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Abstract

The boundedness of chaotic systems plays an important role in investigating the
stability of the equilibrium, estimating the Lyapunov dimension of attractors, the
Hausdorff dimension of attractors, the existence of periodic solutions, chaos control,
and chaos synchronization. However, as far as the authors know, there are only a few
papers dealing with bounds of high-order chaotic systems due to their complex
algebraic structure. To sort this out, in this paper, we study the bounds of a high-order
Lorenz-Stenflo system arising in mathematical physics. Based on Lyapunov stability
theory, we show that there exists a globally exponential attractive set for this system.
The innovation of the paper is that we not only prove that this system is globally
bounded for all the parameters, but also give a family of mathematical expressions of
global exponential attractive sets of this system with respect to its parameters. We
also study some other dynamical characteristics of this chaotic system such as
invariant sets and chaotic behaviors. To justify the theoretical analysis, we carry out
detailed numerical simulations.

Keywords: High-order Lorenz-Stenflo system; Lyapunov exponents; Lyapunov
stability; domain of attraction; nonlinear dynamics

1 Introduction
Chaos phenomena and chaotic systems have been extensively studied by many researchers
due to their various applications in the fields of atmospheric dynamics, population dy-
namics, electric circuits, cryptology, fluid dynamics, lasers, engineering, stock exchanges,
chemical reactions, and so on [1-11]. Most of the complex dynamical phenomena are char-
acterized by chaotic and hyperchaotic systems of nonlinear ordinary differential equations
[1-21].

Stenflo [22] obtained the Lorenz-Stenflo equation from the equations describing the

atmospheric acoustic-gravity waves. The Lorenz-Stenflo equation is described by the fol-
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lowing equations:
dx _ 5 (y—x) +sv
dr — ’
%:—xz+rx—y, )
d;
o =%y = bz,
oy ov,

where %, y, z, v are state variables of the Lorenz-Stenflo equation (1), and o, s, r, b are
positive parameters of the system, o is the Prandtl number, r is the generalized Rayleigh
parameter, b is the geometric parameter, and s is the rotation parameter. The Lorenz-
Stenflo equation is regarded as an extended Lorenz equation since it reduces to the Lorenz
equation [1] when the rotation parameter s is zero, and it also can be obtained from the
rotating thermal convection equations. The Lorenz-Stenflo system is a four-dimensional
continuous-time dynamical system, derived to model atmospheric acoustic-gravity waves
in a rotating atmosphere. Knowledge about acoustic gravity waves is important because
they may be responsible both for minor local weather changes and for large-scale phenom-
ena, for instance, storms. Many dynamical behaviors such as stability [23], bifurcation [24,
25], periodic solutions [26] and chaotic behaviors [27] of the Lorenz-Stenflo equations
have been thoroughly studied for decades after Stenflo.

To improve the stability or predictability of the Lorenz-Stenflo system (1), Park et al. [26,
28] introduced the high-order Lorenz-Stenflo equations by including terms with higher

vertical wave numbers:

dx

E:o(y—x)+sv,

dy _

o = —XZ+T1X—Y,

% =xy —xu — bz, @)
dv _ . _

i X—0V,

% =xz — 2xw — (1 + 2b)u,

do _ _

T = 2xu — 4bw,

where %, y, z, v, u, and o are state variables, 0, s, r, and b are the same positive parameters
as in the original Lorenz-Stenflo system (1). Various dynamical behaviors, such as stability,
periodic and chaotic solutions, and Lyapunov exponents spectra of the high-order Lorenz-
Stenflo equations (2), have been thoroughly studied [28, 29]. When o =10, b = g, r =40,
s = 50, system (2) has a chaotic attractor [28, 29]. When ¢ =10, b = %, r =40, s =50,
chaotic attractors of system (2) in xOyz space are shown in Figure 1. Chaotic attractors
of system (2) in yOz plane are shown in Figure 2. Chaotic attractors of system (2) in xOy
plane are shown in Figure 3. Chaotic attractors of system (2) in xOz plane are shown in

Figure 4.

Remark 1 An oscillation in a dynamical system can be localized numerically if the initial
conditions from its open neighborhood lead to the long-time behavior that approaches
the oscillation. Such an oscillation (or a set of oscillations) is called an attractor, and its

attracting set is called a basin of attraction. Thus, from a point of view of the numerical
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Figure 1 Chaotic attractors of system (2) in xOyz space.
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Figure 2 Chaotic attractors of system (2) in yOz plane.
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Figure 3 Chaotic attractors of system (2) in xOy plane.

analysis of nonlinear dynamical models, it is essential to classify an attractor as a self-
excited or hidden attractor depending on simplicity of finding its basin of attraction [14,
30, 31]: An attractor is called a self-excited attractor if its basin of attraction intersects
with an arbitrarily small open neighborhood of an unstable equilibrium; otherwise, it is
called a hidden attractor (see [14] and [30, 31] for a detailed discussion of the attractors

in dynamical systems). Although the authors in [28, 29] point out that system (2) has a

8

attractor for o0 =10, b = 3, 1 =40, s=50, they do not point out which type of attractor
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Figure 4 Chaotic attractors of system (2) in xOz 70
plane.

30

system (2) has. It is necessary and interesting to discuss the classification of the attractors

in system (2) in the future.

2 Some dynamics of high-order Lorenz-Stenflo system

2.1 Invariance

The positive z-axis, u-axis, and w-axis are invariant under the flow, that is, they are posi-
tively invariant under the flow generated by system (2). However, this is not the case on the
positive x-axis, y-axis, and v-axis for system (2) since they are all not positively invariant
under the flow generated by system (2).

2.2 Ultimate bound set and domain of attraction

In this section, we further investigate the ultimate bound set and global domain of at-
traction of the high-order Lorenz-Stenflo system (2). The main result is described by the
following theorems, Theorems 1 and 2.

Theorem 1 Forany A, >0,m>0,0 >0,s>0,r>0, b >0, there exists a positive number
M > 0 such that

v = {X | Ap(ox — mp)? + my2 +m(z = 200)% + Ms(v — m3)? + mu® + m(w — Ay)? < M}

is the ultimate bound and positively invariant set of the high-order Lorenz-Stenflo system
(2), where X(¢) = (x(2), y(2), 2(2), v(2), u(8), (2)).

Proof Define the following Lyapunov-like function
V(X) = hM(x — m2)? + my* + m(z — 212)* + As(v — m3)* + mu® + m(w — 1,)?, (3)

where YA, > 0, Vi > 0, Ay = 120 X(f) = (e(2), ¥(2), 2(t), v(2), u(t), w(¢)), and my € R,

2m
m3 € R are arbitrary constants.

We have

dv(X(t))

dt @

dx dy dz dv
=2A1(x — — +2my— +2 —2Xy)— +2A - —
1(x mz)dt + mydt +2m(z 2) 7 +2A118(v mg)dt

9 du o N )dw
+2mu— +2m(w — Ap) —,
dt >

dt
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=20 (x —mp)(oy —ox + sv) + 2my(—xz + rx — y) + 2m(z — 215)(xy — xu — bz)
+208(v —m3)(—x —oV) + 2mu[xz —2xw—(1+ 2b)u] +2m(w — Ay)(2xu — 4bw)
= —2010%% + 2110 MaX + 2A Sz — 2my2 —2M0myy — 2bmz* + 4bmhyz — 21 50V

— 2hsmav + 20smzov — 2m(1 + 2b)u? — 8bmw? + 8bm,w.
Let %{W = 0. Then, we get that the surface

X | =2010%% + 20,0 % + 201 Smzx — 2my?
r: — 2] 0o myy — 2bmz?* + 4bmlyz — 20150V (4)
— 22XV + 2hismzo v — 2m(l + 2b)u* — 8bmw?* + 8bmyw =0

is an ellipsoid in R® VA; > 0,m > 0,0 >0,5>0,7> 0, b > 0. Outside T, % < 0, whereas
inside T, w > 0. Thus, the ultimate boundedness for system (2) can only be reached
on I'. Since the Lyapunov-like function V(X) is a continuous function and I' is a bounded
closed set, the function (3) can reach its maximum value maxy.r V(X) = M on the surface
I". Obviously, {X | V(X) < maxyer V(X) = M, X € I'} contains solutions of system (2). It is
obvious that the set W is the ultimate bound set and positively invariant set for system (2).

This completes the proof. O

Theorem 1 points that the trajectories of system (2) are ultimately bounded. However,
Theorem 1 does not give the rate of the trajectories of system (2) going from the exterior
of the trapping set to the interior of the trapping set. The rate of the trajectories rate of
system (2) is studied in the next theorem, Theorem 2.

In the following section, we further investigate the globally attractive set of the high-
order Lorenz-Stenflo system (2). We use the following Lyapunov-like function

V(X) = M (x— my)? + my2 +m(z = 202)% + As(v — m3)? + mu® + m(w — hy)? (5)

which is obviously positive definite and radially unbounded. Here, YA; > 0, Vi > 0, 15 =
%, and m; € R, m3 € R are arbitrary constants.
Let X(¢) = (x(2), y(£), z(£), v(t), u(t), w(¢)) be an arbitrary solution of system (2). We have

the following results for system (2).

Theorem 2 Suppose thatVo >0,s>0,r>0,b >0, and let

==
)

1 )u 2 2 )\’ 2 )» 2
[ 187 0ma)” | o)™ Ais(m) +Alo(m2)2+8bm(x2)2+,\1sa(m3)2],
o m o

6 = min(o, b) > 0.
Then, for system (2), we have the estimate

[V(X(0) - L*] < [V (X(to)) — L*]e 010 (6)

Thus Q = {X | V(X) < L?} is a globally exponential attractive set of system (2), that is,
mtﬁ+00 V(X(t)) = L2-
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Proof Define the following functions:
f(x) = —A10x% + 20 sm3x, h(y) = —-my* — 2110 myy, 2(v) = —A1s0V* = 22 mpsv.

Then we have

Mis® > A 2 A 2
maXf(x) = M, maxh(y) = M, man(V) - &
xeR o YER m veR o

Differentiating the Lyapunov-like function V(X) in (5) with respect time ¢ along the tra-
jectory of system (2) yields

dV(X(2))
at |y

=20 1 oy ® e — 220 P 2t \
=201 (x — My dt+ mydt+ miz zdt+ 18\V — 13 dt

) du 2 A)dw
+2mu— +2m(w — Ay) —
dt 7
=2M(x —my)(oy — ox + sv) + 2my(—xz + rx — y) + 2m(z — 2X,)(xy — xu — bz)

+208(v —m3)(—x —oV) + 2mu[xz —2xw—(1+ 2b)u] +2m(w — Ay)(2xu — 4bw)

—2A10x2 + 2 Mo myx

+ 2\ smizx — Zmy2 —2M0myy — 2bmz® + 4bmryz — 20 50V
— 2018MaV + 20 smzo v — 2m(1 + 2b)u? — 8bmw? + 8bmhrsw

—Aloxz + 2A 10X — Alaxz

+ 2\18m3x — my2 - my2 =2 0myy — 2bmz* + 4bmhyz
— MSOV? + 2130V — ASoV? — 2Aismiav — 2m(1 + 2b)u® — 8bmw? + 8bmyw

—A10x% + 200 max +f(x) - my2 +h(y) - 2bmz® + dbmhyz — MSOV? + 2ASH30°V

+g(v) = 2m(1 + 2b)u* — 8bmw* + 8bmhryw

IA

—MOXE + 200 Max +f(x) - my2 +h(y) - bmz® + 4bmaz — hisoV? + 2h1SMm30V
+g(v) = 2m(1 + 2b)u* — 8bmw* + 8bmhryw

20 (% — m3)? + Ao (m2)? +f(x) - my2 +h(y) — bm(z - 242)% + 4bm()y)?

— 180 (v — m3)? + hyso (m3)? + g(v) — 2m(1 + 2b)u* — 8bmw? + 8bmAasw

= —M0 (X — my)? — my* — bm(z — 21y)*

— 250 (v —m3)? = 2m(1 + 2b)u? — 8bmw? + 8bmhryw
+f(x) + h(y) + g(v) + Mo (m)* + 4bm(hy)* + Ayso (m3)?

< Mo (x — my)? — my? — bm(z — 22,)? — Aso (v — m3)? — mu® — 4bmw? + 8bmisw
+f(x) + h(y) + g(v) + Ao (m)* + 4bm(hy)* + Ayso (m3)?

= —M0 (% — my)? — my? — bm(z — 212)% — hiso (v — m3)? — mu® — dbm(w — Ay)?
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+£(%) + h(y) + gv) + Ao (m)* + 4bm(hy)?* + Aiso (m3)? + 4bm(hy)?
< Mo (x — my)? — my? — bm(z — 2203)? — Aso (v — m3)? — mu® — bm(w — 1,)?
+f(x) + h(y) + g(v) + o (m2)? + 8bm(h2)? + Miso (m3)?

<-0V(X) + m%xf(x) +max h(y) + maRxg(v) + Ao (1m3)? + 8bm(hy)? + Ayso (ms)?
xe ye ve

his?(m3)? . (Mo my)? . his(my)?

m o

=-0V(X)+

+ 310 (m2)? + 8bm(ha)? + haso (m3)?
= -0V (x() - 1*]
Thus, we have
[V(X(0) - L*] < [V (X(to)) — L*]e 010
Therefore,
Iim v(X@) <L,

which clearly shows that Q = {X | V(X) < L?} is a globally exponential attractive set of
system (2). The proof is complete. O

Remark 2 (i) Let us take A1 =1, m =1, my = 0, m3 = 0 in Theorem 2. Then we get that

2 2
2b
A= {(x,y,z,v,u,w)|x2+y2+(z—cr—r)2+sv2+u2+(a)—a;r> < mi(rtlj(;,}Z) } (7)

is a globally exponential attractive set of system (2) according to Theorem 2.
(i) Taking 0 =10, b = &, r = 40, s = 50, we get that

A= {(x,y,z, v, w) | 2 + 9% + (2—50)% + 500 + u? + (w — 25)% < (50«/5)2} (8)

is a globally exponential attractive set of system (2) according to Theorem 2. Figure 5 shows
chaotic attractors of system (2) in the (x,y,z) space defined by A in (8). Figure 6 shows

Figure 5 Chaotic attractors of (2) in the (x,y, z) space
defined by A.
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Figure 6 Chaotic attractors of (2) in the (x,y,v)
space defined by A.

Figure 7 Chaotic attractors of (2) in the (x, y, u) space defined
byA.

Figure 8 Chaotic attractors of (2) in the (x,y, ®) space
defined by A.

chaotic attractors of system (2) in the (x,7,v) space defined by A in (8). Figure 7 shows
chaotic attractors of system (2) in the (x,y,u) space defined by A in (8). Figure 8 shows
chaotic attractors of system (2) in the (x,y, ) space defined by A in (8).

3 Conclusions

By means of Lyapunov-like functions, we have studied some dynamical behaviors of a
high-order Lorenz-Stenflo system using theoretical analysis and numerical simulations.
The obtained results show that this system has complex dynamics and this system deserves
a further detailed investigation. The results of this paper are useful in many engineering
applications such as chaos synchronization, chaos cryptology, coding information, and

information compression.
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