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Abstract
We discuss the numerical solution of the time-fractional telegraph equation. The
main purpose of this work is to construct and analyze stable and high-order scheme
for solving the time-fractional telegraph equation efficiently. The proposed method is
based on a generalized finite difference scheme in time and Legendre spectral
Galerkin method in space. Stability and convergence of the method are established
rigorously. We prove that the temporal discretization scheme is unconditionally stable
and the numerical solution converges to the exact one with orderO(τ 2–α + N1–ω),
where τ ,N, and ω are the time step size, polynomial degree, and regularity of the
exact solution, respectively. Numerical experiments are carried out to verify the
theoretical claims.

Keywords: time-fractional telegraph equation; generalized finite difference scheme;
Legendre spectral Galerkin method

1 Introduction
In recent decades, fractional partial differential equations have attracted increasing inter-
est mainly due to their potential applications in various realms of science and engineer-
ing [–]. The fractional telegraph equation, as a typical diffusion-wave equation, is com-
monly used in propagation of electrical signals [], random walk theory [], the neutron
transport in nuclear reactor [], and so on.

The fractional telegraph equation has been considered recently by several authors. Liu et
al. [] considered the analytical solution of the time-fractional telegraph equation by the
method of separating variables. Momani [] used the Adomian decomposition method
to obtain analytic and approximate solutions of the space- and time-fractional telegraph
equations. Huang [] provided the fractional Green function for the time-fractional tele-
graph equation by employing the Laplace and Fourier transforms. In [], an analytical
mathematical tool, the homotopy analysis method, is used to solve the time-fractional
telegraph equation. Although many valuable works have been conducted on theoretical
analysis, the obtained solutions of most fractional telegraph equations are not analytic.
Therefore many researchers have studied numerical solution of the fractional telegraph
equation. Hosseini et al. [] implemented a hybrid of the radial basis functions and fi-
nite difference scheme to achieve a semidiscrete solution of the time-fractional telegraph
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equation. Liu et al. [] present a class of unconditionally stable difference schemes of
high order for solving a Riesz space-fractional telegraph equation. Hashemi et al. [] pro-
posed a simple and accurate numerical scheme for solving the time-fractional telegraph
equation. Wang et al. [] discussed and analyzed an H-Galerkin mixed finite element
method to look for the numerical solution of time-fractional telegraph equation. Ford et
al. [] considered a finite difference method for the two-parameter fractional telegraph
equation and obtained a stability condition of the numerical method. Wei [] developed
a fully discrete local discontinuous Galerkin finite element method for numerical simula-
tion of the time-fractional telegraph equation. Although many authors have studied the
numerical solution of the fractional telegraph equation, they did not strictly prove the
unconditional stability and convergence in time direction.

In this paper, we study the method resulting from a generalized finite difference method
for the temporal discretization and a Legendre spectral Galerkin method for the spatial
discretization of the following time-fractional telegraph problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C
 Dα+

t u(x, t) + C
 Dα

t u(x, t) + βu(x, t) – λ ∂

∂x u(x, t) = f (x, t),

(x, t) ∈ � × [, T],

u(x, ) = u(x), ∂u(x,t)
∂t |t= = u(x), x ∈ �,

u(x, t) = , (x, t) ∈ ∂� × [, T],

(.)

where  < α <  is a parameter describing the fractional derivative with respect to time, � =
[a, b] is a bounded closed interval in R, β ,λ are positive constants in R, and f (x, t), u(x),
and u(x) are given smooth functions.

The time-fractional derivative in (.) uses the Caputo fractional partial derivative of
order α defined as follows:

C
 Dα

t u(x, t) =

⎧
⎨

⎩


	(–α)

∫ t


∂u(x,s)
∂s

ds
(t–s)α if  < α < ,


	(–α)

∫ t


∂u(x,s)
∂s

ds
(t–s)α– if  < α < ,

(.)

where 	 is the gamma function. Obviously, if  < α < , then  < α +  < , so

C
 Dα+

t u(x, t) =


	( – (α + ))

∫ t



∂u(x, s)
∂s

ds
(t – s)(α+)–

=


	( – α)

∫ t



∂u(x, s)
∂s

ds
(t – s)α

. (.)

The rest of the paper is organized as follows. In the next section, the temporal discretiza-
tion scheme of the time-fractional telegraph equation and its stability and convergence are
discussed. In Section , we derive a full discretization scheme of the time-fractional tele-
graph equation and obtain error estimates. Numerical experiments are carried out in Sec-
tion , which verify the effectiveness of our method and support the theoretical analysis.
The last section is the concluding remarks.

2 Discretization in time: a generalized finite difference scheme
First, we introduce a generalized finite difference approximation to discretize the time-
fractional derivative. Let tk := kτ , k = , , . . . , K , where τ = T

K is the time step. To motivate
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the construction of the scheme, we define the sequence {aj}|Kj= as aj = τ –α

–α
((j + )–α – j–α)

and introduce the following lemmas [].

Lemma . Let g ∈ C[, tk] and  < α < . Then

∣
∣
∣
∣
∣

∫ tk



g ′(t)
(tk – t)α

dt –

τ

[

ag(tk) –
k–∑

j=

(ak–j– – ak–j)g(tj) – ak–g(t)

]∣
∣
∣
∣
∣

≤ 
 – α

(
 – α


+

–α

 – α
–

(
 + –α

)
)

max
≤t≤tk

∣
∣g ′′(t)

∣
∣τ –α .

Lemma . For any G = {G, G, G, . . . } and q, we have

N∑

n=

(

aGn –
n–∑

k=

(an–k– – an–k)Gk – an–q

)

Gn

≥ t–α
N


τ

N∑

n=

G
n –

t–α
N

( – α)
q.

To motivate the construction of the time-discrete scheme, we use the following func-
tions:

⎧
⎪⎪⎨

⎪⎪⎩

v(x, t) = ∂u(x,t)
∂t ,

w(x, t) = 
	(–α)

∫ t


∂v(x,s)
∂s

ds
(t–s)α ,

z(x, t) = 
	(–α)

∫ t


∂u(x,s)
∂s

ds
(t–s)α .

(.)

Introduce the following notation:

uk–/(x) =


(
uk(x) + uk–(x)

)
, δtuk–/(x) =


τ

(
uk(x) – uk–(x)

)
.

Then we have

wk–/(x) + zk–/(x) + βuk–/(x) – λ
∂uk–/(x)

∂x = f k–/(x, t), (.)

vk–/(x) = δtuk–/(x) + rk–/
 (x), (.)

and there exists a constant C such that |rk–/
 | ≤ Cτ

 for all  ≤ k ≤ K .
By Lemma . we have

wk–/(x)

=


	( – α)τ

(

avk–/(x) –
k–∑

j=

(ak–j– – ak–j)vj–/(x) – ak–v(x)

)

+ rk–/
 , (.)

zk–/(x)

=


	( – α)τ

(

auk–/(x) –
k–∑

j=

(ak–j– – ak–j)uj–/(x) – ak–u(x)

)

+ rk–/
 , (.)
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and there exist constants C andC such that |rk–/
 | ≤ Cτ

–α and |rk–/
 | ≤ Cτ

–α .
From (.)-(.) we obtain


	( – α)


τ

(

a
(
δtuk–/(x) + uk–/(x)

)
–

k–∑

j=

(ak–j– – ak–j)
(
δtuj–/(x) + uj–/(x)

)

– ak–
(
u(x) + u(x)

)
)

+ βuk–/(x) – λ
∂uk–/(x)

∂x

= f k–/ + Rk–/, k = , , . . . , K , (.)

where

Rk–/ = –

{


	( – α)τ

(

ark–/
 –

k–∑

j=

(ak–j– – ak–j)r
j–/


)

+ rk–/
 + rk–/



}

with

∣
∣Rk–/∣∣ ≤ 

	( – α)τ

(

a +
k–∑

j=

(ak–j– – ak–j)

)

Cτ
 + Cτ

–α + Cτ
–α

=


	( – α)τ
(a – ak–)Cτ

 + Cτ
–α + Cτ

–α

≤
(

C

	( – α)
+ C + C

)

τ –α . (.)

Dropping the truncation error Rk–/ in (.), we can easily get the the variation (weak)
formulation of (.): Find uk(x) ∈ H

(�) such that, for all v ∈ H
(�),


	( – α)τ

(

a
(
δtuk–/(x) + uk–/(x), v(x)

)
– ak–

(
u(x) + u(x), v(x)

)

–
k–∑

j=

(ak–j– – ak–j)
(
δtuj–/(x) + uj–/(x), v(x)

)
)

+ β
(
uk–/(x), v(x)

)
+ λ

(
∂uk–/(x)

∂x
,
∂v(x)
∂x

)

=
(
f k–/(x), v(x)

)
. (.)

For the semidiscrete problem, we have the following result.

Theorem . The semidiscrete problem (.) is unconditionally stable in the sense that,
for all τ ≥ ,

∥
∥un∥∥

 + τ

n∑

k=

∥
∥uk–/∥∥

 ≤ C
(
‖u‖ + ‖u‖ + max

≤k≤K

∥
∥f k–/∥∥

)
,

where n = , , . . . , K , and C = max{β ,γ }
min{β ,γ } + T–α

min{β ,γ }	(–α) + 	(–α)T+α

min{β ,γ } is a constant.
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Proof Taking v = δtuk–/ + uk–/ in (.), we have


	( – α)τ

(

a
(
δtuk–/ + uk–/, δtuk–/ + uk–/) – ak–

(
u + u, δtuk–/ + uk–/)

–
k–∑

j=

(ak–j– – ak–j)
(
δtuj–/ + uj–/, δtuk–/ + uk–/)

)

+ β
(
uk–/, δtuk–/ + uk–/) + λ

(
∂uk–/

∂x
,
∂δtuk–/ + uk–/

∂x

)

=
(
f k–/, δtuk–/ + uk–/). (.)

We first sum both sides of (.) for k from  to n, and then, using Lemma . and the
Cauchy-Schwarz inequality for the first term of the left-hand side of (.), we obtain

n∑

k=


	( – α)τ

(

a
∥
∥δtuk–/ + uk–/∥∥ – ak–

(
u + u, δtuk–/ + uk–/)

–
k–∑

j=

(ak–j– – ak–j)
(
δtuj–/ + uj–/, δtuk–/ + uk–/)

)

≥ 
	( – α)τ

n∑

k=

(

a
∥
∥δtuk–/ + uk–/∥∥ –

k–∑

j=

(ak–j– – ak–j)
∥
∥δtuj–/ + uj–/∥∥

– ak–‖u + u‖
)

∥
∥δtuk–/ + uk–/∥∥

≥ t–α
n

	( – α)

n∑

k=

∥
∥δtuk–/ + uk–/∥∥ –

t–α
n

τ	( – α)
‖u + u‖. (.)

The third term can be written as

λ

n∑

k=

(
∂uk–/

∂x
,
∂δtuk–/ + uk–/

∂x

)

=
λ

τ

n∑

k=

(∣
∣uk∣∣

 –
∣
∣uk–∣∣



)
+ λ

n∑

k=

∣
∣uk–/∣∣



=
λ

τ

(∣
∣un∣∣

 – ‖u‖) + λ

n∑

k=

∣
∣uk–/∣∣

 . (.)

Similarly, the second term can be written as

β
(
uk–/(x), δtuk–/ + uk–/)

=
β

τ

(∥
∥un∥∥ – ‖u‖) + β

n∑

k=

∥
∥uk–/∥∥. (.)
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Using the Young inequality for the right-hand side of (.), we have

n∑

k=

(
f k–/, δtuk–/ + uk–/)

≤
n∑

k=

(
	( – α)

t–α
n

∥
∥f k–/∥∥ +

t–α
n

	( – α)
∥
∥δtuk–/ + uk–/∥∥

)

. (.)

From (.)-(.) we get the following relation:

t–α
n

	( – α)

n∑

k=

∥
∥δtuk–/ + uk–/∥∥ –

t–α
n

τ	( – α)
‖u + u‖

+
β

τ

(∥
∥un∥∥ – ‖u‖) + β

n∑

k=

∥
∥uk–/∥∥ +

λ

τ

(∣
∣un∣∣

 – ‖u‖) + λ

n∑

k=

∣
∣uk–/∣∣



≤
n∑

k=

(
	( – α)

t–α
n

∥
∥f k–/∥∥ +

t–α
n

	( – α)
∥
∥δtuk–/ + uk–/∥∥

)

. (.)

Denoting A := max{β ,γ } and B := min{β ,γ }, we have

B
τ

∥
∥un∥∥

 + B
n∑

k=

∥
∥uk–/∥∥



≤ A
τ

(‖u‖ + ‖u‖) +
t–α
n

τ	( – α)
‖u + u‖ +

	( – α)
t–α

n

n∑

k=

∥
∥f k–/∥∥. (.)

Multiplying both sides of this inequality at τ
B , we obtain

∥
∥un∥∥

 + τ

n∑

k=

∥
∥uk–/∥∥



≤ t–α
n

B	( – α)
‖u + u‖ +

A
B

(‖u‖ + ‖u‖) +
τ	( – α)tα

n
B

n∑

k=

∥
∥f k–/∥∥

≤
(

A
B

+
t–α

n
B	( – α)

+
T	( – α)tα

n
B

)(
‖u‖ + ‖u‖ + max

≤k≤n

∥
∥f k–/∥∥

)

≤
(

A
B

+
T –α

B	( – α)
+

	( – α)T +α

B

)(
‖u‖ + ‖u‖ + max

≤k≤K

∥
∥f k–/∥∥

)
. (.)

The proof is completed. �

Theorem . Let u(x, t) ({uk = u(tk)}K
k=) be the exact solution of (.), and {uk

ς }K
k= be the

solution of variation (weak) formulation (.). Then we have the following error estimate:

∥
∥un – un

ς

∥
∥

 + τ

n∑

k=

∥
∥un–/ – un–/

ς

∥
∥

 ≤ C
(
τ –α

).
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Proof Denoting ρk = uk – uk
ς , we obtain


	( – α)τ

(

a
(
δtρ

k–/ + ρk–/, v
)

–
k–∑

j=

(ak–j– – ak–j)
(
δtρ

j–/ + ρ j–/, v
)
)

+ β
(
uk–/, v

)
+ λ

(
∂ρk–/

∂x
,
∂v
∂x

)

=
(
Rk–/, v

)
. (.)

Taking v = δtρ
k–/ + ρk–/ in (.) yields


	( – α)τ

(

a
(
δtρ

k–/ + ρk–/, δtρ
k–/ + ρk–/)

–
k–∑

j=

(ak–j– – ak–j)
(
δtρ

j–/ + ρ j–/, δtρ
k–/ + ρk–/)

)

+ β
(
uk–/, δtρ

k–/ + ρk–/) + λ

(
∂ρk–/

∂x
,
∂δtρ

k–/ + ρk–/

∂x

)

=
(
Rk–/, δtρ

k–/ + ρk–/). (.)

Summing up for k from  to n and using Lemma ., we obtain

n∑

k=


τ	( – α)

{

a
(
δtρ

k–/ + ρk–/, δtρ
k–/ + ρk–/)

–
k–∑

j=

(ak–j– – ak–j)
(
δtρ

j–/ + ρ j–/, δtρ
k–/ + ρk–/)

}

≥ t–α
n

	( – α)

n∑

k=

∥
∥δtρ

k–/ + ρk–/∥∥. (.)

In addition, similarly to the proof of Theorem ., we can write the following relations:

n∑

k=

(
ρk–/, δtρ

k–/ + ρk–/) =


τ

∥
∥ρn∥∥ +

n∑

k=

∥
∥ρk–/∥∥, (.)

n∑

k=

(
∂ρk–/

∂x
,
∂δtρ

k–/ + ρk–/

∂x

)

=


τ

∣
∣ρn∣∣

 +
n∑

k=

∣
∣ρk–/∣∣

 (.)

and

n∑

k=

(
Rk–/, δtρ

k–/ + ρk–/) ≤ t–α
n

	( – α)

n∑

k=

∣
∣δtρ

k–/ + ρk–/∣∣


+
tα
n 	( – α)



n∑

k=

∥
∥Rk–/∥∥

. (.)
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From (.)-(.) we obtain the following relation:

β

τ

∥
∥ρn∥∥ + β

n∑

k=

∥
∥ρk–/∥∥ +

λ

τ

∣
∣ρn∣∣

 + λ

n∑

k=

∣
∣ρk–/∣∣



≤ tα
n 	( – α)



n∑

k=

∥
∥Rk–/∥∥

. (.)

From (.) we can find a constant C′ := C
	(–α) + C + C such that |Rk–/| ≤ C′τ –α . Simi-

larly to (.), we obtain

∥
∥ρn∥∥

 + τ

n∑

k=

∥
∥ρk–/∥∥

 ≤ tα
n 	( – α)

B
τ

n∑

k=

∥
∥Rk–/∥∥



≤ T +α	( – α)
B

max
≤k≤n

∥
∥Rk–/∥∥



≤ T +α	( – α)
B

C′(τ –α
). (.)

Letting C = T+α	(–α)
B C′, the theorem is proved. �

3 Full discretization
To simplify the notation, let � = (–, ). The Galerkin spectral discretization proceeds
by approximating the solution by polynomials of high degree. To this end, we denote by
PN (�) the space of all polynomials of degree ≤ N with respect x. Then the discrete space,
denoted by P

N (�), is defined as follows: P
N (�) := H

(�) ∩ PN (�).
Now we consider the spectral Galerkin discretization to problem (.) as follows. Find

uk
N (x) ∈ P

N (�) such that, for all vN (x) ∈ P
N (�),


	( – α)τ

(

a
(
δtuk–/

N (x) + uk–/
N (x), vN (x)

)
– ak–

(
π 

N
(
u(x) + u(x)

)
, vN (x)

)

–
k–∑

j=

(ak–j– – ak–j)
(
δtu

j–/
N (x) + uj–/

N (x), vN (x)
)
)

+ β
(
uk–/(x), vN (x)

)
+ λ

(
∂uk–/

N (x)
∂x

,
∂vN (x)

∂x

)

=
(
f k–/(x), vN (x)

)
. (.)

For all {uk
N }|Kk=, the well-posed problem (.) is guaranteed by the well-known Lax-

Milgram lemma. In this section, we would like to derive an error estimation for the full-
discrete solution {uk

N }|Kk=. Let π 
N be the H-orthogonal projection operation from H

(�)
into P

N (�), where

(∇π 
N u,∇v

)
= (∇u,∇v), ∀v ∈ P

N (�). (.)

The following projection estimation is well known:

∥
∥v – π 

N v
∥
∥

 ≤ CN –ω‖v‖ω if v ∈ Hω(�) ∩ H
(�),ω ≥ . (.)
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Lemma . Let {uk
ς }K

k= be the solution of the semidiscrete problem (.). Then there exists
a constant C such that

∣
∣Rk–/

N
∣
∣ ≤ C

(
N –ω + τ –α

)
,

where

Rk–/
N =


τ	( – α)

(

a
(
π 

Nδtuk–/
ς + π 

N uk–/
ς – δtuk–/

ς – uk–/
ς

)

–
k–∑

j=

(ak–j– – ak–j)
(
π 

Nδtuj–/
ς + π 

N uj–/
ς – δtuj–/

ς – uj–/
ς

)

– ak–
(
π 

N u + π 
N u – u – u

)
)

+ β
(
π 

N uk–/ – uk–/). (.)

Proof Using the triangle inequality, Lemma ., and relation (.), we easily obtain that
|RN | ≤ C(N –ω + τ –α), where C depends on the norm of {uk

ς }K
k=. �

Theorem . Let {uk
ς }K

k= be the solution of the semidiscrete problem (.), and {uk
N }K

k= be
the solution of the full-discrete problem (.). Suppose that {uk

ς }K
k= ∈ Hω(�)∩H

(�),ω > .
Then there exists a constant C such that

∥
∥un

ς – un
N
∥
∥

 ≤ C
(
τ –α + N –ω

)
.

Proof Subtracting (.) from (.) and using (.) give


τ	( – α)

{

a
(
π 

Nδtuk–/
ς – δtuk–/

N , vN
)

–
k–∑

j=

(ak–j– – ak–j)
(
π 

Nδtuj–/
ς – δtu

j–/
N , vN

)
}

+


τ	( – α)

{

a
(
π 

N uk–/
ς – uk–/

N , vN
)

–
k–∑

j=

(ak–j– – ak–j)
(
π 

N uς
ς j – / – uj–/

N , vN
)
}

+ β
(
π 

Nδtuk–/
ς – δtuk–/

N , vN
)

+ λ

(
∂π 

N uk–/
ς – uk–/

N

∂x
,
∂vN

∂x

)

=
(
Rk–/

N , vN
)
. (.)
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To simplify the function, we let φk
N = π 

N uk
ς – uk

N . Taking vN = δtφ
k–/
N + φk–/

N yields


τ	( – α)

{

a
(
δtφ

k–/
N + φk–/

N , δtφ
k–/
N + φk–/

N
)

–
k–∑

j=

(ak–j– – ak–j)
(
δtφ

j–/
N + φ

j–/
N , δtφ

k–/
N + φk–/

N
)
}

+ β
(
φk–/

N , δtφ
k–/
N + φk–/

N
)

+ λ

(
∂φk–/

N
∂x

,
∂δtφ

k–/
N + φk–/

N
∂x

)

=
(
Rk–/

N , δtφ
k–/
N + φk–/

N
)
. (.)

Similarly to the proof of Theorem ., we can write the following relations:

n∑

k=


τ	( – α)

{

a
(
δtφ

k–/
N + φk–/

N , δtφ
k–/
N + φk–/

N
)

–
k–∑

j=

(ak–j– – ak–j)
(
δtφ

j–/
N + φ

j–/
N , δtφ

k–/
N + φk–/

N
)
}

≥ t–α
n

	( – α)

n∑

k=

∥
∥δtφ

k–/
N + φk–/

N
∥
∥, (.)

n∑

k=

(
φk–/

N , δtφ
k–/
N + φk–/

N
)

=


τ

(∥
∥φn

N
∥
∥ –

∥
∥φ

N
∥
∥) +

n∑

k=

∥
∥φk–/∥∥, (.)

n∑

k=

(
∂φk–/

N
∂x

,
∂δtφ

k–/
N + φk–/

N
∂x

)

=


τ

(∣
∣φn

N
∣
∣
 –

∣
∣φ

N
∣
∣


)
+

n∑

k=

∣
∣φk–/∣∣

 , (.)

n∑

k=

∣
∣
(
Rk–/, δtφ

k–/
N + φk–/

N
)∣
∣

≤ t–α
n

	( – α)

n∑

k=

∥
∥δtφ

k–/
N + φk–/

N
∥
∥ +

tα
n 	( – α)



n∑

k=

∥
∥Rk–/

N
∥
∥

. (.)

From (.)-(.) we obtain

β

τ

∥
∥φn

N
∥
∥ + β

n∑

k=

∥
∥φk–/

N
∥
∥ λ

τ

∣
∣φn

N
∣
∣
 + λ

n∑

k=

∣
∣φk–/

N
∣
∣


≤ tα
n 	( – α)



n∑

k=

∥
∥Rk–/

N
∥
∥ +

λ

τ

∣
∣φ∣∣

 +
β

τ

∥
∥φ∥∥. (.)
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Similarly to (.) we obtain

∥
∥φn

N
∥
∥

 + τ

n∑

k=

∥
∥φk–/

N
∥
∥

 ≤ tα
n 	( – α)

B
τ

n∑

k=

∥
∥Rk–/

N
∥
∥

 +
A
B

∥
∥φ∥∥



≤ T +α	( – α)
B

max
≤k≤n

∥
∥Rk–/

N
∥
∥

 +
A
B

∥
∥φ∥∥



≤ C
(
N –ω + τ –α

). (.)

From the triangle inequality and (.) we obtain

∥
∥un

ς – un
N
∥
∥

 ≤ ∥
∥un

ς – π 
N un

ς

∥
∥

 +
∥
∥φn

N
∥
∥

 ≤ C
(
N –ω + τ –α

)
. (.)

The proof of the theorem is completed. �

Theorem . Let u(x, t) ({uk = u(tk)}K
k=) be the exact solution of (.), and {uk

N }K
k= be the

solution of the full-discrete problem (.). Suppose that {uk}K
k= ∈ Hω(�) ∩ H

(�),ω > .
Then there exists a constant C such that

∥
∥un – un

N
∥
∥

 ≤ C
(
N –ω + τ –α

)
.

Proof From Theorem ., Theorem ., and the triangle inequality we obtain

∥
∥un – un

N
∥
∥

 ≤ ∥
∥un – un

ς

∥
∥

 +
∥
∥un

ς – un
N
∥
∥

 ≤ C
(
N –ω + τ –α

)
,

where {uk
ς }K

k= is the solution of the semidiscrete problem (.). �

4 Numerical examples
4.1 Implementation
Before numerical experiments, in this subsection, we briefly introduce an implementation.

Let Li(x) be the ith-degree Legendre polynomial. They are mutually orthogonal in L(�),
that is,

(
Li(x), Lj(x)

)
=

∫

�

Li(x)Lj(x) dx =


k + 
δij, (.)

where δij is the Kronecker delta symbol.
We define (see [])

�i(x) = Li(x) – Li+(x). (.)

One useful property of the Legendre polynomials is

(n + )Ln(x) = L′
n+(x) – L′

n–(x), (.)

which gives the relation

�′
i(x) = –(i + )Li+(x). (.)
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It is easy to verify that, for N ≥ ,

P
N (�) = span

{
�(x),�(x), . . . ,�N–(x)

}
. (.)

Let us denote

uk
N (x) =

N–∑

j=

(̂u)k
j �j(x), ûk =

(
ûk

, ûk
 , . . . , ûk

N–
)T ,

f̂ k
j =

(
IN f k(x),�j(x)

)
, f̂ k =

(
f̂ k
 , f̂ k

 , . . . , f̂ k
N–

)T ,

û,j =
(
π 

N u(x),�j(x)
)
, û = (û,, û,, . . . , û,N–)T ,

û,j =
(
π 

N u(x),�j(x)
)
, û = (û,, û,, . . . , û,N–)T ,

mij =
(
�j(x),�i(x)

)
, M = (mij)i,j=,,...,N–,

pij =
(
�′

j(x),�′
i(x)

)
, P = (pij)i,j=,,...,N–.

(.)

Then, scheme (.) leads to the following linear system: For k = , , . . . , K ,

(
a( + τ ) + βτ 	( – α)

)
Mûk + λτ 	( – α)Pûk

=
(
a( – τ ) – βτ 	( – α)

)
Mûk– – λτ 	( – α)Pûk–

+
k–∑

l=

(ak–l– – ak–l)M
(

(
ûl – ûl–) + τ

(
ûl + ûl–))

+ τak–(û + û) + τ 	( – α)
(
f̂ k + f̂ k+). (.)

Using the orthogonality of Legendre polynomials, we can easily determine that the ma-
trix M is pentadiagonal and P is diagonal. We easily obtain:

mij = mji =

⎧
⎪⎪⎨

⎪⎪⎩


j+ + 

j+ , i = j,

– 
j+ , i = j ± ,

 otherwise,

(.)

pij = pji =

⎧
⎨

⎩

j + , i = j,

 otherwise.
(.)

Hence, at each time step, we obtain a system of linear algebraic equations with different
right-hand-side vectors. The matric in the left-hand side of (.) is banded, and the linear
system (.) can be easily solved.

4.2 Numerical results
In this subsection, we carry out two numerical experiments and present some results to
confirm our theoretical statements. The main purpose is to check the convergence behav-
ior of the numerical solution with respect to the time step size τ and polynomial degree
N used in the calculation. Here, all the calculations are carried out in Matlab.
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Figure 1 Example 1. Graphs of the exact solution (left panel) and the numerical solution (right panel).

Figure 2 Example 1. Graphs of error as a function of the time step size τ (left panel) and the polynomial
degree N (right panel).

Example  Consider the time-fractional telegraph equation (.) in [–, ] × [, ] with
β = λ =  and the exact solution:

u(x, t) = t sin(πx).

It can be checked that the corresponding forcing term, initial condition, and boundary
condition are respectively

f (x, t) =
 sin(πx)
	( – α)

t–α +
 sin(πx)
	( – α)

t–α + t sin(πx) + πt sin(πx).

u(x, ) = ,
∂u(x, t)

∂t

∣
∣
∣
t=

= .

u(–, t) = u(, t) = .

We solve this example using the proposed method with several values of τ , N , and α.

When α = ., as an example, the graphs of the exact solution and the numerical solution
with τ = 

, and N =  are shown in Figure .
Figure  (left) shows the plot of the absolute L∞, L, H errors as functions of the time

step size for N =  via α = .. Figure  (right) shows the plot of the absolute L∞, L, H

errors as functions of polynomial degree N for τ = 
, via α = ..
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Table 1 H1-errors and convergence orders obtained for Example 1 with N = 24

τ α = 0.1 α = 0.5 α = 0.9
Error Order Error Order Error Order

1/10 3.9589e–4 /. 3.0103e–3 /. 2.5966e–2 /.
1/20 1.0880e–4 1.8634 1.0807e–3 1.4780 1.0944e–2 1.2466
1/40 3.0137e–5 1.8521 3.9389e–4 1.4560 4.8585e–3 1.1715
1/80 8.4082e–6 1.8417 1.4267e–4 1.4652 2.2122e–3 1.1351
1/160 2.3492e–6 1.8397 5.1324e–5 1.4749 1.0199e–3 1.1171
1/320 6.5523e–7 1.8421 1.8371e–5 1.4822 4.7307e–4 1.1083
1/640 1.8224e–7 1.8462 6.5518e–6 1.4875 2.2009e–4 1.1040

Table 2 H1-errors and convergence orders obtained for Example 1 with τ = 1
20,000

N α = 0.1 α = 0.3
Error Order Error Order

4 1.0825e–1 /. 1.0396e–1 /.
6 4.5200e–3 7.8328 4.4789e–3 7.7560
8 1.0330e–4 13.1346 1.0287e–4 13.1176
10 1.6362e–6 18.5768 1.6323e–6 18.5685
12 1.9192e–8 24.3834 1.9584e–8 24.2595

Table  lists some numerical results when N =  (the degree of Lagrange polynomial),
which shows that the convergence order of presented scheme in temporal direction is
O(τ –α), where α = ., ., .. Table  presents the errors in H-norm and the conver-
gence orders of presented scheme in space direction with τ = 

, and α = ., ., re-
spectively.

Example  The proposed method also can be used to solve another kind of time-
fractional telegraph equation:

Dα
t u(x, t) + Dα

t u(x, t) + u(x, t) –
∂

∂x u(x, t) = f (x, t) (.)

with exact solution

u(x, t) = te–x .

It can be checked that the corresponding forcing term, initial condition, and boundary
condition are respectively

f (x, t) =
e–x

	( – α)
t–α +

e–x

	( – α)
t–α + te–x

–
(
x – 

)
e–x

t,

u(x, ) = ,
∂u(x, t)

∂t

∣
∣
∣
t=

= ,

u(–, t) = u(, t) =
t

e
.

Figure  (left) shows the plot of the absolute L∞, L, H errors as functions of the time
step size for N =  via α = .. Figure  (right) shows the plot of the absolute L∞, L, H

errors as functions of polynomial degree N for τ = 
, via α = ..
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Figure 3 Example 2. Graphs of error as functions of the time step size τ (left panel) and the polynomial
degree N (right panel).

Table 3 H1-errors and computational orders obtained for Example 2 with N = 24

τ α = 0.2 α = 0.4 α = 0.6 α = 0.8
Error Order Error Order Error Order Error Order

1/10 8.9564e–3 /. 4.4841e–2 /. 5.2904e–3 /. 3.0702e–2 /.
1/20 3.0839e–3 1.5382 1.9459e–2 1.2044 1.4940e–3 1.8242 1.1640e–2 1.3992
1/40 1.0420e–3 1.5653 8.3812e–3 1.2152 4.2433e–4 1.8159 4.4051e–3 1.4018
1/80 3.4795e–4 1.5824 3.6017e–3 1.2185 1.2097e–4 1.8106 1.6669e–3 1.4020
1/160 1.1530e–4 1.5935 1.5483e–3 1.2180 3.4569e–5 1.8071 6.3092e–4 1.4016
1/320 3.8019e–5 1.6006 6.6648e–4 1.2160 9.8950e–6 1.8047 2.3889e–4 1.4011
1/640 1.2496e–5 1.6052 2.8740e–4 1.2135 2.8354e–6 1.8031 9.0477e–5 1.4007

Table 4 H1-errors and computational orders obtained for Example 2 with τ = 1
20,000

N α = 0.1 α = 0.2 α = 0.6 α = 0.7
Error Order Error Order Error Order Error Order

2 2.2177e–1 /. 2.0246e–1 /. 1.2001e–1 /. 9.9513e–2 /.
4 2.4817e–2 3.1597 2.4122e–2 3.0692 2.0552e–2 2.5458 1.9405e–2 2.3584
6 1.5946e–3 6.7698 1.5740e–3 6.7317 1.4611e–3 6.5204 1.4240e–3 6.4422
8 7.8627e–5 10.4618 7.8082e–5 10.4408 7.5048e–5 10.3197 7.4070e–5 10.2759
10 3.2262e–6 14.3111 3.2127e–6 14.2987 3.1351e–6 14.2306 3.1112e–6 14.2062
12 1.1496e–7 18.2889 1.2356e–7 17.8703 1.1173e–7 18.2881 1.2943e–7 17.4396

Table  lists some numerical results when N =  (the degree of Lagrange polynomial)
and α = ., ., ., ., respectively, which shows that the time convergence order of the
case  < α < . is O(τ –α) and the time convergence order of the case . < α <  is
O(τ –α). Table  presents the errors in H-norm and the convergence order of presented
scheme in space direction with τ = 

, and α = ., ., ., ., respectively.

5 Concluding remarks
In this paper, we have proposed a new numerical method for the time-fractional tele-
graph equation with convergence orderO(τ –α +N –ω) in H-norm by combining the gen-
eralized finite difference method and spectral Galerkin method, and we have rigorously
proved the stability and convergence of this method. By Example  we have verified the the-
oretical results. It is demonstrated that this method is an effective and high-accuracy nu-
merical scheme for solving the time-fractional telegraph equation (.). Example  shows
that the proposed method also can solve the other kind of time-fractional telegraph equa-
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tion with convergence order O(τ –α + N –ω) when  < α < . and convergence order
O(τ –α + N –ω) when . < α < .
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