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Abstract

A numerical analysis of the well-known linear partial differential equation describing
the relativistic wave is presented in this work. Three different operators of fractional
differentiation with power law, exponential decay law and Mittag-Leffler law are
employed to extend the Klein-Gordon equation with mass parameter to the concept
of fractional differentiation. The three models are solved numerically. The stability and
the convergence of the numerical schemes are investigated in detail.

Keywords: second approximation of fractional derivative; Klein-Gordon equation;
stability analysis

1 Introduction

The concept of differentiation as a convolution of some natural laws, like power law, ex-
ponential decay law and Mittag-Leffler law, is in fashion nowadays due to its ability as a
mathematical tool to replicate the observed facts. These three major definitions are con-
structed as the convolution of derivative of a given differentiable function and power law,
exponential decay law or Mittag-Leffler law [1-5]. This version is recognized as Caputo
type but it is sometime criticized because it does not have an associated anti-derivative.
The original version is the derivative of a convolution of a non-differentiable continuous
function and power law, exponential decay law or Mittag-Leftler law. This last version is
known as Riemann-Liouville approach that is obtained via the Abel integral and is con-
sidered as a real derivative with fractional order [3-5]. Nowadays research using many
concepts of differentiations has been carried out and some good predictions have been
obtained [6-11]. This derivative has been used in many research papers for theoretical
purposes, and sometimes it is used to model some physical problems, but its numerical
approximation is not popular in the literature. Recently, Atangana and Gomez did a work
devoted to the derivation of the numerical approximation of the three Riemann-Liouville
types of fractional derivatives [12]. A great advantage of the fractional differentiation with
non-singular and non-local kernel suggested by Atangana and Baleanu is that, when us-
ing the Laplace transform, we obtain the usual initial condition unlike Riemann-Liouville.
In addition to this, the kernel is able to portray a full memory as there is no singularity
associated to it. The kernel is more natural and is a combination of power law and expo-
nential decay law which give this kernel the ability to describe phenomena with non-local
fading memory [13-17]. In their work, they suggested the numerical approximation of
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these derivatives for first and second order. In this work, we analyze numerically the well-
known Klein-Gordon equation with mass parameter, where the second time derivative
will be replaced by Riemann-Liouville, Caputo-Fabrizio in Riemann-Liouville sense and
Atangana-Baleanu in Riemann-Liouville sense fractional derivatives. We shall recall that
the Klein-Gordon equation with mass parameter is a linear partial differential equation
used to describe a relativistic wave, closely related to the Schréodinger equation [18—20].

2 Fractional order derivatives in Riemann-Liouville sense
In this section, we present the fractional order definitions in Riemann-Liouville sense.

Definition 1 Let f be a function not necessary differential, « be a real number such that
0 < o <1, then the derivative with o order with power law is given as

1

d t
D] = g 7 | -9 SOV W

Definition 2 Let f € H'(a,b), b > a, a € [0,1] and not necessary differentiable, then the
definition of the new fractional derivative (the Atangana-Baleanu fractional derivative in
Riemann-Liouville sense) is given as

O B W B @

Definition 3 Let f be a function not necessary differential, & be a real number such that
0 < o <1, then the derivative with « order with exponential decay-law is given as

e pe ()] - ]1”_("2% f 1 exp[—%(f—y)} dy, ®)

where M(«) and B(«) denote a normalization function obeying M(0) = M(1) = 1and B(0) =
B(1)=1.

3 Numerical analysis for the Klein-Gordon equation with mass parameter

First we give the Klein-Gordon equation with mass parameter that is considered in this
paper

92w (t,x) 122 2W(t,x) L

n? -
ot? 0x2

MW = 0. (4)
The Klein-Gordon equation with mass parameter m has solutions with complex-valued
functions of the time variable ¢ and space variables of x. Theorems of the derivation of the
numerical approximation of three Riemann-Liouville types of fractional derivatives can
be found in paper [12].

3.1 Second approximation of Riemann Liouville approach and a stability analysis
of the numerical scheme

Theorem 1 Let f be a function not necessary differentiable within an interval [a, T), then

the fractional derivative of f of order 1 < o <2 in Riemann-Liouville sense is given as fol-
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lows:
oD [f ()]
(Ax) -1-a j ) . )
ToarB-a) fo’<+1g1k fokﬂ Ly +fo/<+1g,k + R jor (5)
where
A [ G f0) - f k)
Rajie = 2I'2 — ) |: - /xk (X501 — )7~ T e 4
et f(y) f xk+l) T f()/ f(xk+1)
2Z/xk (et Z/ [y dy} (6)
and

gﬁk — (j_ k)l—vt _ (i_ k + l)l—a’
g = (i~ k=1 — (- k)" 7)
gl =(—k-1)"~ (- k-1)""

Now, we can consider the equation with the second order Riemann-Liouville derivative.

W 5-DY [W(t,x)] = o D[ (&%) [HPc - c*m? W (5, %), (8)
, (apte [ 1 j-1
G rB-a) Z‘Ij t)g =2 ) Wtka)gy +Z\If te)g
k=0 .
22 (Wi =2+ W) - (], 20+ W)
= C
2(Ax)?
\Ill,‘+1 \Ijl
_CW[%] ©)

To make further work clearer, let us do regulation in the equation with sufficient param-
eters as follows:
hZ(At)—l—a i hZCZ . 641’}’12

CAG-w’ “Taewr 4T 2 1

Then we rewrite the equation with parameters
(Wl — 2wlg + W)
Y 8k i&k i&k

" c’ |:Z q,1+1glak 2 Z \IJ}+1g]otkl + Z q_,1+1g1ak2:|

=d[(V - 2w + W) - (W)

i+1 i+1

— (W 1), (11)

2w

4
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Finally, we have the following equation for the numerical scheme:

" (g +2d; + €))
= \p{(zc{ﬁgﬁ c’g"‘2 +2d, - &)

j-1 j-2 j-2
j J+1 J+l a1 J+l a2
—4[2% WA g}
k=0 k=0 k=0

+d[ W v -

i+1 i+1

-]

3.1.1 Stability analysis of the numerical scheme

Let us represent a stability analysis of the numerical scheme by supposing

V=W —w,

L i

where "‘/; is the approximate solution of the equation in time and space (x;, ;) (i = 1,2,

j=1,2,...,M) [4].

Also the error for approximation is given as

V= v ]
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12)

(13)

N,

(14)

So we have the following error expression for the Klein-Gordon equation with mass pa-

rameter:

v (dgh+2d) + €))
:%(Zcig,' cjgaz +2d1 6/)

j-1
—4[2 g - zzwwzwzk}
k=0

v d[Vi vV Vi )

14

Then let us take the following equality for the stability analysis.

Vn(x, £) = explat] explikyx],
Vi, = explat] explik,],

Vit = expla(t + At)] explikyux],
V1 = explat] exp[iky(x + Ax)],
V1 = explat] exp[ ik (x - Ax)],
Vit =expla(t + At)] exp[ikn(x + Ax)],
Vit = explalt + At exp[ikn(x - Ax)],

VoL = explalt — A0 exp[ikn(x — Ax)],

(15)

(16)
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where k,, = *, m=1,2,...,M = ﬁ. If we use the equalities above, equation can be re-

considered as follows:

exp[a(t + At)] explik,x] (cﬁg‘»"k + 2d1: + e/)

= explat] expl[ik,,x] (2c§gjk c'g“ 24 2d’ e’)

j-1
— d[z exp[a(t + At)] explikinx]g7y
k=0

~.

-2 j-2
-2 exp[a(t + At)] exp[ikmx]gfj’,‘(l + Z exp[a(t + At)] exp[ikmx]gf‘,‘(2:|
k=0 k=0

+ di: [exp[a(t + At)] exp[ikm (x+ Ax)] + exp[a(t + At)] exp[ikm(x - Ax)]

— explat] exp| ik (x + Ax)] — explat] exp| ik, (x — Ax)]]. (17)
If we do simplification with exp[at] exp[ik,,x], we will obtain the following:

exp[a(Ar) ](c’g“k+2d +e/)
=(2c;g —~dgi? +2d,— €))

-2 j—2
ZZexp (A1)] glk +Zexp At)]g,k}
k=0

k=0
+ d)[exp[a(At)] exp[ikn(Ax)] + exp[a(At) ] exp[iky(~Ax)]
— expiku(Ax)] — exp[ikn(-Ax)]] (18)
exp[a(AD)][cg +2d, + €, + ¢ (¢ — 285 + &)
— d}(exp[ikn(Ax)] + exp[ikin(-Ax)])]
= (2dg! - dgi? + 2] — ) — d)(exp[ikin(Ax)] + exp[ikin(— Ax)]) (19)
exp[a(an)] = {(2dgl - digiy’ +2d, — €) — dl(exp[ikn(Ax)] + exp[ikin(-Ax)])}
1{cigts + 2] + €+ ) (g8 — 2675 + &)
— d) (exp[ikn(A%)] + exp[iknn(~A2)]) ). (20)

With the help of the following inequality step by step, we have the condition for the stability

analysis.

1/:+1
y
‘/’+1

= exp[a(At)],

!exp[a(At)“ <L

A
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Then the stability condition is given as

[{(26gii’ - cigii? + 2d; ~ &) ~ ) (exp[kin(Ax)] + exp[ikin (- Ax)])
g+ 2d; + &+ T (g~ 285 +85°)
— d) (exp[ikn(Ax)] + exp[ikn(-Ax)])}|
<1 (22)

Theorem 2 The Crank-Nicholson scheme for solving the Klein-Gordon equation with sec-
ond order Riemann-Liouville is stable if inequality (22) is satisfied.

3.2 Second approximation of the Caputo-Fabrizio derivative in
Riemann-Liouville sense and a stability analysis of the numerical scheme
Theorem 3 Let f be a function not necessary differentiable within an interval [a, T],
then the fractional derivative of f of order 1 < o < 2 in the Caputo-Fabrizio derivative in

Riemann-Liouville sense is given as follows:

1 / + U + U +
07l ] - | L -2 S g I g,
k=0 k=0 k=0

where

J Xk+1 2
P e LXO:/ (0 =/ 50)) exp(—(%) (301 - f)z) dr

Xk
j-1
_9 Z /
k=0 V%

Xk+1

2
(F(0) —Flo)) exp (—(%) (3 T)Z) i

j1 Xk+1 o 2
+ kX():/xk (F(1) —f(wj1)) em(—(m) (711 —r)2> dt}

and

Xjrl — Xk+1 Xjrl — Xk
dj",‘,f:erfc —ali}—erfc{—a 11 },

l-« -«
X — X, X —X
d‘,”,f:erfc P Aol QY S B i , (24)
) l-«a l-«a

Xj-1 — Xk+1 Xj-1 — Xk
gy = erfe —a’—}—erfc{—a ll }

Also we will consider the following equation with the Caputo-Fabrizio derivative in
Riemann-Liouville sense of order 1 < a < 2:

1 [ VW) r o e U1) oy em U(e1) s
2(Ax)2 |:Z 2 di,k _22(): 2 dl}k +Z 2 di:k

k=0 = k=0

(25)

- - 1 , S 1 ,
122 (Wi =27 + W) — (W, 29 + W) — v+ )
2(Lx)? 2
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To continue easier, let us do simplification in the equation with sufficient parameters as

follows:
; 1 . k2P . ctm?
i _ ) o 1C e 26
J 4(Ax)? g 2(Ax)? ! 2 (26)
Then we rewrite the equation with parameters
i w2 s
fi](‘l’;+ d;'),lk - 2‘1’;‘% + \ng;‘)fk )
j-1 j-2 j-2
. i el 1 e i s
o [Z W 2 W S u }
k=0 k=0 k=0
i - - , , .
=g(Win -2 + W) - (Wi, - 20 + )]
o ,
— KV + ). (27)
Finally, we have the following equation for the numerical scheme:
1,0 S
WG+ 2d) 1)
j i o, i 0,3 j j
= ‘I’f(zfijdj,kz - ild/’,k +2g, —Ir)
RTINS
k=0 k=0 k=0
. 1 , .
AR R AR TR T (28)
3.2.1 Stability analysis of the numerical scheme for the Caputo-Fabrizio derivative in
Riemann-Liouville sense
Let us represent a stability analysis of the numerical scheme by supposing
i J_
;=W -1, (29)

where l{: is the approximate solution of the equation in time and space (x;, ¢) (i = 1,2,...,N,
j=1,2,...,M).
Also the error for approximation is given as

S =[5 hr s ]. (30)
So we have the following error expression for the Klein-Gordon equation with mass pa-
rameter:

R o
(a5 +2g, + )
=547 - fidy + 28 - )
Sl
k=0 k=0 k=0

W TR | e
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Then let us take the following equality for doing the stability analysis.
sm(x, t) = explat] explik,x],
s’;n = explat] explik,,x],
s’; = exp[a(t + At)] explik,x],
sﬁml = explat] exp[ikm(x + Ax)],
) (32)
s, | = explat] exp[ikm (x— Ax)],

srvy = explalt + At)] exp[ik(x + Ax)],
51,211 = expla(t + At)]exp[ik(x — Ax)],
e 1 = exp[a(t - At)] xp[ikm(x - Ax)],
where k,, = %, m=1,2,...,M = ﬁ. If we use the equalities above, the equation can be
reconsidered as follows:

expa(t + At)] explikux] ’d"‘1 +2g) + h’)

= explat] expl[ik,,x] (2f’ d;"kz - ﬂ df’,f + 28}]“ - l//l)

—f} |:Z exp a(t + At) exp[zkmx]d

j-2 j-2
-2 Z exp[a(t + At)] exp[ikmx]d YRS Z exp a(t + At)] exp[lkmx]d]“k?’:|
k=0 k=0

+g{[exp[a(t + At)] exp[ikm(x + Ax)] + exp[a(t + At)] exp[ikm (x— Ax)]

— explat] exp| ik (x + Ax)]| — explat] exp|iky(x — Ax)]]. (33)

If we do simplification with exp[at] exp[ik,,x], we will obtain the following:
expla(A0] (£ +2 + 1)
(f;léilakz ]dot3+2gj h])

, j1
-f |:Z exp[a(At)]d]‘?f,‘(1

k=0
j=2 j-2
-2 Zexp[a(At) da 24 Zexp a(At)]d;’f,'(3:|
k=0

+ g{[exp[a(At)] exp[ikm(Ax)] + exp[a(At)] exp[ikm(—Ax)]
— exp[iku(Ax)] — exp[ikin(—Ax)]] (34)
exp[a(At)] fdj"f,’(l + Zg{ + }/l +fl.j.](d]‘."k1 - de‘,f + dl‘”kg)

—g((exp[ik (Ax)] + exp|iku(-Ax)])]
= (2fld? - £l + 28] — ) - gl (exp[ikin(A%)] + exp[ikn(-Ax)]) (35)

Page 8 of 13
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exp[a(At)] = {(Zfl’df‘k2 —ﬂdf}f + 2g{ - h’l) —g{(cxp[ikm(Ax)] + exp[ikm(—Ax)])}
Hfldst +2g) + i+ £l (a5 2d57 + 7P

—g{(exp[ikm(Ax)] +expikn(-Ax)])}. (36)

With the help of the following inequality step by step, we have the condition for the stability

analysis.
S/:+1
ls’—, = exp[a(At)]
f (37)
$j+l
’7 |exp[a(At)]| <1.
Then the stability condition is given as
A2 122 + 26 ) - g explik (3] + explie (5]
WA + 28+ W+ £ J(d - 2d57 + d57)
—gf(exp[ikm(Ax)] + exp|ikn(-Ax)]) }|
<1 (38)

Theorem 4 The Crank-Nicholson scheme for solving the Klein-Gordon equation with the

second order Caputo-Fabrizio derivative in Riemann-Liouville sense is stable if inequality
(38) is satisfied.

3.3 Second approximation of the Atangana-Baleanu derivative in
Riemann-Liouville sense and a stability analysis of the numerical scheme
Theorem 5 Let f be a function not necessary differentiable within an interval [a, T), then
the fractional derivative of f of order 1 < a < 2 in the Atangana-Baleanu derivative in

Riemann-Liouville sense is given as follows:

o "Dy [f )]
_ 1 J fxrs1) ya f(xk+1) ka+l 3
" 2(Ax)? |:k20: 2 % _22 % Z aic |+ G (39)
where

2

k=0 Y%k
7/ 2
—) (x/—8)2> ds
Y

2 Z ) - Fg)Eya (—(
- Xk+1 y 2
e —f(x;+1>)Ey,2(—(—) (5 _8)2> de],

—_

k=0 * %k
k=0 ¥ 1-y
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and

, Xjrl — Xk+1 Xjr1 — Xk
A

y,2 Xj — Xk+1 Xj — Xk

a;,” =E - -E - , 4.0
e IR } ”{ 1oy (40)

Xj-1 — Xk+1 Xj-1 — Xk
sl a2

Now we can consider the equation again as follows:

-1
1 W (xg41) yl \I/(ka y2 — (%) »3
e P

k=0 k=0

1 1 j+1 j+1 j
=h202|:(\1ﬂ+ 2\I’;+ + W) - (\IJHI 2‘IJ]+‘I’1 1)] c4m2|:qj{+ +\11;:|. (41)

i+1
2(Ax)? 2

To continue easier, let us do simplification in the equation with sufficient parameters as

follows:
1 22 A2
i A a9 i = ¢ ) ’{ = cm (42)
4(Ax)? 2(Ax)? 2
Then we rewrite the equation with parameters
m,(W"a)) - 2wlal? + Wal?
( + i /k )
+m’[2\y’” ! 22\11}” +Z\1ﬂ“ ]
= m[(W 290" + ) - (W], - 29+ 0] )]
— (¥ + ). (43)
Finally, we have the following equation for the numerical scheme:
W et 2 )
i ,
- (-l + 2~ )
S PN W
Al el m

3.3.1 Stability analysis of the numerical scheme for the Atangana-Baleanu derivative in
Riemann-Liouville sense

Let us represent a stability analysis of the numerical scheme by supposing

= V- (45)
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where li: is the approximate solution of the equation in time and space (x;, ¢) (i = 1,2,...,N,
ji=1,2,...,M).

Also the error for approximation is given as
i, = [y, .., ). (46)

So we have the following error expression for the Klein-Gordon equation with mass pa-

rameter:
i a2 41)
= ué(Zmi:a}f,’(z - m’l:a}",f + 2nf - r{)

j-1
|:Z +1ﬂy1_22Mi+1 +ZM/+1 i|

k=0

}’Ii[MHl

iv1 T

U = g = ] (47)
Then let us take the following equality for doing the stability analysis.

U (%, t) = explat] explik,,x],
), = explat] explik,x],
uf;l'l = exp[a(t + At)] expliky,x],

m

i 11 = explat] exp[ikn(x + Ax)],

. (48)
v 1 = explat] exp[ikm(x - Ax)],

m+1 = exp[u(t + At)] exp[ikm(x + Ax)],
u’“l = expla(t + At)] exp|ikn(x — Ax)],
[

Wt =explal(t - At)] exp[ikn(x — Ax)],

where &, = 5*

reconsidered as follows:

,m=1,2,...,M = Aix. If we use the equalities above, the equation can be

expa(t + At)] explikx] (mia}f,‘(l + 27/; + rjl)
= explat] explik,x] (Znﬂa}f,f - m’l:a]’.",'(?’ + 20 1)

j-1
_ m’l |:Z exp[tl(t + At)] exp[ikmx]d},/l;l

k=0

j-2 j-2
) Z expa(t + At)] exp[ikmx]a]’.f,’(2 + Z expa(t + At)] exp[ikmx]a}f,‘(g:|
k=0 k=0

+ né[exp[a(t + At)] exp[ikm(x + Ax)] + exp[a(t + At)] exp[ikm(x - Ax)]

—explat] exp [ikm (x+ Ax)] —explat] exp [ikm (x— Ax)]]. (49)
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If we do simplification with exp[at] exp[ik,,x], we will obtain the following:
exp[a(AD)] (méa}",;l + 20, +7)
- (ol i 21

j-1
—m’|:Zexp At) —2Zexp At ,’< + Zexp a(At)] :|

k=0 k=0
+ né[exp[a(At)] exp[ikm(Ax)] + exp[a(At)] exp[ikm(—Ax)]
—exp [ikm(Ax)] —exp [ikm(— Ax)]] (50)
exp[a(AD)] [m’azyk1 + 2n’ + rJ +nl ]( y >ral )

ik
— ) (exp[ikn(Ax)] + exp[ikm(—Ax)])]
= (2l - mal} + 20, 1)) — n](exp[ikn(Ax)] + exp[ikon(~Ax)]) (51)
exp[a(at)] = {(2mal — mlal® + 21, v]) - v (exp[ikin(Ax)] + exp[ikin(~Ax)]) }
Hmdal! + 2m) + 7+ i (al) — 242 + a}))

1.k .k

- n’i(exp[ikm(Ax)] + exp|iknu(—-Ax)]) }. (52)

With the help of the following inequality step by step, we have the condition for the stability
analysis:

j+1

= lexp[a(At)]| < L.

i

Then the stability condition is given as

{(2ndal? - mial® + 21, — ¥]) - v (exp[ikin(Ax)] + explikn(~Ax)])}
{m’ak+2n’+/+m’ ( —2ak+ay3)

7,k
- nﬁ(exp[ikm(Ax)] + exp|iku(—Ax)])}|

<1 (53)

Theorem 6 The Crank-Nicholson scheme for solving the Klein-Gordon equation with the
second order Atangana-Baleanu derivative in Riemann-Liouville sense is stable if inequal-
ity (50) is satisfied.

4 Conclusion

In this paper the Klein-Gordon equation with mass parameter was considered. The time
second derivative was replaced by three different fractional derivatives, namely, Riemann-
Liouville power law fractional derivative, Riemann-Liouville exponential law fractional
derivative and finally Riemann-Liouville Mittag-Leffler law fractional derivative. A sec-
ond approximation of each derivative was presented and used to solve the corresponding
model. In detail, the stability and convergence analysis of each numerical scheme were
investigated.
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