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Abstract
In this paper, we consider a stochastic SI epidemic model with regime switching. The
Markov semigroup theory is employed to obtain the existence of a unique stable
stationary distribution. We prove that ifRs < 0, then the disease becomes extinct
exponentially; whereas ifRs > 0 and β(i) > α(i), i ∈ S, then the densities of the
distributions of the solution can converge in L1 to an invariant density.
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1 Introduction
A deterministic Susceptible-Infective model with standard incidence can be described by

⎧
⎨

⎩

dS(t)
dt = � – βS(t)I(t)

S(t)+I(t) – μS(t),
dI(t)

dt = βS(t)I(t)
S(t)+I(t) – (α + μ)I(t).

(.)

Here S(t) and I(t) denote the numbers of susceptible and infected individuals at time t, re-
spectively, � is the influx of individuals into the susceptibles, β is the disease transmission
coefficient, μ is the natural death rate, and α is the disease-related death rate.

Because of the existence of environmental noises, the parameters appearing in model
(.) are emphatically not constants. In a simple case, environmental noises manifest them-
selves as white and color noises. We assume that white noise mainly affects the natural
death rates, that is, μ → μ + σ Ḃ(t), where σ represents the intensity of white noise, B(t) is
a standard Brownian motion defined on a complete probability space (�,F , {F (t)}t≥,P)
with filtration {F (t)}t≥ satisfying the usual conditions (see []).

In real world, color noise can cause the population system to switch from one environ-
mental regime to another. Such a switching is described by a continuous-time Markov
chain r(t), t ≥ , with a finite state space S = {, , . . . , N} and the generator � = (γij)N×N of
r(t) given by

P
{

r(t + δ) = j|r(t) = i
}

=

⎧
⎨

⎩

γijδ + o(δ) if i �= j,

 + γiiδ + o(δ) if i = j,
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where γij ≥  for i, j = , . . . , N with j �= i and γii = –
∑

j �=i γij for i = , . . . , N . We assume that
the Markov chain r(t) is independent of Brownian motion. For convenience, throughout
this paper, we assume that

γij >  for i, j = , . . . , N with j �= i.

This assumption ensures that the Markov chain r(t) is irreducible. Consequently, there
exists a unique stationary distribution π = {π,π, . . . ,πN } of r(t) that satisfies π� = ,
∑N

i= πi = , and πi >  for all i ∈ S.
Incorporating the two types of noises into system (.), we get a regime-switching diffu-

sion model:
⎧
⎨

⎩

dS(t) = (�(r(t)) – β(r(t))S(t)I(t)
S(t)+I(t) – μ(r(t))S(t)) dt + σ (r(t))S(t) dB(t),

dI(t) = ( β(r(t))S(t)I(t)
S(t)+I(t) – (α(r(t)) + μ(r(t)))I(t)) dt + σ (r(t))I(t) dB(t),

(.)

where the parameters �(i),β(i),μ(i),α(i), and σ (i), i ∈ S are all positive constants.
Recently, the long-time behavior of stochastic epidemic model under regime switching

was considered, for example, in [–], where the uniform ellipticity condition was needed
when proving the ergodicity of a stochastic system. However, in this paper the diffusion
matrix of system (.) is given by

Ai = σ (i)

(
S SI
SI I

)

, i ∈ S.

Since Ai is degenerate, the uniform ellipticity condition is not satisfied, and even a variable
substitution cannot improve this situation. To our knowledge, rare works in this direction
are known.

Throughout this paper, we denote by A′ the transpose of a vector or matrix A; we set
ĝ = mink∈S{g(k)} and ǧ = maxk∈S{g(k)} for any vector g = (g(), . . . , g(N)); moreover,

Ri := β(i) – μ(i) – α(i) –
σ (i)


, i ∈ S, and Rs =

N∑

i=

πiRi.

By similar arguments as in Theorem . of [] it follows that, for any (S(), I(), r()) ∈
R


+ × S, system (.) has a unique global solution, which remains in R


+ with probability .

The aim of this paper is to consider the long-time behavior of system (.). We prove that
the disease becomes extinct exponentially if Rs < , whereas if Rs >  and β(i) > α(i), i ∈ S,
then system (.) has a stable stationary distribution. In some sense, Rs is the threshold
of model (.).

The rest of this paper is organized as follows. In Section , we present a sufficient condi-
tion for the extinction of the disease. In Section , conditions for the existence of a stable
stationary distribution are given, and detailed proofs are presented. Finally, we give a brief
discussion.

2 Extinction of the disease
In this section, we present a sufficient condition for the extinction of the disease.
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Theorem . If Rs < , then the disease I(t) tends to zero exponentially,

Proof By the generalized Itó’s formula it follows from (.) that

ln I(t) – ln I()
t

=

t

∫ t



β(r(s))S(s)
S(s) + I(s)

ds –

t

∫ t



(

α
(
r(s)

)
+ μ

(
r(s)

)
+

σ (r(s))


)

ds +

t

∫ t


σ
(
r(s)

)
dB(s)

≤ 
t

∫ t



(

β
(
r(s)

)
– α

(
r(s)

)
– μ

(
r(s)

)
–

σ (r(s))


)

ds +

t

∫ t


σ
(
r(s)

)
dB(s).

Taking the limit as t → ∞, we have

lim sup
t→∞

ln I(t)
t

≤
N∑

i=

πiRi = Rs < .

The proof is complete. �

3 Existence of stationary distribution and its stability
Let x(t) = ln S(t) and y(t) = ln I(t). Then system (.) becomes

⎧
⎨

⎩

dx(t) = (�(r(t))e–x(t) – β(r(t))ey(t)

ex(t)+ey(t) – c(r(t))) dt + σ (r(t)) dB(t),

dy(t) = ( β(r(t))ex(t)

ex(t)+ey(t) – c(r(t))) dt + σ (r(t)) dB(t),
(.)

where c(i) := μ(i) + σ(i)
 and c(i) := α(i) + μ(i) + σ(i)

 .
To investigate the existence of a stationary distribution of system (.) and its stability,

it suffices to consider the corresponding property for system (.).

Theorem . Let (x(t), y(t)) be a solution of system (.) with initial value (x(), y(), r()) ∈
R

 × S. Then, for every t > , the distribution of (x(t), y(t), r(t)) has a density u(t, x, y, i). If
Rs >  and β(i) > α(i), i ∈ S, then there exists a unique density u∗(x, y, i) such that

lim
t→∞

N∑

i=

∫∫

R

∣
∣u(t, x, y, i) – u∗(x, y, i)

∣
∣dx dy = .

Next, we prove this theorem by Lemmas .-..
Let (x(i)(t), y(i)(t)) be a solution of system

⎧
⎪⎨

⎪⎩

dx(i)(t) = (�(i)e–x(i)(t) – β(i)ey(i)(t)

ex(i)(t)+ey(i)(t)
– c(i)) dt + σ (i) dB(t),

dy(i)(t) = ( β(i)ex(i)(t)

ex(i)(t)+ey(i)(t)
– c(i)) dt + σ (i) dB(t).

(.)

Denote by Ai the differential operators

Aif =
σ (i)



[
∂f
∂x + 

∂f
∂x ∂y

+
∂f
∂y

]

–
∂(h

i f )
∂x

–
∂(h

i f )
∂y

, f ∈ L(
R

,B
(
R

), m
)
,
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where B(R) is the σ -algebra of Borel subsets of R
, m is the Lebesgue measure on

(R,B(R)), and

h
i (x, y) = �(i)e–x –

β(i)ey

ex + ey – c(i), h
i (x, y) =

β(i)ex

ex + ey – c(i).

Next, we show that, for any i ∈ S, the operator Ai generates an integral Markov semi-
group {Ti(t)}t≥ on the space L(R,B(R), m) and

∫ ∞


Ti(t)f dt >  a.e. on R

.

Lemma . The semigroup {Ti(t)}t≥ is an integral Markov semigroup.

Proof If a(x) and b(x) are vector fields on R
d , then the Lie bracket [a, b] is a vector field

given by

[a, b]j(x) =
d∑

k=

(

ak
∂bj

∂xk
(x) – bk

∂aj

∂xk
(x)

)

, j = , , . . . , d.

Let

a(x, y) =
(

�(i)e–x –
β(i)ey

ex + ey – c(i),
β(i)ex

ex + ey – c(i)
)′

and b(x, y) = (σ (i),σ (i))′.
By direct calculation, [a, b] = (σ (i)�(i)e–x, )′. Thus,

∣
∣
∣[a, b] b

∣
∣
∣ =

∣
∣
∣
∣
∣

σ (i)�(i)e–x σ (i)
 σ (i)

∣
∣
∣
∣
∣

= σ (i)�(i)e–x > ,

which means that b and [a, b] are linearly independent on R
.

Thus, for every (x, y) ∈ R
, the vectors b(x, y) and [a, b](x, y) span the space R

. By the
Hörmander theorem [] the transition probability function of (x(i)(t), y(i)(t)) has a smooth
density ki ∈ C∞((,∞) × R

 × R
). Then, for every f ∈ L(R,B(R), m) satisfying f ≥ 

and ‖f ‖ = ,

Ti(t)f (x, y) =
∫∫

R
ki(t, x, y; u, v)f (u, v) du dv.

Hence, the semigroup {Ti(t)}t≥ is an integral Markov semigroup. �

Lemma . If β(i) > α(i), i ∈ S, then, for every f ∈ D,

∫ ∞


Ti(t)f dt >  a.e. on R

,

where D = {f ∈ L(R) : f ≥ ,‖f ‖ = }.
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Proof For any (x, y) ∈R
, consider the following control system:

ẋφ(t) = �(i)e–xφ (t) –
β(i)eyφ (t)

exφ (t) + eyφ (t) – c(i) + σ (i)φ(t), (.)

ẏφ(t) =
β(i)exφ (t)

exφ (t) + eyφ (t) – c(i) + σ (i)φ(t), (.)

with initial value (xφ(), yφ()) = (x, y).
Let Dx,y;φ be the Frechét derivative of the function h �→ xφ+h(T) from L([, T];R) to

R
, where xφ+h = (xφ+h, yφ+h)′. The derivative Dx,y;φ can be given by

Dx,y;φh =
∫ T


Q(T , s)vh(s) ds,

where v = (σ (i),σ (i))′, and Q(t, t) (T ≥ t ≥ t ≥ ) is a matrix function such that Q(t, t) =
I , ∂Q(t, t)/∂t = 
(t)Q(t, t), and 
(t) = f ′(xφ(t), yφ(t)), where f ′ is the Jacobian of

f =

[
�(i)e–x – β(i)ey

ex+ey – c(i)
β(i)ex

ex+ey – c(i)

]

.

Assume that the following two conditions are satisfied:
. The derivative Dx,y;φ has rank ;
. For any (x, y) ∈R

 and (x, y) ∈R
, there exist T >  and a smooth control φ such

that the solution of system (.), (.) satisfies x() = x, y() = y, x(T) = x, and
y(T) = y.

Then ki(T , x, y; x, y) >  (see [–]). If this is the case, we have

∫ ∞


Ti(t)f dt >  a.e. on R

.

So the rest of the proof is checking conditions  and .
First, we check condition . Let ε ∈ (, T) and h = [T–ε,T]. Since Q(T , s) = I + 
(T)(T –

s) + o(T – s), we obtain

Dx,y;φh = εv +


ε
(T)v + o

(
ε), v =

[
σ (i)
σ (i)

]

,


(T)v =

[
–�(i)e–x + β(i)ex+y

(ex+ey) – β(i)ex+y

(ex+ey)
β(i)ex+y

(ex+ey) – β(i)ex+y

(ex+ey)

][
σ (i)
σ (i)

]

=

[
σ (i)�(i)e–x



]

,

where x = xφ(T), y = yφ(T). Obviously, v and 
(T)v are linearly independent for any (x, y) ∈
R

. This implies Dx,y;φ has rank  for every (x, y) ∈R
.

Now we prove that condition  is satisfied. In view of (.) and (.), we obtain

ẋ(t) – ẏ(t) + β(i) + c(i) – c(i) = �(i)e–x(t), t ∈ (,∞).

Integrating from  to t, we get

x(t) – x() – y(t) + y() +
[
β(i) – α(i)

]
t =

∫ t


�(i)e–x(s) ds, t ∈ (,∞). (.)
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In particular,

x – x – y + y +
[
β(i) – α(i)

]
T =

∫ T


�(i)e–x(s) ds, t ∈ (,∞). (.)

Choose T >  large enough such that the left side of this equality is positive. Then take a
smooth function x(t) with x() = x and x(T) = x that satisfies (.). Consequently, by (.)
we can determine a smooth function y(t) with y() = y and y(T) = y. Thus, we can deter-
mine a smooth control φ(t) from (.), which means that condition  is satisfied. �

Let (x(t), y(t)) be the unique solution of system (.) with (x(), y(), r()) ∈R
 ×S. Then

(x(t), y(t), r(t)) constitutes a Markov process on R
 × S. By Lemma . in [], for t > ,

the distribution of the process (x(t), y(t), r(t)) is absolutely continuous, and its density u =
(u, u, . . . , uN ) (where ui := u(t, x, y, i)) satisfies the following master equation:

∂u
∂t

= �′u + Au, (.)

where Au = (Au,Au, . . . ,AN uN )′.
Let X = R

 ×S, � be the σ -algebra of Borel subsets of X, and m̂ be the product measure
on (X,�) given by m̂(B × i) = m(B) for all B ∈ B(R) and i ∈ S. Obviously, Au generates a
Markov semigroup {T (t)}t≥ on the space L(X,�, m̂), which is given by

T (t)f =
(
T(t)f (x, y, ), . . . ,TN (t)f (x, y, N)

)′, f ∈ L(X,�, m̂).

Let λ be a constant such that λ > max≤i≤N {–γii} and Q = λ–�′ + I . Then (.) becomes

∂u
∂t

= λQu – λu + Au. (.)

Obviously, Q is also a Markov operator on L(X,�, m̂).
From the Phillips perturbation theorem [], (.) with the initial condition u(, x, y, k) =

f (x, y, k) generates a Markov semigroup {P(t)}t≥ on the space L(X) given by

P(t)f = e–λt
∞∑

n=

λnS(n)(t)f , (.)

where S()(t) = T (t), and

S(n+)(t)f =
∫ t


S()(t – s)QS(n)(s)f ds, n ≥ . (.)

Lemma . If β(i) > α(i), i ∈ S, then the semigroup {P(t)}t≥ is asymptotically stable or is
sweeping with respect to compact sets.

Proof By Lemma ., {P(t)}t≥ is a partially integral Markov semigroup. In view of
Lemma ., (.), and Qij >  (i �= j), we know that, for every nonnegative f ∈ L(X) with
‖f ‖ = ,

∫ ∞


P(t)f dt >  a.e. on X.
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By similar arguments to Corollary  in [] it follows that {P(t)}t≥ is asymptotically stable
or is sweeping with respect to compact sets. �

Remark . A density f∗ is called invariant if P(t)f∗ = f∗ for each t > . The Markov semi-
group {P(t)}t≥ is called asymptotically stable if there is an invariant density f∗ such that

lim
t→∞

∥
∥P(t)f – f∗

∥
∥ =  for f ∈ D,

where D = {f ∈ L(X) : f ≥ ,‖f ‖ = }.
A Markov semigroup {P(t)}t≥ is called sweeping with respect to a set A ∈ � if, for every

f ∈ D,

lim
t→∞

∫

A
P(t)f (x)m(dx) = .

Lemma . If Rs >  and β(i) > α(i), i ∈ S, then the semigroup {P(t)}t≥ is asymptotically
stable.

Proof We will construct a nonnegative C-function V and a closed set U ∈ B(R) (which
lies entirely in R

) such that, for any i ∈ S,

sup
(x,y)∈R\U

A ∗V (x, y, i) < ,

where

A ∗V (x, y, i) =
σ (i)



[
∂V
∂x + 

∂V
∂x ∂y

+
∂V
∂y

]

+ h
i
∂V
∂x

+ h
i
∂V
∂y

+
∑

j �=i,j∈S
γij

(
V (x, y, j) – V (x, y, i)

)
(.)

and

h
i (x, y) = �(i)e–x –

β(i)ey

ex + ey – c(i), h
i (x, y) =

β(i)ex

ex + ey – c(i).

In fact, A ∗ is the adjoint operator of the infinitesimal generator of the semigroup
{P(t)}t≥.

Since the matrix � is irreducible, there exists a solution � = (�,�, . . . ,�N ) of the
Poisson system (see [], Lemma .) such that

�� – R = –
N∑

i=

πiRi,

where R = (R,R, . . . ,RN )′ and  = (, , . . . , )′, that is, for any i ∈ S,

∑

j �=i,j∈S
γij(�j – �i) – Ri = –

N∑

i=

πiRi = –Rs. (.)
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Take fixed r >  such that

K – rRs < –,

where

K := max
i∈S

{
�(i) + c(i)

}
.

We define a C-function V as follows:

V (x, y, i) = ex + ey – x – ry + r
(
�i + |� |), (x, y) ∈R

.

By direct calculation we obtain

A ∗V = �(i) – μ(i)ex –
(
α(i) + μ(i)

)
ey – �(i)e–x +

β(i)ey

ex + ey + c(i)

+ r
[

–
β(i)ex

ex + ey + c(i)
]

+ r
∑

j �=i,j∈S
γij(�j – �i)

= �(i) + c(i) – μ(i)ex –
(
α(i) + μ(i)

)
ey – �(i)e–x + (r + )

β(i)ey

ex + ey

+ r
[

–β(i) + c(i) +
∑

j �=i,j∈S
γij(�j – �i)

]

= �(i) + c(i) – μ(i)ex –
(
α(i) + μ(i)

)
ey – �(i)e–x + (r + )

β(i)ey

ex + ey – rRs,

where (.) is used. Since

A ∗V ≤ K – μ̂ex – �̂e–x + (r + )β̌ ,

choose κ >  large enough such that

A ∗V < –, on R
 – [–κ ,κ] ×R.

In addition, for any (x, y) ∈ [–κ ,κ] ×R, we have

A ∗V ≤
⎧
⎨

⎩

K + (r + ) β̌ey

e–κ +ey – rRs → K – rRs < – as y → –∞;

K – (α̂ + μ̂)ey + (r + )β̌ → –∞ as y → +∞.

Choose ε >  large enough such that

A ∗V < –, on [–κ ,κ] ×R – R× [–ε, ε].

Obviously, (R – [–κ ,κ] × R) ∪ ([–κ ,κ] × R – R × [–ε, ε]) = R
 – [–κ ,κ] × [–ε, ε]. Take

U := [–κ ,κ] × [–ε, ε]. Then, for any i ∈ S,

sup
(x,y)∈R\U

A ∗V (x, y, i) < –.
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Such a function V is called a Khasminskĭı function. By using arguments similar to those in
[], the existence of a Khasminskĭı function implies that the semigroup is not sweeping
from the set U . According to Lemma ., the semigroup {P(t)}t≥ is asymptotically stable,
which completes the proof. �

4 Discussion
In this paper, we consider the existence of a stationary distribution of a stochastic SI epi-
demic model with regime switching and its stability. We prove that if Rs < , then the
disease becomes extinct exponentially, whereas if Rs >  and β(i) > α(i), i ∈ S, then the
densities of the distributions of the solution can converge in L to an invariant density.
Since the diffusion is degenerate, we employ the Markov semigroup theory to study the
long-time behavior of system (.).

It is known that to obtain the ergodicity, the strong Feller property and irreducibility of
a Markov process are needed. However, according to the proof of Lemma ., system (.)
is not irreducible. This is the reason why we employ the Markov semigroup theory given
by Rudnicki [, ]. In addition, we assume that γij > , i �= j, which is a strong condition.
This condition is used to ensure that r(t) is irreducible. In fact, under the condition that
r(t) is irreducible, just spending a little more time, all results obtained in this paper can be
reproved.
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