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Abstract
We propose and study a discrete competitive system of the following form:

x1(n + 1) = x1(n) exp
[
r1 – a1x1(n) –

b1x2(n)
1 + c2x2(n)

]
,

x2(n + 1) = x2(n) exp
[
r2 – a2x2(n) –

b2x1(n)
1 + c1x1(n)

]
.

We obtain some conditions for the local stability of the equilibria. Using the iterative
method and the comparison principle of a difference equation, we also obtain a set
of sufficient conditions that ensure the global stability of the interior equilibrium.
Numeric simulations show the feasibility of the main results. Our results supplement
and complement some known results.

MSC: 34D23; 92B05; 34D40
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1 Introduction
The aim of this paper is to investigate the dynamic behaviors of the following discrete
competitive model:

x(n + ) = x(n) exp

[
r – ax(n) –

bx(n)
 + cx(n)

]
,

x(n + ) = x(n) exp

[
r – ax(n) –

bx(n)
 + cx(n)

]
,

(.)

where xi(n) (i = , ) are the population density of the species x and x at the nth genera-
tion. ri, ai, bi, ci (i = , ) are all positive constants, ri, ai, bi (i = , ) represent the intrinsic
growth rates, the rates of intraspecific competition of species x and x, the rates of inter-
specific competition of species x and x, respectively. We focus on the local and global
stability properties of the system.
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Chen and Teng [] proposed and studied the dynamic behaviors of the following two-
species competitive system:

x(n + ) = x(n) exp

[
r

(
 –

x(n)
K

– μy(n)
)]

,

y(n + ) = y(n) exp

[
r

(
 – μx(n) –

y(n)
K

)]
,

(.)

where x(n) and y(n) represent the population densities of the species x and y at the nth
generation, respectively. ri, Ki, and μi (i = , ) are positive constants and represent the
intrinsic growth rates, the carrying capacities, and the competition coefficients of species
x and y, respectively. The authors investigated the local and global stability properties of
the positive equilibrium of the system when the intraspecific and interspecific competition
coefficients are both linear in system (.), and the assumption of linear changes made the
analysis of dynamic behaviors relatively easy. However, a more practical model need to be
characterized by nonlinearities.

Qin, Liu, and Chen [] argued that a more plausible competition model should be non-
linear and proposed the following two-species discrete competition model with nonlinear
interspecific competition terms:

x(n + ) = x(n) exp

[
r(n) – a(n)x(n) –

b(n)x(n)
 + x(n)

]
,

x(n + ) = x(n) exp

[
r(n) – a(n)x(n) –

b(n)x(n)
 + x(n)

]
,

(.)

where ri(n), ai(n), bi(n) (i, j = , ; i �= j) are periodic sequences bounded above and below
by positive constants. Set

f U = sup
n∈N

f (n), f L = inf
n∈N

f (n),

where {f (n)} is a bounded sequence, and N is the set of nonnegative integer numbers.
Concerned with the persistent property and stability property of the system, the authors

obtained the following results (Theorems . and . in []).

Theorem A Suppose that

rL
 > bU

 and rL
 > bU

 . (.)

Then system (.) is permanent.

Theorem B In addition to (.), assume further that

λ
def= max

{∣∣ – al
m

∣∣, ∣∣ – aU
 M

∣∣} + bU
 < ,

λ
def= max

{∣∣ – al
M

∣∣, ∣∣ – aU
 M

∣∣} + bU
 < .

(.)

Then the positive periodic solution of system (.) is globally stable.
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As a direct corollary of Theorems A and B, for the autonomous case of system (.) (i.e.,
all the coefficients of the system are positive constants), we have the following result.

Theorem C Suppose that the following assumptions are satisfied:

r > b, r > b,

λ
def= max

{∣∣ – (r – b) exp
(
r – exp(r – ) – b

)∣∣, ∣∣ – exp(r – )
∣∣} + b < ,

λ
def= max

{∣∣ – (r – b) exp
(
r – exp(r – ) – b

)∣∣, ∣∣ – exp(r – )
∣∣} + b < .

(.)

Then the autonomous case of system (.) admits a global stable positive positive equilib-
rium.

Note that conditions (.) are sufficient conditions. We propose an interesting issue:
whether the conditions are good enough or the conditions still have room to improve? To
give some hint on this problem, let us consider the following example.

Example .

x(n + ) = x(n) exp

[
. – .x(n) –

.x(n)
 + x(n)

]
,

x(n + ) = x(n) exp

[
. – .x(n) –

.x(n)
 + x(n)

]
,

(.)

where, correspondingly to system (.), we take r(n) = ., r(n) = ., a(n) = ., a(n) =
., b(n) = ., b(n) = .. By simple computation it follows that

r < b, r < b, λ ≈ . > , λ ≈ . > .

Hence, none of the conditions in Theorem C holds. However, numeric simulation (Fig-
ure ) shows that system (.) admits a unique positive equilibrium, which is globally sta-
ble. Example . shows that Theorems A and B still have room to improve, or one may
find out some other different conditions to ensure the global stability of the positive equi-
librium. The success of Chen and Teng [] and Qin, Liu, and Chen [] stimulated us to
propose a slightly more complicated system (.) and investigated the stability property of
model (.).

On the other hand, Chen [] studied the following competitive system:

dy(t)
dt

= y(t)
[

r – ay –
by

 + y

]
,

dy(t)
dt

= y(t)
[

r – ay –
by

 + y

]
,

(.)

where ri, ai, bi, i = , , are all positive constants. Concerned with the stability property of
the positive equilibrium of system (.), Chen obtained the following result.

Theorem D Assume that the following inequalities hold:

r(a + r) > br, r(a + r) > br. (.)
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Figure 1 Dynamic behaviors of system (1.7) with the initial conditions
(x(0), y(0)) = (0.14, 0.19), (0.37, 0.009), (0.95, 0.024), and (0.60, 0.82), respectively.

Assume further that one of the following conditions holds:
(i)

a – b + r �= ; (.)

(ii)

a – b + r = , ar – ar > . (.)

Then system (.) admits a unique positive equilibrium on the rectangle
(, r

a
) × (, r

a
), which is globally stable.

Here, condition (.) is natural, whereas conditions (.) and (.) seem very strange.
By careful check of the conditions, we can see that if a – b + r = , then, together with
the second inequality in (.), we can easily obtain that

ar – ar = ar – (b – r)r = r(a + r) – br > ,

that is, (.) always holds. Hence, conditions (.) and (.) in Theorem D are unneces-
sary and may be dropped.

It is well known that, compared to the continuous-time systems, the discrete-time ones
are more difficult to deal with. Stimulated by the works of Chen and Teng [], Qin, Liu,
and Chen [], and Chen [], in this paper, we focus our attention on the dynamic behavior
of system (.); more precisely, we investigate the local and global stability properties of
the system. Throughout this paper, we assume that the coefficients of system (.) satisfy

(H) ri(aj + cjrj) > birj, i, j = ,  and i �= j.

Lemma . Assume that (H) holds. Then system (.) admits a unique positive equilib-
rium (x∗

 , x∗
) on the rectangle (, r

a
) × (, r

a
).



Chen and Xie Advances in Difference Equations  (2017) 2017:294 Page 5 of 19

Proof The positive equilibrium of system (.) is the solution of the equation system

⎧⎨
⎩

r – ax – bx
+cx

= ,

r – ax – bx
+cx

= ,
(.)

which is equivalent to

⎧
⎨
⎩

Ax
 + Ax + A = ,

Bx
 + Bx + B = ,

(.)

where

A = aac + accr – abc,

A = aa + acr – acr + bcr – bb + bcr – ccrr,

A = –ar + br – crr,

B = aac + accr – abc,

B = aa + acr – acr + bcr – bb + bcr – ccrr,

B = –ar + br – crr.

Since we focus on the positive equilibrium of system (.), we only need to consider the
case x > , x > . To ensure the first equality in (.), x should lie in the interval (, r

a
).

Similarly, to ensure the second equality of (.), x should lie in the interval (, r
a

). We will
further investigate the positive equilibrium of system (.) on the rectangle (, r

a
)× (, r

a
).

Now let us consider the function

F(x) = Ax
 + Ax + A.

From (H) we have

F() = A < 

and

F
(

r

a

)
=

b(ar + crr – br)
a

> .

Therefore, from the continuity of the function F(x), F(x) =  has at least one positive
solution on the interval (, r

a
). We now prove that the equation F(x) =  has at most one

positive solution on the interval (, r
a

). We discuss this in three cases.
Case . If A > , then F(+∞) = F(–∞) = +∞. Since F() < , it follows that F(x) =  has

at least one solution on the intervals (–∞, ) and (, +∞), respectively. Therefore F(x) = 
has only one solution on the interval (, r

a
);

Case . If A = , then, since F(x) is a linear function of x, F( r
a

) > , and F() < , it
follows that F(x) =  has only one solution on the interval (, r

a
);
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Case . If A < , then F(+∞) = –∞, and since F( r
a

) >  and F() < , it follows that
F(x) has at least one solution on the intervals (, r

a
) and ( r

a
, +∞). So F(x) =  has only

one solution on the interval (, r
a

).
The above analysis shows that F(x) =  has only one solution on the interval (, r

a
). We

denote it as x∗
 . Similarly, we can prove that there exists x∗

 in the interval (, r
a

) that sat-
isfies Bx

 + Bx + B = . Then system (.) admits a unique positive equilibrium (x∗
 , x∗

)
on the rectangle (, r

a
) × (, r

a
). This ends the proof of Lemma .. �

The rest of the paper is arranged as follows. With the help of several useful lemmas, we
investigate the local stability in Section  and prove the global stability result (Theorem .)
in Section . Four examples, together with their numeric simulations, are presented in
Section  to show the feasibility of our results. We end this paper by a brief discussion.
For more work about competitive systems, we can refer to [, –] and the references
cited.

2 Local stability
We give a strict proof of the local stability in this section. From the biological background
of system (.), we assume that initial values x() >  and x() >  in system (.). It is
clear that any solution of system (.) is defined on N = {, , , . . .} and remains positive
for all n ≥ . Now let us state several useful lemmas.

Lemma . ([]) Consider the function F(λ) = λ + Bλ + C, where both B and C are con-
stants. Suppose F() >  and let λ,λ be two roots of the quadratic equation F(λ) = . Then
we can easily prove that

. |λ| <  and |λ| <  if and only if F(–) >  and C < ;
. |λ| >  and |λ| >  if and only if F(–) >  and C > ;
. |λ| <  and |λ| >  if and only if F(–) < ;
. λ = – and |λ| �=  if and only if F(–) =  and B �= , ;
. λ and λ are a pair of conjugate complex roots and |λ| = |λ| =  if and only if

B – C <  and C = .
Here, if λ and λ are two roots of the characteristic equation F(λ) = λ + Bλ + C =  of
J(x, y), then we have the following definitions.

. If |λ| <  and |λ| < , then J(x, y) is called a sink and is locally asymptotic stable;
. If |λ| >  and |λ| > , then J(x, y) is called a source and is unstable;
. If |λ| >  and |λ| <  (or |λ| <  and |λ| > ), then J(x, y) is called a saddle and is

unstable;
. If λ =  or |λ| = , then J(x, y) is called nonhyperbolic.

We first discuss the existence of the equilibria of model (.). Obviously, E(, ),
E( r

a
, ), and E(, r

a
) are three equilibria of model (.). If (H) holds, system (.) ad-

mits a unique positive equilibrium E(x∗
 , x∗

).
The Jacobian matrix of model (.) at an equilibrium E(x, x) is

J(E) =

(
( – ax)E∗ x(– b

+cx
+ bcx

(+cx) )E∗

x(– b
+cx

+ bcx
(+cx) )E∗ ( – ax)E∗

)
,
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where E∗ = exp (r – ax – bx
+cx

) and E∗ = exp (r – ax – bx
+cx

). The corresponding
characteristic equation of J(E) can be written as

λ – tr J(E)λ + det J(E) = . (.)

Now we are in the position of discussing the local stability of the equilibria of model (.).
Case . For E(, ), we have

J(E) =

(
exp(r) 

 exp(r)

)
.

Since two eigenvalues of J(E) are λ = er >  and λ = er > , respectively, from Lemma .
we obtain that E(, ) is a source.

Case . For E( r
a

, ), we have

J(E) =

(
 – r – rb

a

 exp( ar–br+crr
cr+a

)

)
.

In view of ar – br + crr > , from Lemma . we have the following conclusions:
. If  < r < , then E( r

a
, ) is a saddle.

. If r = , then E( r
a

, ) is nonhyperbolic.
. If r > , then E( r

a
, ) is a source.

Case . For E(, r
a

), we have

J(E) =

(
exp( ar–br+crr

cr+a
) 

– rb
a

 – r

)
.

In view of ar – br + crr > , from Lemma . we have the following conclusions:
. If  < r < , then E(, r

a
) is a saddle.

. If r = , then E(, r
a

) is nonhyperbolic.
. If r > , then E(, r

a
) is a source.

Case . For E(x∗
 , x∗

), we have

J(E) =

⎛
⎝  – ax∗

 x∗
 (– b

+cx∗


+ bcx∗


(+cx∗
) )

x∗
(– b

+cx∗


+ bcx∗


(+cx∗
 ) )  – ax∗



⎞
⎠ .

The corresponding characteristic equation of J(E) can be written as

λ – tr J(E)λ + det J(E) = , (.)

where

tr J(E) =  – ax∗
 – ax∗

, det J(E) =
(
 – ax∗


)(

 – ax∗

)

– x∗
 x∗

AA

and

A =
b

 + cx∗


–
bcx∗


( + cx∗

) , A =
b

 + cx∗


–
bcx∗


( + cx∗

 ) .
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Hence,

F() =
x∗

 x∗
[aa( + cx∗

 )( + cx∗
) – bb]

( + cx∗
 )( + cx∗

) .

Obviously, if bb < aa( + cx∗
 )( + cx∗

) def= K, then F() > .
Furthermore, we have

F(–) =
( + cx∗

 )( + cx∗
)(ax∗

 – )(ax∗
 – ) – bbx∗

 x∗


( + cx∗
 )( + cx∗

) .

Hence, if

bb =
( + cx∗

 )( + cx∗
)(ax∗

 – )(ax∗
 – )

x∗
 x∗



def= K,

then F(–) = . Assume that ax∗
 –  >  and ax∗

 –  > . If bb < K, then we have
F(–) > , and if bb > K, then we have F(–) < .

On the other hand, we have

det J(E) –  =
( + cx∗

 )( + cx∗
)(aax∗

 x∗
 – ax∗

 – ax∗
) – bbx∗

 x∗


( + cx∗
 )( + cx∗

) .

Hence, if

bb =
( + cx∗

 )( + cx∗
)(aax∗

 x∗
 – ax∗

 – ax∗
)

x∗
 x∗



def= K,

then det J(E) = . Assume that aax∗
 x∗

 – ax∗
 – ax∗

 > . If bb > K, then we have
det J(E) < , and if bb < K, then we have det J(E) > .

Now, we are concerned with the stability property of the positive equilibrium E(x∗
 , x∗

).
Assume that ax∗

 –  > , ax∗
 –  > , and aax∗

 x∗
 – ax∗

 – ax∗
 > . By simple calculation

we have K > K > K. Then from Lemma . it follows that:
. If bb < K, then E(x∗

 , x∗
) is a source.

. If K < bb < K, then E(x∗
 , x∗

) is a saddle.
. If K = bb < K, then E(x∗

 , x∗
) is nonhyperbolic.

3 Global stability
Previously, we have discussed the local stability of the equilibria of system (.). In this sec-
tion, we give a set of sufficient conditions that ensure the global attractivity of the unique
positive equilibrium on the rectangle (, r

a
) × (, r

a
).

Theorem . In addition to (H), further assume that

(H) ri ≤ , i = , .

Then system (.) admits a unique positive equilibrium (x∗
 , x∗

), which is globally stable.

Now let us state several lemmas, which will be useful in the proof of Theorem ..
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Lemma . ([]) Let f (u) = u exp(α – βu), where α and β are positive constants. Then f (u)
is nondecreasing for u ∈ (, 

β
].

Lemma . ([]) Assume that the sequence u(n) satisfies

u(n + ) = u(n) exp
(
α – βu(n)

)
, n = , , . . . ,

where α and β are positive constants, and u() > . Then:
(i) If α < , then limn→+∞ u(n) = α

β
.

(ii) If α ≤ , then u(n) ≤ 
β

, n = , , . . . .

Lemma . ([]) Suppose that the functions f , g : Z+ × [,∞) satisfy f (n, x) ≤ g(n, x)
(f (n, x) ≥ g(n, x)) for n ∈ Z+ and g(n, x) is nondecreasing with respect to x. If u(n) are the
nonnegative solutions of the difference equations

x(n + ) = f
(
n, x(n)

)
, u(n + ) = g

(
n, u(n)

)
,

respectively, and x() ≤ u() (x() ≥ u()), then

x(n) ≤ u(n),
(
x(n) ≥ u(n)

)
for all n ≥ .

Proof of Theorem . Let (x(n), x(n)) be any positive solution of system (.). Denoting

lim inf
n→+∞ x(n) = m, lim sup

n→+∞
x(n) = M,

lim inf
t→+∞ x(n) = m, lim sup

n→+∞
x(n) = M,

we claim that, under the assumptions of Theorem ., M = m = x∗
 and M = m = x∗

.
From the first equation of system (.) we obtain

x(n + ) = x(n) exp

[
r – ax(n) –

bx(n)
 + cx(n)

]

≤ x(n) exp
[
r – ax(n)

]
. (.)

Consider the following auxiliary equation:

u(n + ) = u(n) exp
[
r – au(n)

]
. (.)

By Lemma .(ii), because of r ≤ , we obtain u(n) ≤ 
a

for all n ≥ , where u(n) is an ar-
bitrary positive solution of (.) with initial value u() > . By Lemma ., f (u) = u exp(r –
au) is nondecreasing for u ∈ (, 

a
]. Based on Lemma ., we obtain x(n) ≤ u(n) for all

n ≥ , where u(n) is the solution of (.) with initial value u() = x(). By Lemma .(i)
we obtain that

M = lim sup
n→+∞

x(n) ≤ lim
n→+∞ u(n) =

r

a
. (.)
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From the second equation of system (.) we obtain

x(n + ) = x(n) exp

[
r – ax(n) –

bx(n)
 + cx(n)

]

≤ x(n) exp
[
r – ax(n)

]
.

Similarly to the analysis of (.)-(.), we have

M = lim sup
n→+∞

x(n) ≤ r

a
. (.)

Then, for a sufficiently small constant ε > , without loss of generality, it follows from (.)
and (.) that there exists an integer n >  such that, for all n > n,

x(n) <
r

a
+ ε

def= M()
 , x(n) <

r

a
+ ε

def= M()
 . (.)

For n > n, the second inequality of (.), combined with the first equation of system (.),
leads to

x(n + ) = x(n) exp

[
r – ax(n) –

bx(n)
 + cx(n)

]

≥ x(n) exp

[
r – ax(n) –

bM()


 + cM()


]
. (.)

Consider the auxiliary equation

u(n + ) = u(n) exp

[
r – au(n) –

bM()


 + cM()


]
. (.)

Since r ≤ , according to Lemma .(ii), we obtain u(n) ≤ 
a

for all n ≥ n, where u(n)
is an arbitrary positive solution of (.) with initial value u(n) > . By Lemma ., f (u) =

u exp(r – au – bM()


+cM()


) is nondecreasing for u ∈ (, 
a

]. According to Lemma ., we

obtain x(n) ≥ u(n) for all n ≥ n, where u(n) is the solution of (.) with the initial value
u(n) = x(n). According to Lemma .(i), we have

m = lim inf
n→+∞ x(n) ≥ lim

n→+∞ u(n) =
r – bM()


+cM()



a
. (.)

The first inequality of (.), combined with the second equation of system (.), leads to

x(n + ) = x(n) exp

[
r – ax(n) –

bx(n)
 + cx(n)

]

≥ x(n) exp

[
r – ax(n) –

bM()


 + cM()


]
.
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Similarly to the analysis of (.)-(.), we have

m = lim inf
n→+∞ x(n) ≥

r – bM()


+cM()


a
. (.)

Then, for the above ε > , there exists an integer n > n such that, for all n > n,

x(n) >
r – bM()


+cM()



a
– ε

def= m()
 ,

x(n) >
r – bM()


+cM()



a
– ε

def= m()
 .

(.)

For n > n, the second inequality of (.), combined with the first equation of system (.),
leads to

x(n + ) = x(n) exp

[
r – ax(n) –

bx(n)
 + cx(n)

]

≤ x(n) exp

[
r – ax(n) –

bm()


 + cm()


]
. (.)

Similarly to the analysis of (.)-(.), we have

M = lim sup
n→+∞

x(n) ≤
r – bm()


+cm()



a
. (.)

The first inequality of (.), combined with the second equation of system (.), leads to

x(n + ) = x(n) exp

[
r – ax(n) –

bx(n)
 + cx(n)

]

≤ x(n) exp

[
r – ax(n) –

bm()


 + cm()


]
. (.)

Similarly to the analysis of (.)-(.), we have

M = lim sup
n→+∞

x(n) ≤
r – bm()


+cm()



a
. (.)

Then, for the above ε > , it follows from (.) and (.) that there exists an integer
n > n such that, for all n > n,

x(n) <
r – bm()


+cm()



a
+

ε


def= M()

 ,

x(n) <
r – bm()


+cm()



a
+

ε


def= M()

 .

(.)
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Obviously,

M()
 < M()

 , M()
 < M()

 . (.)

For n > n, the second inequality of (.), combined with the first equation of system (.),
leads to

x(n + ) = x(n) exp

[
r – ax(n) –

bx(n)
 + cx(n)

]

≥ x(n) exp

[
r – ax(n) –

bM()


 + cM()


]
. (.)

Similarly to the analysis of (.)-(.), we have

m = lim inf
n→+∞ x(n) ≥

r – bM()


+cM()


a
. (.)

The first inequality of (.), combined with the second equation of system (.), leads to

x(n + ) = x(n) exp

[
r – ax(n) –

bx(n)
 + cx(n)

]

≥ x(n) exp

[
r – ax(n) –

bM()


 + cM()


]
.

Similarly to the analysis of (.)-(.), we have

m = lim inf
n→+∞ x(n) ≥

r – bM()


+cM()


a
. (.)

Then, for the above ε > , it follows from (.) and (.) that there exists an integer
n > n such that, for all n > n,

x(n) >
r – bM()


+cM()



a
–

ε


def= m()

 ,

x(n) >
r – bM()


+cM()



a
–

ε


def= m()

 .

(.)

Obviously,

m()
 < m()

 , m()
 < m()

 . (.)
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Continuing the above steps, we can get four sequences {M(n)
i }, {m(n)

i }, i = , , n = , , . . . ,
such that, for n ≥ ,

M(n)
 =

r – bm(n–)


+cm(n–)


a
+

ε

n
; M(n)

 =
r – bm(n–)


+cm(n–)



a
+

ε

n
;

m(n)
 =

r – bM(n)


+cM(n)


a
–

ε

n
; m(n)

 =
r – bM(n)


+cM(n)



a
–

ε

n
.

(.)

Clearly, we have

m(n)
i ≤ mi ≤ Mi ≤ M(n)

i , i = , , n = , , . . . . (.)

Now, by means of the inductive method we will prove that {M(n)
 }, {M(n)

 } are decreasing
and {m(n)

 }, {m(n)
 } are increasing.

First of all, from (.) and (.) it is clear that

M()
i < M()

i , m()
i > m()

i , i = , .

Let us assume that our claim is true for n, that is,

M(n)
i < M(n–)

i , m(n)
i > m(n–)

i , i = , .

Again, since the function g(x) = bx
+cx (b, c > ) is strictly increasing, we immediately obtain

M(n+)
 =

r – bm(n)


+cm(n)


a
+

ε

n + 
<

r – bm(n–)


+cm(n–)


a
+

ε

n
def= M(n)

 ;

M(n+)
 =

r – bm(n)


+cm(n)


a
+

ε

n + 
<

r – bm(n–)


+cm(n–)


a
+

ε

n
def= M(n)

 ;

m(n+)
 =

r – bM(n+)


+cM(n+)


a
–

ε

n + 
>

r – bM(n)


+cM(n)


a
–

ε

n
def= m(n)

 ;

m(n+)
 =

r – bM(n+)


+cM(n+)


a
–

ε

n + 
>

r – bM(n)


+cM(n)


a
–

ε

n
def= m(n)

 .

These inequalities show that {M(n)
 } and {M(n)

 } are decreasing, {m(n)
 } and {m(n)

 } are in-
creasing. Let

lim
n→+∞ M(n)

 = x̄, lim
n→+∞ M(n)

 = x̄, (.)

lim
n→+∞ m(n)

 = x, lim
n→+∞ m(n)

 = x. (.)

Letting n → +∞ in (.), we obtain

x̄ =
r – bx

+cx

a
, x̄ =

r – bx
+cx

a
, (.)
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Figure 2 Numeric simulations of system (4.1) with initial conditions
(x(0), y(0)) = (0.14, 0.19), (0.37, 0.009), (0.95, 0.024), and (0.60, 0.82).

x =
r – b x̄

+cx̄

a
, x =

r – b x̄
+cx̄

a
. (.)

Equations (.) and (.) are equivalent to

ax̄ +
bx

 + cx
= r, ax̄ +

bx
 + cx

= r, (.)

ax +
bx̄

 + cx̄
= r, ax +

bx̄

 + cx̄
= r. (.)

Equations (.) and (.) show that (x̄, x̄) and (x, x) are solutions of system (.). How-
ever, under the assumptions of Theorem ., system (.) admits a unique positive solution
(x∗

 , x∗
). Therefore

M = m = lim
n→+∞ x(n) = x∗

 , M = m = lim
n→+∞ x(n) = x∗

. (.)

Thus, the unique interior equilibrium E(x∗
 , x∗

) is globally attractive. This completes the
proof of Theorem .. �

4 Numeric simulations
In this section, we give four examples to illustrate the feasibility of the main results.

Example . Consider the following competitive system:

x(n + ) = x(n) exp

[
. – .x(n) –

x(n)
 + x(n)

]
,

x(n + ) = x(n) exp

[
. – .x(n) –

x(n)
 + x(n)

]
.

(.)

Correspondingly to system (.), we have r = ., r = ., a = ., a = ., b = b =
, c = c = . By calculation we see that the positive equilibrium E(x∗

 , x∗
) ≈ (.,

.), r(a + cr) = 
 > br = 

 , r(a + cr) = 
 > br = 

 , r, r < . All the condi-
tions of Theorem . are satisfied, and the unique positive equilibrium E(x∗

 , x∗
) is globally

attractive. Figure  also supports our finding. Figure  shows the bifurcation diagrams of
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Figure 3 The flip bifurcation of the first component of the solution (x1(n), x2(n)) of system (4.1) with
initial condition (x(0), y(0)) = (0.14, 0.19).

Figure 4 Numeric simulations of system (4.2) with initial conditions
(x(0), y(0)) = (0.14, 0.19), (0.37, 0.009), (0.95, 0.024) and (0.60, 0.82).

species x with initial condition (x(), y()) = (., .) and r = . : . : . The sys-
tem undergoes a series of periodic-doubling bifurcations wherein a k-cycle loses stability.

Example . Consider the following competitive system:

x(n + ) = x(n) exp

[
. – .x(n) –

.x(n)
 + x(n)

]
,

x(n + ) = x(n) exp

[
. – .x(n) –

.x(n)
 + x(n)

]
.

(.)

Correspondingly to system (.), we have r = ., r = ., a = ., a = ., b =
., b = ., c = c = . By calculation we see that the positive equilibrium E(x∗

 , x∗
) ≈

(., .), r(a + cr) = 
 > br = 

 , r(a + cr) = 
 > br = 

 , r, r < . All the
conditions of Theorem . are satisfied, and the unique positive equilibrium E(x∗

 , x∗
) is

globally attractive. Figure  also supports our finding. Figure  shows the bifurcation dia-
grams of species x with initial condition (x(), y()) = (., .) and r = . : . : .
The system undergoes a series of periodic-doubling bifurcations wherein a k-cycle loses
stability.
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Figure 5 The flip bifurcation of the first component of the solution (x1(n), x2(n)) of system (4.2) with
initial condition (x(0), y(0)) = (0.14, 0.19).

Figure 6 Numeric simulations of system (4.3) with initial conditions
(x(0), y(0)) = (0.14, 0.19), (0.37, 0.009), (0.95, 0.024), and (0.60, 0.82).

Example . Consider the following competitive system:

x(n + ) = x(n) exp

[
. – .x(n) –

.x(n)
 + x(n)

]
,

x(n + ) = x(n) exp

[
. – .x(n) –

.x(n)
 + x(n)

]
.

(.)

Corresponding to system (.), we have r = ., r = ., a = ., a = ., b = ., b =
., c = c = . By calculating, we see that the positive equilibrium E(x∗

 , x∗
) ≈ (.,

.), r(a + cr) = 
 > br = 

 , r(a + cr) = 
 > br = 

 , r, r < . All the
conditions of Theorem . are satisfied, and the unique positive equilibrium E(x∗

 , x∗
) is

globally attractive. Figure  also supports our finding. Figure  shows the bifurcation dia-
grams of species x with initial conditions (x(), y()) = (., .) and r = . : . : .
The system undergoes a series of periodic-doubling bifurcations wherein a k-cycle loses
stability.
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Figure 7 The flip bifurcation of the first component of the solution (x1(n), x2(n)) of system (4.3) with
the initial conditions (x(0), y(0)) = (0.14, 0.19).

Figure 8 Numeric simulations of system (4.4) with the initial conditions
(x(0), y(0)) = (0.14, 0.19), (0.37, 0.009), (0.95, 0.024), and (0.60, 0.82).

Example . Considering the following competitive system:

x(n + ) = x(n) exp

[
. – .x(n) –

x(n)
 + x(n)

]
,

x(n + ) = x(n) exp

[
. – .x(n) –

x(n)
 + x(n)

]
.

(.)

Correspondingly to system (.), we have r = r = ., a = ., a = ., b = b =
, c = c = . By calculation we see that the positive equilibrium E(x∗

 , x∗
) ≈ (.,

.), r(a + cr) = 
 > br = , r(a + cr) = 

 > br = , r, r > . Condition
(H) in Theorem . does not hold. However, numeric simulation (Figure ) also shows
that the system admits a unique positive equilibrium, which is globally attractive. Figure 
shows the bifurcation diagrams of species x with initial condition (x(), y()) = (., .)
and r = . : . : . The system also undergoes a series of periodic-doubling bifurca-
tions wherein a k-cycle loses stability.

Examples .-. show that the coefficients satisfy the conditions of Theorem .. In
Example ., we can verify that A > , which represents case  in Lemma ., whereas
Examples . and . represent cases  and  in Lemma ., respectively (A = , A < ). As
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Figure 9 The flip bifurcation of the first component of the solution (x1(n), x2(n)) of system (4.4) with
initial condition (x(0), y(0)) = (0.14, 0.19).

for Example ., though the coefficients of system (.) do not satisfy (H) in Theorem .,
Figure  also implies that the positive equilibrium is still globally attractive.

5 Disscussion
Chen and Teng [] studied the local and global stability of positive equilibrium of sys-
tem (.). In this paper, we studied the dynamic behavior of system (.) adding the non-
linear interinhibition terms into the model. When c = c = , system (.) reduces to (.),
and conditions reduce to r < , r < , ar > br, ar > br, and those conditions are
equivalent to the conditions r < , r < ,  – μK > ,  – μK >  in [].

From (H) we obtain r > br
a+r

and r > br
a+r

. Our results show that the intrinsic growth
rate plays an important role in the stability property of the system. We know that when
the intrinsic growth rates of the two species are fixed, if the rates of interspecific compet-
itive coefficients are small enough, then condition (H) always holds, and consequently,
two species can coexist in a stable state. This means that smaller interspecific competitive
coefficients have positive effect to the stability property of the system.

By developing the analysis technique of [, ] we also obtain a set of sufficient condi-
tions that ensure the global attractivity of the positive equilibrium. We relax the conditions
in [] and []. Numeric simulations also support our findings. However, Example . does
not satisfy all the conditions of Theorem ., and the system still admits a unique globally
stable positive equilibrium. We conjecture that the conditions ri ≤  in Theorem . can be
relaxed to  < ri <  (i = , ), that is, the conditions of Theorem . still have room to im-
prove. However, at present, we have difficulty in proving this conjecture. With the change
of ri, we found the bifurcations in the above figures, wherein a k-cycle loses stability. We
leave these two problems for future study.
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