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Abstract
In this paper, we derive the Grammian determinant solutions to the modified
two-dimensional Toda lattice, and then we construct the modified two-dimensional
Toda lattice with self-consistent sources via the source generation procedure. We
show the integrability of the modified two-dimensional Toda lattice with
self-consistent sources by presenting its Casoratian and Grammian structure of the
N-soliton solution. It is also demonstrated that the commutativity between the
source generation procedure and Bäcklund transformation is valid for the
two-dimensional Toda lattice.
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1 Introduction
The two-dimensional Toda lattice, which can be regarded as a spatial discretization of the
KP equation, takes the following form:

∂

∂x∂s
ln(Vn + ) = Vn+ + Vn– – Vn, ()

where Vn denotes V (n, x, s). We use the above notation throughout the paper. Under the
dependent variable transformation

Vn =
∂

∂x∂s
ln fn, ()

equation () is transformed into the bilinear form [, ]:

DxDsfn · fn = 
(
eDn fn · fn – f 

n
)
, ()

where the bilinear operators are defined by []

Dm
x Dn

t f · g =
∂m

∂ym
∂n

∂sn f (x + y, t + s)g(x – y, t – s)
∣
∣∣
∣
s=,y=

,

eDn fn · gn = fn+gn–.
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It is shown in [, ] that the two-dimensional Toda lattice equation possesses the fol-
lowing bilinear Bäcklund transformation:

Dxfn+ · f ′
n = –


λ

fnf ′
n+ + νfn+f ′

n, ()

Dsfn · f ′
n = λfn+f ′

n– – μfnf ′
n, ()

where λ, μ, ν are arbitrary constants. Equations ()-() are transformed into the following
nonlinear form:

∂

∂x
un = (μ + un)(vn – vn+), ()

∂

∂s
vn = (ν + vn)(un– – un), ()

through the dependent variable transformation un = ∂
∂s ln( fn

f ′
n

), vn = – ∂
∂x ln( fn

f ′
n–

). Equations
()-() or ()-() are called the modified two-dimensional Toda lattice [, ]. The solutions
Vn of the two-dimensional Toda lattice () and un, vn of the modified two-dimensional
Toda lattice ()-() are connected through a Miura transformation [].

The soliton equations with self-consistent sources can model a lot of important physical
processes. For example, the KdV equation with self-consistent sources describes the inter-
action of long and short capillary-gravity waves []. The KP equation with self-consistent
sources describes the interaction of a long wave with a short-wave packet propagating on
the x, y plane at an angle to each other [, ]. Since the pioneering work of Mel’nikov [],
lots of soliton equations with self-consistent sources have been studied via inverse scatter-
ing methods [–], Darboux transformation methods [–], Hirota’s bilinear method
and the Wronskian technique [–].

In [], a new algebraic method, called the source generation procedure, is proposed
to construct and solve the soliton equations with self-consistent sources both in continu-
ous and discrete cases. The source generation procedure has been successfully applied to
many ( + )-dimensional continuous and discrete soliton equations such as the Ishimori-
I equation [], the semi-discrete Toda equation [], the modified discrete KP equation
[], and others. The purpose of this paper is to construct the modified two-dimensional
Toda lattice with self-consistent sources via the source generation procedure and clarify
the determinant structure of N-soliton solution for the modified two-dimensional Toda
lattice with self-consistent sources.

The paper is organized as follows. In Section , we derive the Grammian solution to the
modified two-dimensional Toda lattice equation and then construct the two-dimensional
Toda lattice equations with self-consistent sources. In Section , the Casoratian formu-
lation of N-soliton solution for the modified two-dimensional Toda lattice with self-
consistent is given. Section  is devoted to showing that the commutativity of the source
generation procedure and Bäcklund transformation is valid for two-dimensional Toda lat-
tice. We end this paper with a conclusion and discussion in Section .

2 The modified two-dimensional Toda lattice equation with self-consistent
sources

The N-soliton solution in Casoratian form for the modified two-dimensional Toda lat-
tice equation ()-() is given in [] and []. In this section, we first derive the Gram-
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mian formulation of the N-soliton solution for the modified two-dimensional Toda lattice
equation, and then we construct the modified two-dimensional Toda lattice equation with
self-consistent sources via the source generation procedure.

If we choose λ = , ν = μ = , then the modified two-dimensional Toda lattice ()-()
becomes

(
Dxe


 Dn + e– 

 Dn
)
fn · f ′

n = , ()
(
Ds – eDn

)
fn · f ′

n = . ()

Proposition  The modified two-dimensional Toda lattice ()-() has the following Gram-
mian determinant solution:

fn = det

∣∣
∣∣cij + (–)n

∫ x

–∞
φi(n)ψj(–n) dx

∣∣
∣∣
≤i,j≤N

= |M|, ()

f ′
n(n, x, s) =

∣∣
∣∣
∣

M �(n)
�(n)T –φN+(n)

∣∣
∣∣
∣
, ()

where

�(n) =
(
–φ(n), . . . , –φN (n)

)T , ()

�(n) =
(

cN+, + (–)n
∫ x

–∞
φN+(n)ψ(–n) dx, . . . ,

cN+,N +
∫ x

–∞
(–)nφN+(n)ψN (–n) dx

)T

, ()

in which the φi(n) denote φi(n, x, s) and the ψi(–n) denote ψi(–n, x, s) for i = , . . . , N + .
In addition, cij ( ≤ i, j ≤ N + ) are arbitrary constants and φi(n), ψi(–n) (i = , . . . , N + )
satisfy the following dispersion relations:

∂φi(n)
∂x

= φi(n + ),
∂ψi(–n)

∂x
= ψi(–n + ), ()

∂φi(n)
∂s

= –φi(n – ),
∂ψi(–n)

∂s
= –ψi(–n – ). ()

Proof The Grammian determinants fn in () and f ′
n in () can be expressed in terms of

the following Pfaffians:

fn =
(
a, . . . , aN , a∗

N , . . . , a∗

)

= (	), ()

f ′
n =

(
a, . . . , aN+, d∗

, a∗
N , . . . , a∗


)

=
(
aN+, d∗

,	
)
, ()

where the Pfaffian elements are defined by

(
ai, a∗

j
)

n = cij + (–)n
∫ x

–∞
(–)nφi(n)ψj(–n) dx, ()

(
d∗

m, ai
)

= φi(n + m),
(
dm, a∗

j
)

= (–)n+mψj(–n + m), ()
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(ai, aj)n =
(
a∗

i , a∗
j
)

n = (dm, dk) =
(
dm, d∗

k
)

=
(
d∗

m, d∗
k
)

= , ()

in which i, j = , . . . , N +  and k, m are integers.
Using the dispersion relations ()-(), we can compute the following differential and

difference formula for the Pfaffians ()-():

fn+,x =
(
d–, d∗

 ,	
)
, fn+ = (	) +

(
d–, d∗

,	
)
, ()

fns =
(
d–, d∗

–,	
)
, f ′

nx =
(
aN+, d∗

 ,	
)
, f ′

n– =
(
aN+, d∗

–,	
)

()

f ′
n+ =

(
aN+, d∗

 ,	
)

+
(
aN+, d–, d∗

o , d∗
 ,	

)
, ()

f ′
ns =

(
aN+, d–, d∗

–, d∗
,	

)
–

(
aN+, d∗

–,	
)
. ()

Substituting equations ()-() into the modified two-dimensional Toda lattice ()-()
gives the following two Pfaffian identities:

(
d–, d∗

 ,	
)(

aN+, d∗
,	

)
–

(
d–, d∗

,	
)(

aN+, d∗
 ,	

)
+ (	)

(
aN+, d–, d∗

, d∗
 ,	

)
= ,

(
d–, d∗

,	
)(

aN+, d∗
–,	

)
–

(
d–, d∗

–,	
)(

aN+, d∗
,	

)
+ (	)

(
aN+, d–, d∗

–, d∗
,	

)
= . �

In order to construct the modified two-dimensional Toda lattice with self-consistent
sources, we change the Grammian determinant solutions ()-() into the following form:

f (n, x, s) = det

∣
∣∣∣γij(s) + (–)n

∫ x

–∞
(–)nφi(n)ψj(–n) dx

∣
∣∣∣
≤i,j≤N

= |F|, ()

f ′
n(n, x, s) =

∣
∣∣
∣∣

F �(n)
�(n)T –φN+(n)

∣
∣∣
∣∣
, ()

where N th column vectors �(n), �(n) are given in ()-() and φi(n), ψi(–n) (i = , . . . ,
N + ) also satisfy the dispersion relations ()-(). In addition, γij(s) satisfies

γij(s) =

⎧
⎨

⎩
γi(s), i = j and  ≤ i ≤ K ≤ N ,

cij, otherwise,
()

with γi(s) being an arbitrary function of s and K being a positive integer.
The Grammian determinants fn in () and f ′

n in () can be expressed by means of the
following Pfaffians:

fn =
(
, . . . , N , N∗, . . . , ∗) = (·), ()

f ′
n =

(
, . . . , N + , d∗

, N∗, . . . , ∗) =
(
N + , d∗

, ·), ()

where the Pfaffian elements are defined by

(
i, j∗

)
n = γij(s) + (–)n

∫ x

–∞
(–)nφi(n)ψj(–n) dx,

(
i∗, j∗

)
n = , ()

(
d∗

m, i
)

= φi(n + m),
(
dm, j∗

)
= (–)n+mψj(–n + m), (i, j)n = , ()



Gegenhasi Advances in Difference Equations  (2017) 2017:277 Page 5 of 16

(dm, i) =
(
d∗

m, j∗
)

= (dm, dk) =
(
dm, d∗

k
)

=
(
d∗

m, d∗
k
)

= , ()

in which i, j = , . . . , N +  and k, m are integers.
It is easy to show that the functions f (n, x, s), f ′(n, x, s) given in ()-() still satisfy equa-

tion (). However, they will not satisfy (), and they satisfy the following new equation:

Dsfn · f ′
n – fn+f ′

n– = –
K∑

j=

g(j)
n h(j)

n , ()

where the new functions g(j)
n , h(j)

n are given by

g(j)
n =

√
γ̇j(t)

(
, . . . , N , d∗

, N∗, . . . , ĵ∗, . . . , ∗), ()

h(j)
n =

√
γ̇j(t)

(
, . . . , ĵ, . . . , N + , N∗, . . . , ∗), ()

where j = , . . . , K and the dot denotes the derivative of γj(t) with respect to t. Furthermore,
we can show that fn, f ′

n, g(j)
n , h(j)

n (j = , . . . , K ) satisfy the following K equations:

(
Dxe


 Dn + e– 

 Dn
)
f · g(j)

n = , j = , . . . , K , ()
(
Dxe


 Dn + e– 

 Dn
)
h(j)

n · f ′
n = , j = , . . . , K . ()

In fact, we have the following differential and difference formula for fn in (), f ′
n in ()

and g(j)
n , h(j)

n (j = , . . . , K ) by employing the dispersion relations ()-():

fns =
(
d–, d∗

–, ·)

+
K∑

j=

γ̇j(s)
(
, . . . , î, . . . , N , N∗, . . . , î∗, . . . , ∗), ()

f ′
ns =

(
N + , d–, d∗

–, d∗
, ·) –

(
N + , d∗

–, ·)

+
K∑

i=

γ̇i(s)
(
N + , d∗

, , . . . , î, . . . , N , N∗, . . . , î∗, . . . , ∗), ()

fn+ = (·) +
(
d–, d∗

, ·), f ′
n– =

(
N + , d∗

–, ·), ()

g(j)
n– =

√
γ̇j(t)

(
, . . . , N , d∗

–, N∗, . . . , ĵ∗, . . . , ∗), ()

g(j)
n–,x =

√
γ̇j(t)

[(
, . . . , N , d∗

, N∗, . . . , ĵ∗, . . . , ∗)

+
(
, . . . , N , d, d∗

, d∗
–, N∗, . . . , ĵ∗, . . . , ∗)], ()

fn– = (·) –
(
d, d∗

–, ·), fnx =
(
d, d∗

, . . .
)
, ()

h(j)
n+ =

√
γ̇j(t)

[(
, . . . , ĵ, . . . , N + , N∗, . . . , ∗)

+
(
, . . . , ĵ, . . . , N + , d–, d∗

N∗, . . . , ∗)], ()

h(j)
n+,x =

√
γ̇j(t)

(
, . . . , ĵ, . . . , N + , d–, d∗

 , N∗, . . . , ∗), ()
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f ′
nx =

(
N + , d∗

 , ·), ()

f ′
n+ =

(
N + , d∗

 , ·) +
(
N + , d–, d∗

, d∗
 , ·), ()

where ˆ indicates deletion of the letter under it.
Substitution of equations ()-() into equations (), ()-() gives the following

Pfaffian identities:

[(
d–, d∗

–, ·)(N + , d∗
, ·) – (·)(N + , d–, d∗

–, d∗
, ·) –

(
d–, d∗

, ·)(N + , d∗
–, ·)],

+
K∑

j=

γ̇j(s)
[(

, . . . , N + , d∗
, N∗, . . . , ∗)(, . . . , î, . . . , N , N∗, . . . , î∗, . . . , ∗)

– (·)(, . . . , î, . . . , N + , d∗
, N∗, . . . , i∗, . . . , ∗)

+
(
, . . . , N , d∗

, N∗, . . . , î∗, . . . , ∗)(, . . . , î, . . . , N + , N∗, . . . , ∗)] = ,
(
d, d∗

, ·)(, . . . , N , d∗
–, N∗, ·, ĵ∗, . . . , ∗)

– (·)(, . . . , N , d, d∗
, d∗

–, N∗, ·, ĵ∗, . . . , ∗)

–
(
d, d∗

–, ·)(, . . . , N , d∗
, N∗, ·, ĵ∗, . . . , ∗) = ,

and

(
N + , d∗

, ·)(, . . . , î, . . . , N + , d–, d∗
 , N∗, . . . , ∗)

–
(
N + , d∗

 , ·)(, . . . , î, . . . , N + , d–, d∗
, N∗, . . . , ∗)

+
(
N + , d–, d∗

, d∗
 , ·)(, . . . , î, . . . , N + , N∗, . . . , ∗) = ,

respectively. Therefore, equations (), (), ()-() constitute the modified two-dimen-
sional Toda lattice with self-consistent sources, and it possesses the Grammian determi-
nant solution ()-(), ()-().

Through the dependent variable transformation

un =
fn+f ′

n–
fnf ′

n
, vn = –

∂

∂x
ln

(
fn

f ′
n–

)
, G(j)

n =
g(j)

n

fn
, H (j)

n =
h(j)

n

f ′
n

, ()

the bilinear modified two-dimensional Toda lattice with self-consistent sources (, , )-
() can be transformed into the following nonlinear form:

∂

∂x
un = un(vn – vn+), ()

∂

∂s
vn = vn(un– – un) + vn

K∑

j=

[
unG(j)

n H (j)
n – un–G(j)

n–H (j)
n–

]
, ()

∂

∂x
G(j)

n– + G(j)
n unvn = , j = , . . . , K , ()

∂

∂x
H (j)

n+ + H (j)
n unvn+ = , j = , . . . , K . ()
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When we take G(j)
n = H (j)

n = , j = , . . . , K in ()-(), the nonlinear modified two-
dimensional Toda lattice with self-consistent sources ()-() is reduced to the nonlinear
modified two-dimensional Toda lattice ()-() with λ = , ν = μ = .

If we choose

φi(n) = eξi , ψi(–n) = (–)neηi ,

ξi = eqi x + qin – e–qi t, ηi = –eQi x – Qin + e–Qi t,
()

where i = , , . . . , N + in the Grammian determinants ()-(), ()-(), then we obtain
the N-soliton solution of the modified two-dimensional Toda lattice with self-consistent
sources (), (), ()-(). Here qi, Qi (i = , , . . . , N + ) are arbitrary constants.

For example, if we take K = , N =  and

φ(n) = eξ , φ(n) = eξ , ψ(n) = eη , γ(t) =
ea(t)

eq – eQ
, c = , ()

where a(t) is an arbitrary function of t, then we have

fn(x, n, t) =
ea(t)

eq – eQ

(
 + eξ+η–a(t)), ()

f ′
n(x, n, t) = –

ea(t)+ξ

eq – eQ

(
 +

eq – eq

eq – eQ
eξ+η–a(t)

)
, ()

g()
n (x, n, t) = –

√
eȧ(t)

eq – eQ eξ+a(t), ()

h()
n (x, n, t) =

√
eȧ(t)

eq – eQ


eq – eQ
eξ–η+a(t). ()

Therefore, the one-soliton solution of the nonlinear modified two-dimensional Toda lat-
tice with self-consistent sources ()-() is given by

un(x, n, t) =
e–q ( + eq–Q eξ+η–a(t))( + eq –eq

eq –eQ eQ–q eξ+η–a(t))

( + eξ+η–a(t))( + eq –eq
eq –eQ eξ+η–a(t))

, ()

vn(x, n, t) = –
∂

∂x
ln

(
 + eξ+η–a(t)

–eξ ( + eq –eq
eq –eQ eQ–q eξ+η–a(t))

)
, ()

G()
n (x, n, t) = –

√
ȧ(t)

(
eq – eQ

) eξ–a(t)

 + eξ+η–a(t) , ()

H ()
n (x, n, t) =

–
√

ȧ(t)(eq – eQ)
eq – eQ

e–η–a(t)

 + eq –eq
eq –eQ eξ+η–a(t)

. ()

If we take K = , N =  and

φ(n) = eξ , φ(n) = eξ , φ(n) = eξ , ψ(n) = eη , ψ(n) = eη ,

γ(t) =
ea(t)

eq – eQ
, γ(t) =


eq – eQ

, c = , c = , c = ,

c = ,
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we derive

fn(x, n, t) =
ea(t)

(eq – eQ )(eq – eQ )

(
 + eξ+η–a(t) + eξ+η

+
(eq – eq )(eQ – eQ )
(eq – eQ )(eQ – eq )

eξ+η+ξ+η–a(t)
)

, ()

f ′
n(x, n, t) = –

eξ+a(t)

(eq – eQ )(eq – eQ )

(
 +

eq – eq

eq – eQ
eξ+η–a(t) +

eq – eq

eq – eQ
eξ+η

+
(eq – eq )(eQ – eQ )(eq – eq )(eq – eq )
(eq – eQ )(eq – eQ )(eq – eQ )(eq – eQ )

eξ+η+ξ+η–a(t)
)

, ()

g()
n (x, n, t) =

√
eȧ(t)

eq – eQ

eξ+a(t)

eq – eQ

(
 +

eq – eq

eq – eQ
eξ+η

)
, ()

h()
n (x, n, t) = –

√
eȧ(t)

eq – eQ

eξ+η+a(t)

(eq – eQ )(eq – eQ )

×
(

 +
(eq – eq )(eQ – eQ )
(eQ – eq )(eQ – eq )

eξ+η

)
. ()

Substituting functions ()-() into the dependent variable transformations (), we ob-
tain two-soliton solution of the nonlinear modified two-dimensional Toda lattice with self-
consistent sources ()-().

3 Casorati determinant solution to the modified two-dimensional Toda lattice
equation with self-consistent sources

In Section , we derived that the modified two-dimensional Toda lattice with self-
consistent sources (), (), ()-() possess the Grammian determinant solution (),
(), (), (). In this section, we derive the Casoratian formulation of the N-soliton for
the modified two-dimensional Toda lattice with self-consistent sources (), (), ()-().

Proposition  The modified two-dimensional Toda lattice with self-consistent sources (),
(), ()-() has the following Casorati determinant solution:

fn = det
∣∣ψi(n + j – )

∣∣
≤i,j≤N = (d, . . . , dN–, N , . . . , ), ()

f ′
n = det

∣
∣ψi(n + j – )

∣
∣
≤i,j≤N+ = (d, . . . , dN , N + , . . . , ), ()

g(j)
n =

√
γ̇j(t)(d, . . . , dN , N , . . . , ,αj), ()

h(j)
n =

√
γ̇j(t)(d, . . . , dN–, N + , . . . , ĵ, . . . , ), ()

where ψi(n + m) = φi(n + m) + (–)i–Ci(s)φi(n + m) (m = , . . . , N ) and

Ci(s) =

⎧
⎨

⎩
γi(s),  ≤ i ≤ K ≤ N + ,

γi, otherwise,
()
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with γi(s) being an arbitrary function of s and K , N being positive integers. In addition,
φi(n), φi(n) satisfy the following dispersion relations:

∂φij(n)
∂x

= φij(n + ),
∂φij(n)

∂s
= –φij(n – ), j = , , ()

and the Pfaffian elements are defined by

(dm, i) = ψi(n + m), (dm,αi) = φi(n + m), ()

(dm, dl) = (i, j) = , (αi, j) = (αi,αj) = , ()

in which i, j = , . . . , N +  and m, l are integers.

Proof We can derive the following dispersion relation for ψi(n) (i = , . . . , N +) from equa-
tions ():

∂ψi(n)
∂x

= φi(n + ), ()

∂ψi(n)
∂s

= –ψi(n – ) + (–)i– ˙Ci(t)φi(n). ()

Applying the dispersion relation ()-(), we can calculate the following differential
and difference formula for the Casorati determinants ()-():

fn+,x = (d, . . . , dN–, dN+, N , . . . , ), ()

fn+ = (d, . . . , dN , N , . . . , ), fn– = (d–, . . . , dN–, N , . . . , ) ()

f ′
nx = (d, . . . , dN–, dN+, N + , . . . , ), ()

fn,s = –(d–, d, . . . , dN–, N , . . . , )

+
K∑

j=

γ̇j(t)(d, . . . , dN–, N , . . . , ĵ, . . . , ,αj), ()

f ′
n,s = –(d–, d, . . . , dN , N + , . . . , )

+
K∑

j=

γ̇j(t)(d, . . . , dN , N + , . . . , ĵ, . . . , ,αj), ()

f ′
n+ = (d, . . . , dN+, N + , . . . , ), ()

f ′
n– = (d–, d, . . . , dN–, N + , . . . , ), ()

g(j)
n =

√
γ̇j(t)(d–, . . . , dN , N , . . . , ,αj), ()

h(j)
n+ =

√
γ̇j(t)(d, . . . , dN , N + , . . . , ĵ, . . . , ), ()

fnx = (d, . . . , dN–, dN , N , . . . , ), ()

g(j)
n,x =

√
γ̇j(t)(d–, . . . , dN–, dN , N , . . . , ,αj), ()

h(j)
n+,x =

√
γ̇j(t)(d, . . . , dN–, dN+, N + , . . . , ĵ, . . . , ). ()
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By substituting equations ()-() into the modified two-dimensional Toda lattice with
self-consistent sources (), (), ()-(), we obtain the following Pfaffian identities, re-
spectively:

(d, . . . , dN–, dN+, N , . . . , )(d, . . . , dN , N + , . . . , )

– (d, . . . , dN , N , . . . , )(d, . . . , dN–, dN+, N + , . . . , )

+ (d, . . . , dN–, N , . . . , )(d, . . . , dN+, N + , . . . , ) = ,
[
–(d–, d, . . . , dN–, N , . . . , )(d, . . . , dN , N + , . . . , )

+ (d, . . . , dN–, N , . . . , )(d–, d, . . . , dN , N + , . . . , )

– (d, . . . , dN , N , . . . , )(d–, . . . , dN–, N + , . . . , )
]

+
K∑

j=

γ̇j(s)
[
(d, . . . , dN–, N , . . . , ĵ, . . . , ,αj)(d, . . . , dN , N + , . . . , )

– (d, . . . , dN , N + , . . . , ĵ, . . . , ,αj)(d, . . . , dN–, N , . . . , )

+ (d, . . . , dN , N , . . . , ,αj)(d, . . . , dN–, N + , . . . , ĵ, . . . , )
]

= ,

(d, . . . , dN–, dN , N , . . . , )(d–, . . . , dN–, N , . . . , ,αj)

– (d, . . . , dN–, N , . . . , )(d–, . . . , dN–, dN , N , . . . , ,αj)

+ (d–, . . . , dN–, N , . . . , )(d, . . . , dN , N , . . . , ,αj) = ,

and

(d, . . . , dN–, dN+, N + , . . . , ĵ, . . . , )(d, . . . , dN , N + , . . . , )

– (d, . . . , dN , N + , . . . , ĵ, . . . , )(d, . . . , dN–, dN+, N + , . . . , )

+ (d, . . . , dN–, N + , . . . , ĵ, . . . , )(d, . . . , dN+, N + , . . . , ) = ,

respectively. �

In order to obtain the one-soliton solution of the nonlinear modified two-dimensional
Toda lattice with self-consistent sources ()-(), we take N = , K =  and

φ =
eξ

eq – eQ
, φ = e–η , φ = –

eξ

eq – eQ
,

γ(t) =
ea(t)

eq – eQ
, γ = ,

in the Casoratian determinants ()-(). Here ξi, ηi (i = , ) are given in () and a(t) is
an arbitrary function of t. Hence we obtain

fn(x, n, t) =
ea(t)–η

eq – eQ

(
 + eξ+η–a(t)), ()

f ′
n(x, n, t) = –

ea(t)+ξ–η

eq – eQ

(
 +

eq – eq

eq – eQ
eξ+η–a(t)

)
, ()
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g()
n (x, n, t) =

√
eȧ(t)

eq – eQ eξ–η+a(t), ()

h()
n (x, n, t) = –

√
eȧ(t)

eq – eQ
eξ+a(t)

eq – eQ
. ()

Substituting functions ()-() into the dependent variable transformations (), we get
a one-soliton solution of the nonlinear modified two-dimensional Toda lattice with self-
consistent sources ()-() given in ()-().

If we take N = , K =  and

φ =
eξ

eq – eQ
, φ = e–η , φ = –

eξ

eq – eQ
,

φ = eη , φ =
eξ

eq – eQ
,

γ(t) =
ea(t)

eq – eQ
, γ = –


eq – eQ

, γ = ,

in the Casoratian determinants ()-(), we get

fn(x, n, t) =
(eQ – eQ )ea(t)–η–η

(eq – eQ )(eq – eQ )

(
 +

eq – eQ

eQ – eQ
eξ+η–a(t) +

eQ – eq

eQ – eQ
eξ+η

+
eq – eq

eQ – eQ
eξ+η+ξ+η–a(t)

)
, ()

f ′
n(x, n, t) =

(eQ – eQ )(eq – eQ )ea(t)+ξ–η–η

(eq – eQ )(eq – eQ )

(
 +

(eq – eQ )(eq – eq )
(eQ – eQ )(eQ – eq )

eξ+η–a(t)

+
(eq – eQ )(eq – eq )
(eQ – eQ )(eq – eQ )

eξ+η

+
(eq – eq )(eq – eq )(eq – eq )

(eQ – eQ )(eQ – eq )(eq – eQ ))
eξ+η+ξ+η–a(t)

)
, ()

g()
n (x, n, t) =

√
eȧ(t)

eq – eQ
ea(t)+ξ–η–η

((
eq – eq

)
eξ+η +

(eQ – eQ )(eq – eQ )
eq – eQ

)
, ()

h()
n (x, n, t) =

√
eȧ(t)

eq – eQ
ea(t)–η–η

(
eQ – eq

(eq – eQ )(eq – eQ )
eξ+η

+
eq – eq

(eq – eQ )(eq – eQ )
eξ+ξ+η+η

)
. ()

We introduce five constants δ, δ, δ, ε, ε satisfying

eδ = eQ – eq , eε =


eQ – eQ
, eδ = eQ – eq , eδ+ε =

eQ – eq

eQ – eQ
,

and take

ξ̃ = ξ + δ, ξ̃ = ξ + δ, ξ̃ = ξ + δ, η̃ = η + ε, η̃ = η + ε,
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then equations ()-() become

fn(x, n, t) =
(eQ – eQ )eε+ε e–η̃–η̃+a(t)

(eq – eQ )(eq – eQ )

(
 + eξ̃+η̃–a(t) + eξ̃+η̃

+
(eq – eq )(eQ – eQ )
(eq – eQ )(eQ – eq )

eξ̃+η̃+ξ̃+η̃–a(t)
)

, ()

f ′
n(x, n, t) = –

(eQ – eQ )eε+ε eξ̃–η̃–η̃+a(t)

(eq – eQ )(eq – eQ )

(
 +

eq – eq

eq – eQ
eξ̃+η̃–a(t) +

eq – eq

eq – eQ
eξ̃+η̃

+
(eq – eq )(eQ – eQ )(eq – eq )(eq – eq )
(eq – eQ )(eq – eQ )(eq – eQ )(eq – eQ )

eξ̃+η̃+ξ̃+η̃–a(t)
)

, ()

g()
n (x, n, t) =

√
eȧ(t)

eq – eQ

eε+ε (eQ – eQ )eξ̃–η̃–η̃+a(t)

eq – eQ

(
 +

eq – eq

eq – eQ
eξ̃+η̃

)
, ()

h()
n (x, n, t) =

√
eȧ(t)

eq – eQ

(eQ – eQ )eε+ε eξ̃–η̃+a(t)

(eq – eQ )(eq – eQ )

×
(

 +
(eq – eq )(eQ – eQ )
(eQ – eq )(eQ – eq )

eξ̃+η̃

)
. ()

We rederive the two-soliton solution of the nonlinear modified two-dimensional Toda
lattice with self-consistent sources ()-() obtained in Section , substituting the above
functions in equations ()-() into the dependent variable transformation ().

4 Commutativity of the source generation procedure and Bäcklund
transformation

In this section, we show that the commutativity of the source generation procedure and
Bäcklund transformation holds for the two-dimensional Toda lattice. For this purpose,
we derive another form of the modified two-dimensional Toda lattice with self-consistent
sources which is the Bäcklund transformation for the two-dimensional Toda lattice with
self-consistent sources given in [].

We have shown that the Casorati determinants fn, f ′
n, g(j)

n , h(j)
n given in ()-() satisfy

the modified two-dimensional Toda lattice with self-consistent sources (), (), ()-().
Now we take

Fn = fn = det
∣∣ψi(n + j – )

∣∣
≤i,j≤N = (d, . . . , dN–, N , . . . , ), ()

F ′
n = f ′

n– = det
∣
∣ψi(n + j – )

∣
∣
≤i,j≤N+

= (d–, . . . , dN–, N + , . . . , ), ()

G(j)
n =

√
g(j)

n– =
√

γ̇j(t)(d–, . . . , dN–, N , . . . , ,αj),

j = , . . . , K , ()

H ′(j)
n =

√
h(j)

n =
√

γ̇j(t)(d, . . . , dN–, N + , . . . , ĵ, . . . , ),

j = , . . . , K , ()
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and we introduce two new fields

G′(j)
n =

√
γ̇j(t)(d–, . . . , dN–, N + , . . . , ,αj), j = , . . . , K , ()

H (j)
n =

√
γ̇j(t)(d, . . . , dN–, N , . . . , ĵ, . . . , ), j = , . . . , K , ()

where the Pfaffian elements are defined in ()-().
In [], the authors prove that the Casorati determinant Fn, G(j)

n , H (j)
n solves the following

two-dimensional Toda lattice with self-consistent sources []:

(
DxDs – eDn + 

)
Fn · Fn = –

K∑

j=

eDn G(j)
n H (j)

n , ()

(
Dx + e–Dn

)
Fn · G(j)

n = , j = , . . . , K , ()
(
Dx + e–Dn

)
H (j)

n · Fn = , j = , . . . , K . ()

It is not difficult to show that the Casorati determinant with F ′
n, G′(j)

n , H ′(j)
n is another solu-

tion to the two-dimensional Toda lattice with self-consistent sources ()-().
Furthermore, we can verify that the Casorati determinants Fn, F ′

n, G(j)
n , G′(j)

n , H (j)
n , H ′(j)

n

given in ()-() satisfy the following bilinear equations:


(
Dse–/Dn – e/Dn

)
Fn · F ′

n = –
K∑

j=

e/Dn G(j)
n · H ′(j)

n , ()

(
Dx + e–Dn

)
Fn · F ′

n = , j = , . . . , K , ()
(
Dx + e–Dn

)
H (j)

n · H ′(j)
n = , j = , . . . , K , ()

(
Dx + e–Dn

)
G(j)

n · G′(j)
n = , j = , . . . , K , ()

e/Dn Fn · H ′(j)
n = e–/Dn Fn · H ′(j)

n – e–/Dn H (j)
n · F ′

n,

j = , . . . , K , ()

e/Dn G(j)
n · F ′

n = e–/Dn G(j)
n · F ′

n – e–/Dn Fn · G′(j)
n ,

j = , . . . , K , ()

which is another form of the modified two-dimensional Toda lattice with self-consistent
sources. It is proved in [] that equations ()-() constitute the Bäcklund transforma-
tion for the two-dimensional Toda lattice with self-consistent sources ()-(). There-
fore, the commutativity of source generation procedure and Bäcklund transformation is
valid for the two-dimensional Toda lattice.

5 Conclusion and discussion
In this paper, Grammian solutions to the modified two-dimensional Toda lattice are pre-
sented. From the Grammian solutions, the modified two-dimensional Toda lattice with
self-consistent sources (), (), ()-() are produced via the source generation pro-
cedure. We show that the modified two-dimensional Toda lattice with self-consistent
sources (), (), ()-() are resolved into the determinant identities by presenting its
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Grammian and Casorati determinant solutions. We also construct another form of the
modified discrete KP equation with self-consistent sources ()-() which is the Bäck-
lund transformation for the two-dimensional Toda lattice with self-consistent sources de-
rived in [].

Now we show that the modified two-dimensional Toda lattice has a continuum limit
into the mKP equation [, ], and the modified two-dimensional Toda lattice with self-
consistent sources (, , )-() yields the mKP equation with self-consistent sources
derived in [] through a continuum limit. For this purpose, we take

Dn = εDX – εDY , Dx = εDY +


εDX , Ds = –




εDT ,

f (n, x, s) = F(X, Y , T), f ′(n, x, s) = F ′(X, Y , T),

in the modified two-dimensional Toda lattice ()-(), and compare the ε order in (), and
the ε order in (), then we obtain the mKP equation [, ]:

(
DY + D

X
)
F · F ′ = ,

(
D

X – DT – DXDY
)
F · F ′ = ,

where F , F ′ denote F(X, Y , T), F ′(X, Y , T), respectively.
By taking

Dn = εDX – εDY , Dx = εDY +


εDX , Ds =



εDT ,

f (n, x, s) = F(X, Y , T), g(j)(n, x, s) =

√




ε

 Gj(X, Y , T),

f ′(n, x, s) = F ′(X, Y , T), h(j)(n, x, s) =

√




ε

 Hj(X, Y , T),

for j = , . . . , K in the modified two-dimensional Toda lattice with self-consistent sources
(, , )-(), and comparing the ε order in (), ()-(), and the ε order in (), we
obtain the mKP equation with self-consistent sources []:

(
DY + D

X
)
F · F ′ = ,

(
DT – DXDY + D

X
)
F · F ′ = –

K∑

j=

GjHj,

(
DY + D

X
)
F · Gj = , j = , . . . , K ,

(
DY + D

X
)
Hj · F ′ = , j = , . . . , K ,

where F , F ′, Gj, Hj denote F(X, Y , T), F ′(X, Y , T), Gj(X, Y , T), Hj(X, Y , T) for j = , . . . , K ,
respectively.

Recently, generalized Wronskian (Casorati) determinant solutions are constructed for
continuous and discrete soliton equations [–]. Besides soliton solutions, a broader
class of solutions such as rational solutions, negatons, positons and complexitons solu-
tions are obtained from the generalized Wronskian (Casorati) determinant solutions [–
]. In [], a general Casoratian formulation is presented for the two-dimensional Toda



Gegenhasi Advances in Difference Equations  (2017) 2017:277 Page 15 of 16

lattice equation from which various examples of Casoratian type solutions are derived.
It is interesting for us to construct the two-dimensional Toda lattice equation with self-
consistent sources having a generalized Casorati determinant solution via the source gen-
eration procedure. This will bring us a broader class of solutions such as negatons, posi-
tons, and complexiton type solutions of the two-dimensional Toda lattice equation with
self-consistent sources.
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