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Abstract
In this paper, synchronization of a network with time-varying topology and delay is
investigated. Firstly, proper controllers are designed for achieving synchronization by
adopting impulsive control scheme. Based on the linear matrix inequality technique
and the Lyapunov function method, a synchronization criterion is derived and
analytically proved. Secondly, controllers are improved by introducing adaptive
strategy, and an adaptive synchronization criterion is obtained correspondingly. The
updating law of the impulsive gain and the method for estimating the impulsive
instant are provided in terms of the adaptive synchronization criterion. Finally,
numerical simulations are performed to demonstrate the effectiveness of the
theoretical results.
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1 Introduction
As we know, many large-scale systems consisting of interactive individuals, such as food
webs, communication networks, social networks, power grids, cellular networks, world
wide web, metabolic systems, disease transmission networks and so on [–], which are
modeled by complex dynamical networks, exist in the real world. In the studies of dy-
namical networks, the outer coupling matrices are usually assumed as constant matrices.
However, in many real systems, the interactions among the individuals change with time,
i.e., networks topology or coupling strength is time-varying. For having intimate knowl-
edge of those systems’ characteristics, it is necessary to investigate time-varying networks
[–]. In [], a time-varying dynamical network without delay is considered and impul-
sive synchronization criteria are obtained. In [, ], networks with switching topology as
special cases of time-varying networks are well investigated. Nevertheless, many phenom-
ena occurring in the real world indicate that the current state of a node is affected by the
outdated states of its neighbor nodes. Therefore, taking time-varying delay into account
is essential for better investigating them [–]. Up to now, a network with time-varying
topology and delay has seldom been considered and deserves further studies.

Synchronization is an interesting collective dynamical behavior and has extensive ap-
plications in many fields such as regulation of power grid, parallel image processing, the
operation of no-man air vehicle, the realization of chain detonation, etc. [, ]. Due to
complexity of networks, achieving synchronization is difficult only relying on inner adjust-
ments of network. Therefore, how to design proper controllers is a key issue. Researchers
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adopt different control schemes to design effective controllers, e.g., feedback control [–
], impulsive control [–], intermittent control [, ], and so on. As a representative
control scheme, impulsive control has received much attention from various fields. Due to
working on the nodes only at inconsecutive instants, low cost is one of the most significant
advantages of impulsive control. The impulsive gains and intervals are important parame-
ters of impulsive controllers, and thus providing synchronization criteria for choosing ap-
propriate impulsive gains and intervals is a key step. Generally, researchers need to choose
those parameters repeatedly for different networks. In order to avoid repetitive choosing,
researchers introduce adaptive strategy to improve proper controllers and make them uni-
fied.

Motivated by the above discussions, synchronization of a network with time-varying
topology and delay is investigated. Impulsive control scheme is adopted to design proper
controllers for achieving synchronization. In order to make controllers unified, adaptive
strategy is introduced to design adaptive impulsive controllers. Correspondingly, a syn-
chronization criterion is obtained on the basis of the linear matrix inequality technique
and the Lyapunov function and generalized to adaptive case. Noticeably, the impulsive
gains can adjust themselves to proper values in terms of the updating laws, and intervals
can be estimated by solving a sequence of maximum value problems. In Section , the net-
work model is introduced and some preliminaries are given. In Section , the impulsive
controllers for achieving synchronization are designed and the sufficient conditions are
provided. In Section , several numerical simulations are performed to verify the results.
In Section , the conclusion for this paper is drawn.

2 Model description and preliminaries
Consider a dynamical network consisting of N nodes with time-varying topology and de-
lay, which is described by

żk(t) = g
(
zk(t)

)
+

N∑

j=

μkj(t)Bzj
(
t – ξ (t)

)
, ()

where zk(t) = (zk(t), zk(t), . . . , zkn(t))T ∈ Rn is the state variable of node k, k = , , . . . , N ,
g : Rn → Rn is a vector function, B = diag(b, b, . . . , bn) is the inner coupling matrix, ξ (t) ≥
 is the time-varying coupling delay. U(t) = (μkj(t)) ∈ RN×N is the zero-row-sum outer
coupling matrix at time t denoting the network topology and defined as follows: if node j
has influence on node k (k �= j) at time t, then μkj(t) �= ; otherwise, μkj(t) = .

Network () is said to achieve synchronization if limt→∞ ‖zk(t) – w(t)‖ = , where w(t)
satisfies ẇ(t) = g(w(t)).

For achieving the synchronization, impulsive controllers are designed and applied onto
networks (). The controlled networks are described by

żk(t) = g
(
zk(t)

)
+

N∑

j=

μkj(t)Bzj
(
t – ξ (t)

)
, t �= tψ ,

zk
(
t+
ψ

)
= zk

(
t–
ψ

)
+ ϑ(tψ )

(
zk

(
t–
ψ

)
– w(tψ )

)
, t = tψ ,

()

where k = , , . . . , N , ψ = , , . . . , the impulsive time instant tψ satisfies  = t < t < t <
· · · < tψ < · · · , and tψ → ∞ as ψ → ∞. zk(t+

ψ ) = limt→t+
ψ

zk(t), zk(t–
ψ ) = limt→t–

ψ
zk(t). Any



Leng and Wu Advances in Difference Equations  (2017) 2017:299 Page 3 of 12

solution of () is assumed to be left continuous at each tψ , i.e., zk(t–
ψ ) = zk(tψ ). ϑ(tψ ) is the

impulsive gain at t = tψ and ϑ(t) =  for t �= tψ .
Let ĝ(ek(t)) = g(zk(t)) – g(w(t)), ek(t) = zk(t) – w(t) be the synchronization errors, then

the error systems are

ėk(t) = ĝ
(
ek(t)

)
+

N∑

j=

μkj(t)Bej
(
t – ξ (t)

)
, t �= tψ ,

ek
(
t+
ψ

)
= ek

(
t–
ψ

)
+ ϑ(tψ )ek

(
t–
ψ

)
, t = tψ .

()

Assumption  ([]) Suppose that there exists a positive constant L such that

(
y(t) – x(t)

)T(
g
(
y(t)

)
– g

(
x(t)

)) ≤ L
(
y(t) – x(t)

)T(
y(t) – x(t)

)

holds for any x(t), y(t) ∈ Rn and t > .

Remark  The function g(x) is QUAD((L + κ)I,κ) in [], where κ is any real positive
scalar.

Assumption  ([]) Suppose that the time-varying coupling delay ξ (t) is differentiable and
there exist two constants ρ <  and ξ ∗ >  such that ξ̇ (t) ≤ ρ and ξ (t) ≤ ξ ∗.

3 Main results
Let E(t) = ((e(t))T , (e(t))T , . . . , (eN (t))T )T , d = L + 

–ρ
, σψ = tψ – tψ– be the impulsive

intervals, I be an identity matrix with appropriate dimension, λmax be the largest eigen-
values of dI + (U(t) ⊗ B)(U(t) ⊗ B)T , G(t, ξ (t)) = {η | t – ξ (t) < tη < t,η = , , . . .}, G(t, ξ (t))
and G(t, ξ (t)) be the minimum and maximum values of G(t, ξ (t)), δ(t) = ( + ϑ(t)), from
the definition of ϑ(t), we have δ(t) =  for t �= tψ .

Theorem  Suppose that Assumptions  and  hold. If there exists a constant γ >  such
that

ln δ(tψ ) + γ + λmaxσψ < , ψ = , , . . . , ()

holds, then network () can achieve synchronization.

Proof Consider the following Lyapunov function:

V (t) =
N∑

k=

eT
k (t)ek(t) +

δ(t)
 – ρ

(∫ t–
G(t,ξ (t))

t–ξ (t)

N∑

k=

eT
k (θ )ek(θ ) dθ

+
G(t,ξ (t))–∑

q=G(t,ξ (t))

∫ t–
q+

t+
q

N∑

k=

eT
k (θ )ek(θ ) dθ +

∫ t

t+
G(t,ξ (t))

N∑

k=

eT
k (θ )ek(θ ) dθ

)

for t ∈ (tψ–, tψ ], ψ = , , . . . .
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When t ∈ (tψ–, tψ ),

V (t) =
N∑

k=

eT
k (t)ek(t) +


 – ρ

(∫ t–
G(t,ξ (t))

t–ξ (t)

N∑

k=

eT
k (θ )ek(θ ) dθ

+
G(t,ξ (t))–∑

q=G(t,ξ (t))

∫ t–
q+

t+
q

N∑

k=

eT
k (θ )ek(θ ) dθ +

∫ t

t+
G(t,ξ (t))

N∑

k=

eT
k (θ )ek(θ ) dθ

)

,

and the derivative of V (t) is

V̇ (t) = 
N∑

k=

eT
k (t)ėk(t) +


 – ρ

N∑

k=

eT
k (t)ek(t)

–
( – ξ̇ (t))

 – ρ

N∑

k=

eT
k
(
t – ξ (t)

)
ek

(
t – ξ (t)

)

= 
N∑

k=

eT
k (t)ĝ

(
ek(t)

)
+ 

N∑

k=

N∑

j=

μkj(t)eT
k (t)Bej

(
t – ξ (t)

)

+


 – ρ

N∑

k=

eT
k (t)ek(t) –

( – ξ̇ (t))
 – ρ

N∑

k=

eT
k
(
t – ξ (t)

)
ek

(
t – ξ (t)

)
.

According to Assumptions  and ,

V (t) ≤ LET (t)E(t) + ET (t)
(
U(t) ⊗ B

)(
U(t) ⊗ B

)T E(t)

+ ET(
t – ξ (t)

)
E
(
t – ξ (t)

)
+


 – ρ

ET (t)E(t)

–
( – ξ̇ (t))

 – ρ
ET(

t – ξ (t)
)
E
(
t – ξ (t)

)

= ET (t)
(
dI +

(
U(t) ⊗ B

)(
U(t) ⊗ B

)T)
E(t)

–
(ρ – ξ̇ (t))

 – ρ
ET(

t – ξ (t)
)
E
(
t – ξ (t)

)

≤ λmaxET (t)E(t) ≤ λmaxV (t),

which gives

V (t) ≤ V (tψ–) exp
(
λmax(t – tψ–)

)
, t ∈ (tψ–, tψ ). ()

When t = tψ ,

V
(
t+
ψ

)
=

N∑

k=

eT
k
(
t+
ψ

)
ek

(
t+
ψ

)
+

δ(t+
ψ )

 – ρ

(∫ t–
G(t,ξ (t))

t+
ψ –ξ (t+

ψ )

N∑

k=

eT
k (θ )ek(θ ) dθ

+
G(t,ξ (t))–∑

q=G(t,ξ (t))

∫ t–
q+

t+
q

N∑

k=

eT
k (θ )ek(θ ) dθ +

∫ t+
ψ

t+
G(t,ξ (t))

N∑

k=

eT
k (θ )ek(θ ) dθ

)
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=
(
 + ϑ(tψ )

)
N∑

k=

eT
k
(
t–
ψ

)
ek

(
t–
ψ

)
+

δ(t–
ψ )

 – ρ

(∫ t–
G(t,ξ (t))

t–
ψ –ξ (t–

ψ )

N∑

k=

eT
k (θ )ek(θ ) dθ

+
G(t,ξ (t))–∑

q=G(t,ξ (t))

∫ t–
q+

t+
q

N∑

k=

eT
k (θ )ek(θ ) dθ +

∫ t–
ψ

t+
G(t,ξ (t))

N∑

k=

eT
k (θ )ek(θ ) dθ

)

= δ(tψ )V
(
t–
ψ

)
. ()

When ψ = , from inequalities () and (),

V
(
t–

) ≤ V (t) exp(λmaxσ),

V
(
t+

) ≤ δ(t)V

(
t–

) ≤ δ(t)V (t) exp(λmaxσ).

When ψ = ,

V
(
t–

) ≤ V

(
t+

)

exp(λmaxσ)

≤ δ(t)V (t) exp
(
λmax(σ + σ)

)
,

V
(
t+

) ≤ δ(t)V

(
t–

)

≤ δ(t)δ(t)V (t) exp
(
λmax(σ + σ)

)

= V (t)
∏

π=

δ(tπ ) exp(λmaxσπ ).

By mathematical induction, for any positive integer ψ ,

V
(
t+
ψ

) ≤ V (t)
ψ∏

π=

δ(tπ ) exp(λmaxσπ ).

If condition () holds,

δ(tπ ) exp(λmaxσπ ) ≤ exp(–γ ), π = , , . . . ,

and

V
(
t+
ψ

) ≤ V (t) exp(–ψγ ),

which implies V (t+
ψ ) →  as ψ → ∞.

Then, for t ∈ (tψ , tψ+],

V (t) ≤ V
(
t+
ψ

)
exp

(
λmax(t – tψ )

)
,

which implies V (t) →  as t → ∞, i.e., the synchronization is achieved. This completes
the proof. �

Remark  It is clear that V (t) is the quadratic sum of synchronization errors, i.e., V (t) ≥ 
and V (t) =  if and only if ek(t) = , k = , , . . . , N . In particular, if the set G(t, ξ (t)) is an
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empty set, the Lyapunov function is

V (t) =
N∑

k=

eT
k (t)ek(t) +

δ(t)
 – ρ

∫ t

t–ξ (t)

N∑

k=

eT
k (θ )ek(θ ) dθ ;

if the set G(t, ξ (t)) only has an element �, G(t, ξ (t)) = G(t, ξ (t)) = �,

V (t) =
N∑

k=

eT
k (t)ek(t) +

δ(t)
 – ρ

(∫ t–
�

t–ξ (t)

N∑

k=

eT
k (θ )ek(θ ) dθ +

∫ t

t+
�

N∑

k=

eT
k (θ )ek(θ ) dθ

)

.

Remark  From condition (), it is easy to see the relationship among system parameters,
impulsive gains and impulsive intervals. Clearly, for any given network, we can calculate
the needed impulsive gains and intervals such that condition () holds. As we know, dif-
ferent networks usually have different system parameters. That is, impulsive controllers
with fixed impulsive gains and intervals are not always valid for different networks. In the
following, we introduce adaptive strategy to design unified impulsive controllers.

Theorem  Suppose that Assumptions  and  hold. If there exists a constant γ >  such
that

ln δ(tψ ) + γ + M̂(tψ )σψ < , ψ = , , . . . , ()

holds, where ˙̂M(t) = ε
∑N

k= eT
k (t)ek(t) and ε >  is the adaptive gain, then network () can

achieve synchronization.

Proof Consider the following Lyapunov function:

V (t) =
N∑

k=

eT
k (t)ek(t) +

δ(t)
 – ρ

(∫ t–
G(t,ξ (t))

t–ξ (t)

N∑

k=

eT
k (θ )ek(θ ) dθ

+
G(t,ξ (t))–∑

q=G(t,ξ (t))

∫ t–
q+

t+
q

N∑

k=

eT
k (θ )ek(θ ) dθ +

∫ t

t+
G(t,ξ (t))

N∑

k=

eT
k (θ )ek(θ ) dθ

)

+
δ(t)
ε

(
M̂(t) – λmax

)

for t ∈ (tψ–, tψ ],ψ = , , . . . .
When t ∈ (tψ–, tψ ),

V (t) =
N∑

k=

eT
k (t)ek(t) +


 – ρ

(∫ t–
G(t,ξ (t))

t–ξ (t)

N∑

k=

eT
k (θ )ek(θ ) dθ

+
G(t,ξ (t))–∑

q=G(t,ξ (t))

∫ t–
q+

t+
q

N∑

k=

eT
k (θ )ek(θ ) dθ +

∫ t

t+
G(t,ξ (t))

N∑

k=

eT
k (θ )ek(θ ) dθ

)

+


ε

(
M̂(t) – λmax

),
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and the derivative of V (t) is

V̇ (t) = 
N∑

k=

eT
k (t)ĝ

(
ek(t)

)
+ 

N∑

k=

N∑

j=

μkj(t)eT
k (t)Bej

(
t – ξ (t)

)

+


 – ρ

N∑

k=

eT
k (t)ek(t) –

( – ξ̇ (t))
 – ρ

N∑

k=

eT
k
(
t – ξ (t)

)
ek

(
t – ξ (t)

)

+
(
M̂(t) – λmax

) N∑

k=

eT
k (t)ek(t)

≤ M̂(t)V (t) ≤ M̂(tψ )V (t),

which gives

V (t) ≤ V (tψ–) exp
(
M̂(tψ )(t – tψ–)

)
, t ∈ (tψ–, tψ ).

When t = tψ ,

V
(
t+
ψ

)
=

N∑

k=

eT
k
(
t+
ψ

)
ek

(
t+
ψ

)
+

δ(t+
ψ )

 – ρ

(∫ t–
G(t,ξ (t))

t+
ψ –ξ (t+

ψ )

N∑

k=

eT
k (θ )ek(θ ) dθ

+
G(t,ξ (t))–∑

q=G(t,ξ (t))

∫ t–
q+

t+
q

N∑

k=

eT
k (θ )ek(θ ) dθ +

∫ t+
ψ

t+
G(t,ξ (t))

N∑

k=

eT
k (θ )ek(θ ) dθ

)

+
δ(t+

ψ )
ε

(
M̂

(
t+
ψ

)
– λmax

)

= δ(tψ )V
(
t–
ψ

)
.

Thus, similar to the proof of Theorem , the proof can be completed. �

Remark  Generally, when the impulsive interval σψ is fixed, for any given γ , we can
choose

– exp

(
–

γ + M̂(tψ )σψ



)
–  + � ≤ ϑ(tψ ) ≤ exp

(
–

γ + M̂(tψ )σψ



)
–  – �,

such that condition () holds, where � is an arbitrary small positive constant.

Remark  From condition (), when ϑ(tψ ) and γ are fixed, we can estimate the control
instants tψ through finding the maximum value of

tψ < tψ– –
(
δ(tψ ) + γ

)
M̂–(tψ ),

with t = , ψ = , , . . . .

4 Numerical illustrations
In this section, we provide two numerical examples to demonstrate the effectiveness of
the theoretical results. Choose the inner coupling matrix B as an identity matrix and time-
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varying delay as ξ (t) = ( – cos(t))/. We choose ρ = / such that Assumption  holds. In
addition, choose the initial values of zk(t) and w(t) randomly.

Example  Consider synchronization of a six-node network via impulsive control.
Choose the node dynamics as the Chen system []

żk = (zk – zk),

żk = –zk – zzk + zk,

żk = zkzk – zk.

Choose the time-varying outer coupling matrix U(t) as

. ×

⎡

⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎣

U(t) cos(t)  cos(t) exp(–t) sin(t)
cos(t) U(t) sin(t) sin(t) exp(–t) cos(t)
sin(t) exp(–t) U(t)  cos(t) 

 exp(–t)  U(t) sin(t) sin(t)
exp(–t) cos(t) sin(t) sin(t) U(t) 
cos(t)  exp(–t)  exp(–t) U(t)

⎤

⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎦

,

with U(t) = – sin(t) – exp(–t) –  cos(t) – , U(t) = – cos(t) – exp(–t) –  sin(t), U(t) =
– sin(t) – exp(–t) – cos(t) – , U(t) = – sin(t) – exp(–t) – , U(t) = – sin(t) – cos(t) –
exp(–t)–, U(t) = – exp(–t)–cos(t)–. According to [], there exists a constant L = 
such that Assumption  holds. Figure  shows the eigenvalue of dI + (U(t) ⊗ B)(U(t) ⊗ B)T

versus t. Then the maximum eigenvalue is λmax = .. Choose the impulsive gains
ϑ(tψ ) = –. and the impulsive intervals as σψ = .. We have ln δ(tψ ) + γ + λmaxσψ =
–. <  with γ = ., and thus condition () holds. Figure  shows the orbits of syn-
chronization errors ekj(t).

Example  Consider the same network in Example  via adaptive impulsive control.

Figure 1 The eigenvalue of dI + (U(t) ⊗ B)(U(t) ⊗ B)T versus t.



Leng and Wu Advances in Difference Equations  (2017) 2017:299 Page 9 of 12

Figure 2 The orbits of ekj(t).

Figure 3 The orbits of ekj(t).

Firstly, choose the impulsive intervals σψ = ., ε = ., γ = . and M̂() =
.. According to Remark , choose

ϑ(tψ ) = exp

(
–

γ + M̂(tψ )σψ



)
–  – �,

with � = .. Figure  shows the orbits of synchronization errors ekj(t) and Figure 
shows the impulsive gain ϑ(tψ ).

Secondly, choose the impulsive gain ϑ(tψ ) = –., M̂() = ., γ = . and ε =
.. The impulsive instants can be estimated in terms of Remark . Figure  shows the
orbits of synchronization errors ekj(t) and Figure  shows impulsive interval σψ .

In Example , we need not calculate λmax in advance. In Figure , the impulsive interval
converges to . when the network achieves synchronization. It is larger than the esti-
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Figure 4 The impulsive gain ϑ (tψ ).

Figure 5 The orbits of ekj(t).

mated value . in Example . That is, adaptive impulsive control scheme can make the
impulsive interval as large as possible through choosing proper parameters.

5 Conclusions
This paper investigates synchronization of the network with time-varying topology and
delay. Combined with proper impulsive controllers, the network achieves synchroniza-
tion, and we obtain a simple synchronization criterion. Further, we introduce adaptive
strategy, make the impulsive controllers unified and obtain an adaptive synchronization
criterion as well. Noticeably, when the impulsive interval is fixed, the impulsive gain can
reach a proper value by adjusting itself; when the impulsive gain is fixed, we can estimate
the impulsive interval by solving a sequence of maximum value problems. Finally, we con-
sider a network coupled with six Chen systems to verify the obtained results.
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Figure 6 The impulsive interval σψ .
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