (i) of (C3), we get

51— 5= 7j(x(s1)) - 7(x(5))
> (x(s1)) = gx(s) + ] (x(5)) ]
= 7j(x(s1)) = 75(x(s+))
i ["Zx {4 o10) [ B4 :0) - (x(t))]}} (s1-3)

t=k€(s,51]

> (81— ).

This is a contradiction. Repeating a similar process in the case (ii) of (C3), we can get

s1 —s < s —s. Itis also a contradiction. So the proof is completed. d
Via the above lemmas, one can get the following result.

Theorem 1 Suppose that (C1), (C2), and (C3) are fulfilled. Then every solution x(t) : R, —
G of system (1) intersects each surface I';, i € Z*, exactly once.

Now, we formulate the B-equivalent system for system (1). Let x°(¢) = x(t,0;,x°(6;)) be
a solution of (1) in [6;,6,,1]. Denote by &; the meeting moment of the solution with the
surface I'; of discontinuity so that & = 6; + 7;(x°(;)). Let x'(¢) be a solution of (2) in [6;,0;,1]
such that &' (&) = x°(§") = 2°(&) + Ji(x° (&)

Define the following map (as shown in Figure 1):
W;(x°(0)) = 5 (6:) — x°(6)

0;
— (e + /g (A [B(16) - G (7 9)] s~ 20)

0;
() + () + f (=44 (2 5)) [By (+(5)) = Cufy (+(5)) ]} s — x°(6))

§i

[ A B () - i ()

i

&
+]; <x0(9i) + ; {—Ali (xo(s)) [B;i (xo(s)) -Cufy; (xo(s))] } ds)
0;
o[ A O) B (6) - Cuf (< 0)] s @

Remark 3 (6;,x°(6;)), which is the common point of [6;_;,6;] and [6;, 6;,1], meets the solu-

tion of

x(t) = —Ay (0(0) 1By (x(2)) = Cp fy ()], ¢ # Ok + Te(x(2)),
Ax(t) = Je(x(t)), £ = O + Tie(x(2)),

forbothk=i-1and k=1.
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Figure 1 Construction principle of the map W;i(x°(65)).

Obviously, x°(¢) = x(¢,6,,x°(6;)) can be extended as the solution of (1) in R, from Defini-
tion 1, Remark 3, and Figure 1. Furthermore, we consider the following fixed-time impul-
sive switching system in R,:

x(t) = —A (x()) [B,(x(t)) - Cufy, *(2))], £ € (6 6in],

(5)
Ax = Wi(x°(6))), t=0;.

By the definition of W;(x°(6;)) together with Figure 1, x'(¢) = x(¢,&;,x°(&;")) can be ex-
tended as the solution of system (5) in R,. Clearly, x'(¢) is continuous on (6;,6;,1], and
W;(x°(6,)) is limited. On this basis, we make the following assumption.

Assumption C For any solution x!(¢) to system (5), x}(¢) is bounded, i.e., there exists a
positive constant H such that || (x}(¢))|| < H for any ¢ € R,.

In Section 4, we will learn that Assumption C holds if Assumptions A, B, and (C1)-(C3)
are valid.
Moreover, we have the following observations without proof:

Observation 1 On time interval (£;,0;,1], 1(¢) = 2°(¢), and #'(8;+) = x°(8;) + W;(x°(6;)),
xH (&) = x0(&i+) = 2°(&) + Ji(x°(&1).

Observation 2 On time interval (6;, §;], let Assumption C hold, we have
) - x° ()
t
—2°(6) + Wi(x°(6) + / (=, (59) [By ((5)) = Cufy ()]} s
0;

-0 = [ -Au(60) (B () - Cuf (9] s

= \/Vi(xo(gi)) + /{:{—Ali (xl(s)) [Bli (xl(s)) -Cufy; (xl(s))]

Page 7 of 21
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+ Ay, (xo (S)) [Bli (xo (S)) - Cufy (xo(s))] } ds
W) + [ LA 6) - 44 (0] [B(0) - Gt (9]

0;

+ Ay (¢°9)) [~ (By, (') - By, (2°(5))) + Cy (s (+' ) =i, (2°(5))) ]} s.
From Assumption A, let & = [;, then h € {1,2,...,m}, we get
10~ 20

= [wi=*@)] + /g (L © =@ [Lon |5 ©)] + I1CullLa][ ']

i

+ Zzh[Lbh ||x1(s) —x%(s) || + 1Cull L ||x1(s) —x%(s) ||]} ds

t
< [ W) + (Lo + G Lastt + ) [ [0) =29 .
0;
Using the Gronwall-Bellman lemma [40], we find that

|6 (®) = x°@) || < |Wi(x°©)) | exp[v(Lon + | Cull L) (LanH + an)]. (6)

Remark 4 System (5), which is a fixed-time impulsive switching system, is called the B-
equivalent system of (1) from Observation 1 and [40]. We refer the reader to the book [40]
for a more detailed discussion. In Section 5, we will show that its stability implies the same

stability of state-dependent impulsive switching system (1).

4 The existence of solution for switching CGNN with state-dependent impulse

In this section, we will show the existence of solution of impulsive and switching systems
(1) and (5).

Theorem 2 Let Assumptions A, B, and (C1)-(C3) hold, then a solution of system (1) exists
on [6;,0;.1].

Proof To prove this theorem, we firstly show that the following claim holds:

Claim. Let F;,(t,x) = —A;,(x(2))[By, (x(t)) — Cy.f;,(x(£))], then F,(t,x) satisfies a local Lips-
chitz condition on [0;,&;] x G and (§;,6;,1] x G.

Let us prove this claim. For Py(to, x.) € [6;,&;] x G, 3

Go = {(t,x) [t =toll < a,llx—x.l < b} Cl6,&] x G.
When (¢,x,), (t,%3) € Gy, we have

Fy,(6,%1) = Fy,(t,%2) = Ay, (%1(2)) [By, (%1(2)) — Cff, (%1(2)) ]
+ Ay, (%2(8)) [By, (%2(2)) = Cufy, (%2(2)) ]
= —[A;(x1) — Ay, (%) ][ Bi, (1) — Cp.ff, (1) ]
+ Ay (e2)[=(By (n) = By (x2)) + Cy (£, (1) = £ (32)) ]
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Clearly, ||, || < ||, + b, for simplicity, let ||x, || + b = b, & = I;. By Assumption A, we get

||Fh(t)x1) - Fh(t;xZ) ”
< Lapll%1 = 22|l (Lonlla | + 1Co | LNl 1)
+ an(Lonllxr — %21l + | Crll Lllx — x211)

< (Lon + IChll L) Land + @) l1x1 — %2 .

Let Lp = (Lp, + ||Ch||Lﬂ,)(Lahl_9 + ay), then F (t,x) satisfies a local Lipschitz condition on
[6;,&] x G. Similarly, on (&;,6,.1] x G, Fj;(¢,%) also satisfies a local Lipschitz condition.
Therefore, the claim holds.

It is evident that the function Fj,(¢, %) is continuous on [6;,&;] x G and (§;,0;.1] x G, and
that x(&;) + J;(x(&;)) € G. So a solution of ordinary differential equation (2) exists, denot-
ing by x°(¢) = x(t,0;,x°(0;)) for t € [6;,&]. Since there is no surface of discontinuity on
[6:, &1, 2°(¢) = x(t,0;,x°(8;)) is also the solution of system (1) on [6;, £;] x G. Moreover, when
t = &, we have x(§;+) = x(&;) + Ji(x(&;)) € G. Taking into account that (&;,x(£;+)) is an inte-
rior point of [6;,0;,1] X G, a solution of ordinary differential equation (2) with initial con-
dition x(£;+) = x(&;) + J;(x(£:)) exists. We can proceed the solution x°(¢) = x(t, &,x°(&;+))
on the interval [§;,0;,1]. Because of (C3), the last solution cannot meet the surface I';
again, then [6,,6,,1] is the maximal right interval of existence of x(¢) here. Similarly,
x0(t) = x(t,&,x°(&;+)) is also the solution of system (1) on (£;,6;,1] x G. That is, the so-
lution x°(£) of system (1) exists on [6;,6,1],

0 P x(t’ Qi’xo(ei))r te [ei)gi]:
X =

x(t, Si’x0(§i+))’ te (Ei’ 0i+1]'
The proof is completed. O
Based on the above discussions, the following theorem is immediate.

Theorem 3 Let Assumptions A, B, and (C1)-(C3) be valid, then a solution of system (5)

exists on (0;,0;,1].

Combining Definition 1 and Remark 3, one can get the existence of solution of impulsive

and switching systems (1) and (5).

Remark 5 By the previous discussions, we can see that the solution x}(£) of system (5)
is piecewise continuous. Since lim;_.g,, x'(£) = x1(6;+) = x°(6;) + Wi(x°(6;)), then x'(¢) is
bounded on (6;,6;,1]. Furthermore, x'(¢) is bounded for any t € R,. That is, Assumption C

is valid if the conditions of Theorem 3 are satisfied.

5 A criterion for the stability of switching CGNN with state-dependent impulse
In this section, we will investigate the stability of impulsive and switching systems (5) and

(1) and establish the stability criteria for systems (1).
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Theorem 4 Let Assumptions A, B, and (C1)-(C3) hold. For simplicity, let h = I;. Suppose
that there exists Vj, € Q such that

%@ [ < Vi(x(8) < 2|07, 7)

DV (x(1)) < o Vi(x(2)), te€ (658, (8)

and

V4 opV - 1
—lexp| — ) =1 |an(Lon + |CullLm) & 10, 2p < 1, 9)
Olh|: P( » ) :| h( bh h jh) n Ak

where >0, A, >0, p >0, a € R, and x(t) is a solution of (2) in (6;,&;). Then

@ [« + Wi(x°(6)) | < Bn]x°(62)
b) [« @) -2"O < 8[x°©)| foranyt e 6:&],

’

where

a1
oV _ _ _ apv
Bn = {1 - aﬁ [GXP<7> - 1]ﬂh(Lbh + | Cll L) ¥ Mhlkh} Ly iy h GXP<7>,

h

8n =1+ Bu)explv(Lpn + I Cull L) (LanH + an)], and x°(t) = x(t,6;,x°(0;)) is a solution of (1),
which intersects the surface T'; of discontinuity at &;, i.e., & = 0; + 1;(x°(§;)). And x\(t) is a
solution of (5) such that x(9;+) = x°(8;) + W;(x°(8;)) and x'(&;) = x°(&;+) = x°(&) + J;(x°(£))),
here W;(x°(6,)) is defined by (4).

Proof The following inequalities follow conditions (7) and (8), respectively:
IR Vi((0) < [2@)] < 3y Va(x(2))

and
Vi, (x(t)) <W (x(9i+)) exp(ah(t - Qi)).

Using the last two inequalities, we get

|%@)] < [ Vi (x(6:+)) exp(anie - 6)) ]
<Y u;lkh exp(ah(t - Qi)/p) ||x(0i+) ||

Therefore

|x°@)] < i An exp (et - 6,)1p) | (6:)

’

and

|6 )] < & i 2w exp(en(e = 0:)1p) | 2°6:) + Wi (x°(62) |-
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Next, we show that claim (a) holds. From (4), we have

|6+ Wi @) = |+ @)

&
X (E) - /H A OB ) - Gl 9)] ds

<@+ [ 1A B ) - Gl )] ds
9:

&
< [+°€) + A @) + Lo + 1C3Ls) [ '] ds

<L«

&
+ an(Lon + | Cull L) {1 2 | 5°(6:) + Wi(x°(6)) | / exp(a(s — 6,)/p) ds
0,

i

<L;Y i exp(%) <@ + a%(exp(%) —1)

x an(Lon + 1 Cull L) { 15, n | 4°(6:) + Wi (2°(67))

’

which implies that
06 + Wi 6) |
< {1— aﬁh[exp(‘%’) —1]zzh(Lbh " ||ch||th)dm}_1
x Ly exp(‘%") 1200

= Bu||x°(6)].-

Finally, we prove claim (b). By (6), we get

| (@) = x°@) || < |Wi(x°©)) | exp[v(Lon + | Cull L) LanH + an)]
<@+ B exp[v(Lon + 1 Cull L) LanH + an) ]| 2°©6) |
= 5340

This completes the proof of the theorem.
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O

Remark 6 Let the conditions of Theorem 4 hold, and § = max{8i,65,...,8,,}, then claim

(b) of Theorem 4 can be rewritten as

| (&) = x°(@) || < 8]|°(62)

, te(6,&] foranyie Z,.

(10)

Remark 7 From Theorem 4 and Observation 1, one can see that for any solution of (1),
x°(¢), there must exist a solution of (5), x}(£), such that [|x!(£) — x°(¢)|| < 8||x°(8;)|| for t €

(0,,&]; and x'(£) = x°(¢) for £ € [0y,61] U (&;,6;,1], and vice versa.
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Theorem 5 Let all assumptions of Theorem 4 hold. Then
(i) the global asymptotic stability of the trivial solution in system (5) implies the same
stability of the trivial solution in system (1).
(ii) the origin of system (5) is globally exponentially stable implies that the origin of
system (1) is also globally exponentially stable.

Proof (i) Since the trivial solution of system (5) is globally asymptotically stable, then
limy_, o0 %1 (£) = 0, and lim;_, o #1(6;) = 0.

When ¢ € [6y,61] or t € (§,6;,1], we have [2°(2)|| = |x}(t)|l; and when ¢ € (6;,&;], by (10),
we get

[°@] < '@ -«@) + |@)]
=8[x@)] + [« @]
sl @] + <),
Moreover, lim;_ o [|2° () || < 8limi_s o0 |21 (8:) || + lim;— oo |1 (£)|| = 0. Therefore, the trivial
solution of system (1) is globally asymptotically stable.

(ii) Let x°(¢) = x(¢, 6;,x°(6;)) be a solution of system (1), for the corresponding solution
x1(¢) of system (5), we can assume that there exist positive scalars M; > 0,y; > 0 such
that x'(¢) satisfies that [|x!()|| < M; exp(—y1(t — 6o)) by the global exponential stability of
system (5), where £ > 6.

When ¢ € [6g,61] or t € (&,0:,1], we have [[°(@)[| = |l¥'(¢)]| < Myexp(-y (¢ — 6p)); and
when ¢ € (6, &;], by (10), we get

[°@] < '@ -«@) + | @)
<8]x°(8)] + Miexp(—n(t - 60))
< 8M; exp(—y1(6; — 60)) + My exp(-1i(t - 6o))
=Mi[1+8exp(y(t—6;))] exp(—r1(t —6o))
<M [1 +4 exp(y/lv)] exp(—yl(t - 90)).
Therefore, there exist positive scalars M, = M;[1 + 8 exp(y1v)], 2 = y1 such that the solu-

tion x°(¢) of system (1) satisfies that [|x°(t)|| < My exp(=y»(t — 6)). That is, the origin of
system (1) is globally exponentially stable. The proof is completed. 0

Theorem 6 Let all assumptions in Theorem 4 be valid, but x(t) is a solution of system (5)
fort € (6;,0;1]. And

i i-1
> in(pBl) + D e (Ori - 0) + anlt - 0) < 96, £), (11)
k=1 k=1

where t € (0;,0;,1], p = max(%), u,vell,2,...,m}, and ¢(0y,t) is a continuous function on
R,.

Then lim;_, oo (60, t) = —00 implies that the trivial solution of (5) is globally asymptot-
ically stable; and ¢(0o,t) <M — d(t — 6y), t > 6y, with M > 0 and d > O being constants,
implies that the origin of system (5) is globally exponentially stable.
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Proof The following inequalities follow conditions (7) and (8), respectively:
Viu(2(8)) < Viu(x(6:+)) exp(an(t - 6))), (12)

and

”x(t H [Mhlvh(x )) exp(an(t - (9))]1/p
< I it hnexp(an(t - 0,)/p) |x(6:+)|.

One can easily find that

Vi(®(6:4)) < 2a|x6:0) | < 0B} 260" < 0B} Vi ((60)- (13)
Substituting (13) into (12) leads to

Vi(x(8)) < pBy, exp(an(t — 6:) Vie(%(6))). (14)
Using (14) successively on each interval, we have the following results. For ¢ € (6;,6;,1],

Viu(2(2)) < pB}, Vin(%(6:)) exp(an(t - 6;))
i i1
< Vi, (%(60)) | | (0By,) exp (Z oty (Orer — ) + ap(t - 91'))
k=1 k=1
< Vi (%(60)) exp(¢ (60, 2)).

Namely,

Vi (x(8)) = Vi (%(00)) exp (e (6o, 1)). (15)
Substituting (7) into (15) yields

[x®] = ¥plixollexp(e (0o, £)1p), £ = 6o,
which implies the desired conclusions. Thus, we complete the proof. g

Corollary 1 Let Assumptions A, B, and (C1)-(C3) hold, h = I;. Suppose that there exists
Vi, € Q such that

w2 < Vi (x()) < a

DV, (x(t)) < a Vi(x()),

where (i, >0, Ay, >0, p> 0, @y, is a constant, and x(t) is a solution of (5) in (6;,6;41].
Then the origin of system (5) is globally exponentially stable if one of the following condi-
tions is satisfied.



Zhang et al. Advances in Difference Equations (2017) 2017:316 Page 14 of 21

(i) ap<—a<—0<0,wherea and o are constants such that

n(pBL) - (61 - 6;) < 0.

(ii) o and n are two positive constants satisfying n > a > |ay| such that

In(pBy) + n(B: - 60;) <O0.
The proof of this corollary is quite similar to that of Corollary 1 in [41], so we omit it here.

Remark 8 It is easy to see that condition (i) of Corollary 1 suggests that all the subsystems
are of m;-class, and there is no particular requirement on the impulse of switching sub-
systems. In the case of condition (ii) of Corollary 1, the parameters «;, may be positive or
negative, which implies that switching subsystems might be stable or unstable; however,
the impulse of each subsystem has to be stable. One can easily observe that conditions (i)
and (ii) of Corollary 1 are both stricter than the counterparts in Theorem 6. However, we
can derive an estimate of exponential convergence rate of the trivial solution of system (5)
based on Corollary 1. In fact, if condition (i) of Corollary 1 holds, one can obtain that

[%(®) || < &/pllxollexp(~(et — 0)(t = 00)/p), £ = 60

if condition (ii) of Corollary 1 holds, we can get that

|x(®)] < &/ exp(nb/p)llxoll exp(—(n — a)(t — 60)/p), = 6p.
Now, let us consider a special case.

Corollary 2 Let Assumptions A, B, and (C1)-(C3) hold, h = I;. Suppose that there exists
Vi € Q such that

p

’

1 2@ < Vi(x(®)) < 2 |2(2)

where py > 0,1y > 0,p > 0, x(2) is a solution of (5) in (0;,0,,1], and a constant a, such that
one of the following conditions holds:

(i) D Vi(()) + a Vi(x(8)) < 0, and In(pB) —af <0,

(it) D*Vy(x(2)) — a Vy(x(2)) < 0, and ln(pﬂf) +ab <0,
then the trivial solution of system (5) is globally exponentially stable.

Proof If condition (i) holds, for ¢ € (6;,0:,1], from condition (i) and Theorem 6, we can

assume
D*Viy(x(2)) < o Vie(x(8)) < -0 Vi (x(8)) < —a Vi (%(2)),

where both oy, and 7 are constants, then

i-1
D et Orss = 04) + (= 0) < —n(E = 6).
k1
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From In(pB}) — af <0, we get

D In(pBl)) < (b — 60) < er(t - o).
k=1

So,
i i-1
Y (o)) + > e (Orer — 6 + it = 6) < —(n - )t ~ ).
k=

k=1

Letting ¢(6p,t) = —(n — «)(¢ — 6p) and noting that n — & > 0, we can end the proof by The-
orem 6.

If condition (ii) holds, for ¢ € (6;,0;,1], from condition (ii) and Theorem 6, we can assume
D*Viy(x(2)) < on Vi (x(2)) < £ Vin(x(0)) < Vi (%(2)),

where both «, and ¢ are constants, then
i-1

> (Ori = 0) + (= 6:) < £t = 60).
k=1

From In(pB}) + «f < 0, we have
> “In(pBf)) < —a(6; - 0p) < —a(6; — o) + af —ax(t — 6;) < af — ex(t — o).
k=1

Therefore,

i-1

Zln pBy) Za,k(em—ek)mh(t 0:) < b - (@ = ¢)(t - o).

Letting ¢(fo,t) = af — (@ — ¢)(t — 6p) and noting that & — ¢ > 0, one concludes the
proof. O

Remark 9 In condition (i) of Corollary 2, let —n = max{ay, oy, . .., @}, we can easily find 7.
Similarly, in condition (ii) of Corollary 2, let ¢ = max{oy,®,...,a,}, one finds ¢. That is,
the conditions of Corollary 2 can really hold.

It is time to present the main result for the stability criterion of system (1) by means of
system (5). Based on the above discussions, the following result is immediate.

Theorem 7 Let Assumptions A, B, and (C1)-(C3) hold h = I;. Suppose that there exists
Vi € Q such that

M) wn]x@ )" < Va(x®) < an]x@) "

(2) D*Vi(x(0)) < Viu(x(2)),
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2 opv m
® [exp<7) - 1](||ch|| F 1AL 7 2 < 1,

i i-1
(4) Z In(pBy) + Z oy (Oks1 — Ok) + an(t — 6;) < 9(60, 1),
ko1

k=1

where (i, >0, A, >0, p> 0, € R, x(2) is a solution of system (5), and t € (0;,0;,1]-

Then lim;_, o (00, t) = —00 implies that the trivial solution of (1) is globally asymptot-
ically stable; and ¢(0y,t) < M — d(t — 6y), t > Oy, with M > 0 and d > O being constants,
implies that the origin of system (1) is globally exponentially stable.

Similar to Corollaries 1 and 2, there is also a corresponding corollary by Theorem 7 here.

Corollary 3 Assume that all the conditions of Theorem 4 hold h = I;. Then the origin of
system (1) is globally exponentially stable if one of the following conditions is fulfilled.

(i) an<—a<—0<0,wherea and o are constants such that
In(ppl) — 0611 —6;) < 0.

(i) o and n are two positive constants satisfying n > « > |ay| such that
In(pBy) + n(B: - 60;) <O0.

Corollary 4 Let Assumptions A, B, and (C1)-(C3) hold. Assume that there exists Vj, € Q
such that

12" < Vi(x(®) < 2al|x@) [,

2 av )
5[exp<7) —1](||ch|| + NARILR) 5 2 <1,

where (> 0,1y, > 0,p > 0, x(¢) is a solution of (5) in (0;,0;,1], and o is a constant, such that

one of the following conditions holds:
(i) D*Vy(x(2)) + a Vy(x(2)) < 0, and In(pp;) — af <0,
(il) D* Vi(x(t)) — @ Viu(x(2)) < 0, and In(pBY) + ad <0,
then the trivial solution of system (1) is globally exponentially stable.

6 Two numerical examples

In this section, two numerical examples are given to show the effectiveness of the theoret-
ical results mentioned in the previous sections. For the sake of simplicity, in what follows,
an impulsive switching CGNN model with only two neurons is analyzed, and it is sup-
posed that each hybrid system has only two subsystems and the switching sequence is

1-2—>1—>2—---,
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Example 1 Consider the following impulsive switching CGNN, noting that there is no
impulse in [0, 61]:

x(£) = =A1(x(2)) [B1(x(2)) — Cii(x(2))],
te(KT,KT +0T],K=0,1,2,..., and ¢ #0; + 1;(x(t)),
Ax(t) = 1(x(r), t=6;+7x(),i=2K,K=1,2,3,...,
#(£) = =Az (x(0)) [B2(x(2)) — Cofa (x(2))],
te(KT +o0T,(K+1)T],K=0,1,2,..., and £ # 6;,1 + Ti,1(x(£)),
Ax(t) = HL(x(2), t=0p1+1a()),i=2K,K=0,1,2,...,

(16)

with T =2,0 =05, 0; = i, 01,1 = i + 1, 7:(x) = 7;51(x) = 0.2arccot(x?) and v = 0.17, /3 (x) =
1.1x, J>(x) = 0.6x,

F(0) =0) = (Si“’“‘”> ,

sinxs (¢)

and

3 +si t 0 05 0 0.2 0
A, - + sinwxy () ’ B, - , C - '
0 3 + cosx,(2) 0 05 -0.2 01

2 + i . .
A, - + sinwxq(£) 0 ’ B, - 07 0 ’ C, - 0.3 0 '
0 2 + cosxy(t) 0 07 -0.3 0.2

Note that

dri(x)
dx

1
=0.4x| - ,0
1( 1+af

(3 + sinx;)(0.5%; — 0.2 sinx;)
X1

{41 () [B1 (+(®)) - G (x(0)) ]}
) ( (3 + sinwy)(=0.5x; + 0.2 sinxy) )

(3 + cosxy)(=0.5x5 — 0.2 sinx; + 0.1sinx,)

=0.4,

4
1+x]

11247
<

= 4
1+xf

<1.
Moreover,
7i(x + Ji(x)) — Ti(x) = 0.2[arccot((1 + 1.1)%47) — arccot(x7) ] <0,
Le., (% +/i(%) < Ti(x).
Analogously, T8 {~ A, (x(£)) [By(x(8)) = Cofs (@D} < 1, Tisi bx + Ji(x)) < T (). Thus,

assumption (C3) holds. One can easily get that all assumptions in Theorem 7 are satisfied.

Therefore, the origin of system (16) is globally stable, as shown in Figure 2.
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0 2 4 6 8 10 12 14 16 18 20

Figure 2 The time response curves of (16) in Example 1 with x(0) = (0.6 - 0.6)7.

Remark 10 One can see from Figure 2 that our conditions are very conservative, and we
look forward to improving these conditions in future research.

Example 2 Consider again the hybrid impulsive and switching CGNN, noting that there
is no impulse in [y, 6;]:

x(t) = —A1(x(2)) [B1(x(2)) — Cifi(x(2))],
te(KT,KT +0T],K =0,1,2,..., and t #6; + 7;(x(¢)),
Ax(t) = 1(x(2), t=6;+1x(),i=2K,K =1,2,3,...,
x(2) = =Aa (x()) [Ba (x(2)) — Cofa (x(2))],
te (KT +o0T,(K+1)T],K=0,1,2,..., and £ # 6;,1 + Ti41(x(2)),
Ax(t) = Jo(x(2)), t=6;1+11(x(8),i=2K,K=0,1,2,...,

17)

with T=2,0 =05, 0; =i, 6,41 =i + 1, 1;(x) = 7;31(x) = [arctan(x;)]?/(27) and v = 0.1257,
Ji(x) = —1.4x, J(x) = —1.3x,

A(0) = (x(0) = (sirmm) |

sinx, (¢)

and

2 t 0 02 O 0.4 0
A= + coswi(z) , B - , C - .
0 2 + cos x,(t) 0 02 -0.2 04

A, - 3+ coswxi(t) 0 ’ B, - 03 0 ’ C, - 0.5 0 ‘
0 3 + cosxy(t) 0 03 -03 05

Note that

A, ) [0 o))

> ( (2 + cosx1)(=0.2x; + 0.4 sinx;) >

(2 + cosxy)(—=0.2x, — 0.2 sinx; + 0.4 sinxy)

1 ‘ 1
= —arctanx; | ——
T 1+a?’

(2 + cosx;)(=0.2x1 + 0.4 sinxy)

= — arctanx; 3
T 1+
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20

Figure 3 The time response curves of (17) in Example 2 with x(0) = (0.5 - 0.4)T.

- 1.5|-0.2x1 + 0.4 sin x|

1+2
< 09|X1|
T 1+a?

<1
Furthermore,
(% +Ji(%) - Ti(%)
= % {[arctan((1 + (-1.4))x1)]* - [arctan(x)]*}
= %{[arctan(l—o.zw)]2 ~ [arctan(jx, )]}

= % [arctan(|0.4x1|) + arctan(|x1|)] [arctan(|0.4-x1|) - arctan(|x1|)]

EO’

that is, 7;(x + J;(x)) < 7:(x).
Similarly, %[—Cz(x(t)) + Aofa(x(1))] < 1, Tiy1(x + Ji(x)) < 1i11(x). Hence, assumption
(C3) is satisfied. One observes that the conditions of Theorem 7 can all hold for system

(17). Therefore, the origin of system (17) is globally stable, as shown in Figure 3.

Remark 11 It can be seen from Figure 3 that stabilizing impulses can stabilize the unstable
continuous subsystem at its equilibrium point, which is inconsistent with the theoretical

prediction.

7 Conclusions and discussions

In the present paper, we have studied the impacts of state-dependent impulses on the sta-
bility of switching Cohen-Grossberg neural networks using B-equivalence method. More-
over, we have obtained a stability criterion for the considered CGNN. However, the esti-
mation on the norm of transformation map W;(x) is very conservative, which leads to con-
servative stability conditions. It is expected to release these conditions for certain CGNN
and to extend the presented method to delayed systems or more general impulsive switch-

ing systems.
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