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Abstract
This paper focuses on the existence of solutions for a higher-order coupled system of
fractional differential equations with Sturm-Liouville boundary value conditions at
resonance. By applying Mawhin continuation theorem, some new existence results
are established. Furthermore, two examples are supplied to demonstrate the main
results.
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1 Introduction
In the last two decades, fractional differential equations have been widely used in var-
ious fields of science, engineering and mathematics (see [–]). Based on the extensive
application of fractional differential equations, it is of great theoretical and practical sig-
nificance to study the boundary value problems (BVPs for short) of fractional differential
equations. Accordingly, the research of fractional BVPs has been paid attention to by many
scholars. At present, there have been many studies on various BVPs of fractional differ-
ential equations, for example, periodic BVPs (see [–]), anti-periodic BVPs (see [,
]), Dirichlet BVPs (see [, ]), multi-point BVPs (see [–]), impulsive BVPs (see
[]), Sturm-Liouville BVPs (see [–]), etc. Among them, as a classical non-resonance
boundary value condition, the integer order Sturm-Liouville BVPs have been studied for a
long time. By comparison, the study of fractional Sturm-Liouville BVPs is still a new field.
In [], Zhao considered the following fractional Sturm-Liouville BVP:

⎧
⎨

⎩

Dα
+u(t) + f (t, u(t)) = ,  < t < ,

u′() – βu(ξ ) = , u′() + γ u(η) = ,

where  < α ≤ , Dα
+ is the Caputo fractional derivative,  ≤ ξ ≤ η ≤ ,  ≤ β ,γ ≤ ,

f : [, ] × R
+ → R

+ is continuous. On the basis of fixed point theorems and successive
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iteration method, the existence of positive solutions was obtained. On this foundation, Liu
[] studied such problems further by applying the Avery-Peterson fixed point theorem.

Zhao [] studied the existence of at least two positive solutions by the fixed point the-
orem in the cone of strict-set-contraction operators for the following BVP:

⎧
⎪⎪⎨

⎪⎪⎩

Dq
+u(t) + f (t, u, u′, . . . , u(n–)) = ,  < t < ,

u() = u′() = · · · = u(n–)() = ,

αu(n–)() – βu(n–)() = , γ u(n–)() + δu(n–)() = ,

where n –  < q ≤ n, Dq
+ is the Caputo fractional derivative, n ≥ , α, β , γ and δ are non-

negative constants. Due to the widespread use of coupled system in the applications (see
[–]), it is important to study a coupled system of fractional differential equations and
some important results have been presented (see [–]). Zhang and Bai [] studied the
following equations:

⎧
⎪⎪⎨

⎪⎪⎩

Dα
+u(t) = f (t, v(t), Dβ–

+ v(t)),  < t < ,

Dβ
+v(t) = g(t, u(t), Dα–

+ u(t)),  < t < ,

u() = v() = , u() = σu(η), v() = σv(η),

where Dα
+, Dβ

+ are Riemann-Liouville fractional derivatives,  < α,β ≤ ,  < η,η < ,
σ,σ > , f , g : [, ] × R

 → R are continuous. The sufficient conditions for the exis-
tence of solutions of coupled fractional differential equations are obtained by applying the
Mawhin continuation theorem.

Recently, there have appeared some papers dealing with the existence of solutions for a
coupled system of higher-order fractional differential equations (see [–]). However,
there are few results concerning a higher-order coupled system of fractional differential
equations with Sturm-Liouville boundary value conditions at resonance. Motivated by the
above mentioned discussion, we consider the following BVP:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dα
+u(t) = f (t, v(t), v′(t), . . . , v(n–)(t)),

Dβ
+v(t) = g(t, u(t), u′(t), . . . , u(n–)(t)),

u() = u′() = · · · = u(n–)() = ,

v() = v′() = · · · = v(n–)() = ,

u(n–)() = γu(n–)(ξ), u(n–)() = δu(n–)(η),

v(n–)() = γv(n–)(ξ), v(n–)() = δv(n–)(η),

(.)

where  < t < , n –  < α,β ≤ n, n > , Dα
+, Dβ

+ are Caputo fractional derivatives, f , g :
[, ] × R

n → R are continuous, γ,γ, δ, δ > ,  < ξ, ξ,η,η < . Equation (.) is a
Sturm-Liouville semi-homogeneous BVP.

The major contributions given in this paper have some new features. Firstly, the frac-
tional differential equation established by us is a higher-order coupled system which is
more difficult to construct than a projection operator. In comparison with the previous
literature, the system is more general. Secondly, we also observe that few scholars have
ever considered the higher-order coupled system of fractional differential equations with
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Sturm-Liouville boundary value conditions at resonance before. So our results serve as a
further development for previous findings in this sense. In addition, we can also use the
method of this paper to discuss the following BVP, which is similar to (.):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dα
+u(t) = f (t, v(t), v′(t), . . . , v(n–)(t)),

Dβ
+v(t) = g(t, u(t), u′(t), . . . , u(n–)(t)),

u() = u′() = · · · = u(n–)() = ,

v() = v′() = · · · = v(n–)() = ,

u(n–)() = γu(n–)(ξ), u(n–)() = δu(n–)(η),

v(n–)() = γv(n–)(ξ), v(n–)() = δv(n–)(η).

2 Preliminaries
In order to facilitate understanding, we introduce the concepts and lemmas of fractional
derivatives and integrals related to this paper, and more details can be found in the recent
literature (see [–]).

Definition . ([]) Let X, Y be real Banach spaces, and L : dom L ⊂ X → Y be a
linear map. If dim Ker L = codim Im L < +∞ and Im L is a closed subset in Y , then the
map L is a Fredholm operator with index zero. If there exists the continuous projections
P : X → X and Q : Y → Y satisfying Im P = Ker L and Ker Q = Im L, then L|dom L∩Ker P :
dom L ∩ Ker P → Im L is reversible. We denote the inverse of this map by KP , i.e. KP = L–

P
and KP,Q = KP(I – Q). If 	 is an open bounded subset of X and dom L ∩ 	 	= ∅, then the
map N is L-compact on 	 when QN : 	 → Y is bounded and KP(I – Q)N : 	 → X is
compact.

Theorem . ([]) Let L be a Fredholm operator of index zero and N be L-compact on
	. Assume that the following conditions are satisfied:

(a) Lx 	= λNx for any (x,λ) ∈ [(dom L \ Ker L) ∩ ∂	] × (, );
(a) Nx /∈ Im L for any x ∈ Ker L ∩ ∂	;
(a) deg(QN |Ker L,	 ∩ Ker L, ) 	= .

Then the equation Lx = Nx has at least one solution in dom L ∩ 	.

Definition . ([]) The Riemann-Liouville fractional integral of order α (α > ) for the
function x : (, +∞) →R is defined as

Iα
+x(t) =


�(α)

∫ t


(t – s)α–x(s) ds,

provided that the right-hand side integral is defined on (, +∞).

Definition . ([]) The Caputo fractional integral of order α (α > ) for the function
x : (, +∞) →R is defined as

CDα
+x(t) = In–α

+
dnx(t)

dtn =


�(n – α)

∫ t


(t – s)n–α–x(n)(s) ds,

where n = [α] + , provided that the right-hand side integral is defined on (, +∞).
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Lemma . ([]) Let n –  < α ≤ n, if CDα
+x(t) ∈ C[, ], then

Iα
+

CDα
+x(t) = x(t) + c + ct + ct + · · · + cn–tn–,

where ci ∈R, i = , , . . . , n – , n = [α] + .

Lemma . ([]) If n –  < α ≤ n, then the fractional differential CDα
+x(t) =  has the

following form:

x(t) = c + ct + ct + · · · + cn–tn–,

where ci ∈R, i = , , . . . , n – , n = [α] + .

Lemma . ([]) Let x(t) ∈ C[, ], α > , then

CDα
+Iα

+x(t) = x(t).

Lemma . ([]) Let α > β > , then for any x ∈ C[, ] ∩ L[, ],

CDβ
+Iα

+x(t) = Iα–β
+ x(t).

Lemma . ([]) Let x(t) ∈ L[, ], α,β > , then

Iα
+Iβ

+x(t) = Iα+β
+ x(t).

3 Main result
In order to prove the solvability of BVP (.), some notations are introduced.

In this paper, we define X = Cn–[, ] with the norm ‖x‖X = max{‖x‖∞,‖x′‖∞, . . . ,
‖x(n–)‖∞} and Y = C[, ] with the norm ‖y‖Y = ‖y‖∞, where ‖x‖∞ = maxt∈[,] |x(t)|. It
is clear that (X,‖ · ‖X) and (Y ,‖ · ‖Y ) are Banach space. Furthermore, we consider Banach
space X = X ×X with the norm ‖(u, v)‖X = max{‖u‖X ,‖v‖X} and Y = Y ×Y with the norm
‖(x, y)‖Y = max{‖x‖Y ,‖y‖Y }.

Define the linear operator L : dom L ⊂ X → Y as

Lu = Dα
+u,

where

dom L =
{

u ∈ X|Dα
+u(t) ∈ Y , u() = u′() = · · · = u(n–)() = ,

u(n–)() = γu(n–)(ξ), u(n–)() = δu(n–)(η)
}

.

Define the linear operator L : dom L ⊂ X → Y as

Lv = Dβ
+v,

where

dom L =
{

v ∈ X|Dβ
+v(t) ∈ Y , v() = v′() = · · · = v(n–)() = ,

v(n–)() = γv(n–)(ξ), v(n–)() = δv(n–)(η)
}

.
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Define the operator L : dom L ⊂ X → Y as

L(u, v) = (Lu, Lv), (.)

where dom L = {(u, v) ∈ X|u ∈ dom L, v ∈ dom L}, and we define N : X → Y by setting

N(u, v) = (Nv, Nu),

where N : Y → X is defined as

Nv(t) = f
(
t, v(t), v′(t), . . . , v(n–)(t)

)
,

and N : Y → X is defined as

Nu(t) = g
(
t, u(t), u′(t), . . . , u(n–)(t)

)
.

Then BVP (.) is equivalent to the following operator equation:

L(u, v) = N(u, v), (u, v) ∈ dom L.

Next we establish the existence results for BVP (.) in the following cases:

Case (i) γ = γ = , δη = δη = ;
Case (ii) (γ + η)δ = (γ + η)δ = .

Firstly, the main conclusions of Case (i) are given as follows.

Theorem . For Case (i), assume that the following conditions hold.

(H) If the functions f , g : [, ]×R
n →R satisfy the Carathéodary condition, and there exist

nonnegative functions ai, di, b, b, r, r ∈ Y and constant θ, θ ∈ [, ), i = , n – , for
∀(x, x, . . . , xn–) ∈R

n, t ∈ [, ], the following inequalities hold:

∣
∣f (t, x, x, x, . . . , xn–)

∣
∣ ≤

n–∑

i=

ai(t)|xi| + b(t)
n–∑

i=

|xi|θ + r(t),

∣
∣g(t, x, x, x, . . . , xn–)

∣
∣ ≤

n–∑

i=

di(t)|xi| + b(t)
n–∑

i=

|xi|θ +r(t).

(H) There exists a constant M >  such that for ∀t ∈ [, ], if |u(n–)(t)| > M and |v(n–)(t)| >
M, then QN(u, v) 	= (, ).

(H) There exists a constant M∗ >  such that for ∀c, c ∈R satisfying min{|c|, |c|} > M∗,
one has either

cN
(
ctn–) > , cN

(
ctn–) > ,

or

cN
(
ctn–) < , cN

(
ctn–) < .



Xue et al. Advances in Difference Equations  (2017) 2017:301 Page 6 of 18

(H) max{a
∑n–

i= ‖ai‖∞, a
∑n–

i= ‖ai‖∞ + a
∑n–

i= ‖di‖∞, a
∑n–

i= ‖di‖∞} < , where
a = 

�(α–n+) , a = 
�(β–n+) .

Then BVP (.) has at least one solution.

To prove the above theorem, we begin with the following lemmas.

Lemma . Let L be defined by (.), then

Ker L = (Ker L, Ker L) =
{

(u, v) ∈ X|(u, v) =
(
ctn–, ctn–), c, c ∈ R

}
,

Im L = (Im L, Im L) =
{

(x, y) ∈ Y |Tx = , Ty = 
}

,

where

Tx =
∫ 


( – s)α–nx(s) ds –

δ

α – n + 

∫ η


(η – s)α–n+x(s) ds,

Ty =
∫ 


( – s)β–ny(s) ds –

δ

β – n + 

∫ η


(η – s)β–n+y(s) ds.

Proof According to Lemma ., Lu = Dα
+u(t) =  has the solution

u(t) = c + ct + ct + · · · + cn–tn–, ci ∈R, i = , n – .

By the definition of dom L, we have ci = , i = , n – , thus

Ker L =
{

u ∈ X|u(t) = ctn–,∀t ∈ [, ], c ∈ R
}

.

For x ∈ Im L, there exists u ∈ dom L such that x = Lu ∈ Y . From Lemma ., we have

u(t) = Iα
+x(t) + c + ct + ct + · · · + cn–tn–.

Then by the definition of dom L we have ci = , i = , n – . Hence

u(t) = Iα
+x(t) + cn–tn–.

According to Lemma ., we obtain

u(n–)(t) = Iα–n+
+ x(t) + cn–(n – )!,

u(n–)(t) = Iα–n+
+ x(t) + cn–(n – )!t.

Taking into account the boundary condition u(n–)() = δu(n–)(η) and δη =  of Case (i),
we see that x satisfies

Tx =
∫ 


( – s)α–nx(s) ds –

δ

α – n + 

∫ η


(η – s)α–n+x(s) ds = .

On the other hand, assume that x ∈ Y satisfies the equation Tx = . Let u(t) = Iα
+x(t),

then u ∈ dom L. By Lemma ., we have Dα
+u(t) = x(t), so x ∈ Im L. Then we get

Im L = {x ∈ Y |Tx = }.
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Similarly, we have

Ker L =
{

v ∈ X|v(t) = ctn–,∀t ∈ [, ], c ∈R
}

,

Im L = {y ∈ Y |Ty = }.

Then, the proof is complete. �

Lemma . Let L be defined by (.), then L is a Fredholm operator of index zero. The
linear continuous projector operators P : X → X and Q : Y → Y can be defined as

P(u, v) = (Pu, Pv) =
(

u(n–)()
(n – )!

tn–,
v(n–)()
(n – )!

tn–
)

,

Q(x, y) = (Qx, Qy) =
(

α – n + 
 – ηα–n+

α–n+

Tx,
β – n + 

 – ηβ–n+

β–n+

Ty
)

,

and KP : Im L → dom L ∩ Ker P by

KP(x, y) =
(
Iα

+x(t), Iβ
+y(t)

)
.

Proof Obviously Im P = Ker L and P(u, v) = P(u, v). Since (u, v) = ((u, v) – P(u, v)) + P(u, v),
it is clear that X = Ker P + Ker L. By calculation, we get Ker L ∩ Ker P = {(, )}. Thus, we
obtain

X = Ker L ⊕ Ker P.

For every (u, v) ∈ X, we have

∥
∥P(u, v)

∥
∥

X ≤ max
{∣
∣u(n–)()

∣
∣,

∣
∣v(n–)()

∣
∣
}

. (.)

Taking (x, y) ∈ Y , one has

Q(x, y) = Q(Qx, Qy) =
(
Q

x, Q
y

)
.

By the definition of Q, we obtain

Q
 x = Qx · α – n + 

 – ηα–n+

α–n+

(∫ 


( – s)α–n ds –

δ

α – n + 

∫ η


(η – s)α–n+ ds

)

= Qx,

where for the denominator  – ηα–n+

α–n+ >  can be verified.
Similarly, Q

y = Qy. This gives Q(x, y) = Q(x, y). Let (x, y) = ((x, y) – Q(x, y)) + Q(x, y),
where (x, y) – Q(x, y) ∈ Ker Q = Im L, Q(x, y) ∈ Im Q. It follows from Ker Q = Im L and
Q(x, y) = Q(x, y) that Im Q ∩ Im L = {(, )}. Then, we have

Y = Im L ⊕ Im Q.

Thus

dim Ker L = dim Im Q = codim Im L.
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This means that L is a Fredholm operator of index zero.
Now we prove that KP is the inverse operator of L|dom L∩Ker P . By Lemma ., for (x, y) ∈

Im L, we obtain

LKP(x, y) =
(
Dα

+
(
Iα

+x
)
, Dβ

+
(
Iβ

+y
))

= (x, y).

Moreover, for (u, v) ∈ dom L ∩ Ker P, we have u(n–)() = v(n–)() = . Together with the
boundary condition, we get

KPL(u, v) =
(
Iα

+Dα
+u(t), Iβ

+Dβ
+v(t)

)
= (u, v).

To summarize, KP = (L|dom L∩Ker P)–.
Hence, for each (x, y) ∈ Im L, by the definition of ‖ · ‖X we have

∥
∥KP(x, y)

∥
∥

X ≤ max

{


�(α – n + )
‖x‖∞,


�(β – n + )

‖y‖∞

}

:= max
{

a‖x‖∞, a‖y‖∞
}

, (.)

where a = 
�(α–n+) , a = 

�(β–n+) . The proof is complete. �

The main proof of Theorem . is given by the following three steps.

Proof of Theorem .
Step  Let

	 =
{

(u, v) ∈ dom L\Ker L|L(u, v) = λN(u, v),λ ∈ (, )
}

.

For (u, v) ∈ 	, we have L(u, v) = λN(u, v) ∈ Im L = Ker Q, thus QN(u, v) = (, ), i.e.
QNv(t) = , QNu(t) = . From (H), we know there exists t, t ∈ (, ), such that
|v(n–)(t)| ≤ M and |u(n–)(t)| ≤ M. It is easy to check that ‖u‖X = ‖u(n–)‖∞,‖v‖X =
‖v(n–)‖∞ for all u ∈ dom L, v ∈ dom L. Again for (u, v) ∈ 	, then (I – P)(u, v) ∈ dom L ∩
Ker P and LP(u, v) = (, ). Hence, from (.), we get

∥
∥(I – P)(u, v)

∥
∥

X =
∥
∥KpL(I – P)(u, v)

∥
∥

X =
∥
∥KpL(u, v)

∥
∥

X =
∥
∥Kp(Lu, Lv)

∥
∥

X

≤ max
{

a‖Nv‖∞, a‖Nu‖∞
}

. (.)

By Lu = λNu and u ∈ dom L, we have

u(t) =
λ

�(α)

∫ t


(t – s)α–f

(
s, v(s), v′(s), . . . , v(n–)(s)

)
ds

– u() – u′()t – · · · –
u(n–)()
(n – )!

tn–.

Furthermore, we obtain

u(n–)(t) =
λ

�(α – n + )

∫ t


(t – s)α–nf

(
s, v(s), v′(s), . . . , v(n–)(s)

)
ds – u(n–)(),
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then substituting t = t into the above equation, we get

u(n–)(t) =
λ

�(α – n + )

∫ t


(t – s)α–nf

(
s, v(s), v′(s), . . . , v(n–)(s)

)
ds – u(n–)().

Together with |u(n–)(t)| ≤ M and (H), we get

∣
∣u(n–)()

∣
∣ ≤

∣
∣
∣
∣

λ

�(α – n + )

∫ t


(t – s)α–nf

(
s, v(s), v′(s), . . . , v(n–)(s)

)
ds

∣
∣
∣
∣ +

∣
∣u(n–)(t)

∣
∣

≤ 
�(α – n + )

∫ t


(t – s)α–n∣∣f

(
s, v(s), v′(s), . . . , v(n–)(s)

)∣
∣ds + M

≤ 
�(α – n + )

∫ t


(t – s)α–n

( n–∑

i=

ai(t)
∣
∣v(i)∣∣ + b(t)

n–∑

i=

∣
∣v(i)∣∣θ + r(t)

)

ds

+ M

≤ 
�(α – n + )

( n–∑

i=

‖ai‖∞
∥
∥v(i)∥∥∞ + ‖b‖∞

n–∑

i=

∥
∥v(i)∥∥θ

∞ + ‖r‖∞

)

×
∫ t


(t – s)α–n ds + M

≤ a

( n–∑

i=

‖ai‖∞
∥
∥v(i)∥∥∞ + ‖b‖∞

n–∑

i=

∥
∥v(i)∥∥θ

∞ + ‖r‖∞

)

+ M, (.)

where a = 
�(α–n+) . Similarly, we obtain

∣
∣v(n–)()

∣
∣ ≤ a

( n–∑

i=

‖di‖∞
∥
∥u(i)∥∥∞ + ‖b‖∞

n–∑

i=

∥
∥u(i)∥∥θ

∞ + ‖r‖∞

)

+ M, (.)

where a = 
�(β–n+) . Combined with (.) and (.), we get

∥
∥(u, v)

∥
∥

X =
∥
∥P(u, v) + (I – P)(u, v)

∥
∥

X

≤ ∥
∥P(u, v)

∥
∥

X +
∥
∥(I – P)(u, v)

∥
∥

X

≤ max
{∣
∣u(n–)()

∣
∣ + a‖Nv‖∞,

∣
∣u(n–)()

∣
∣ + a‖Nu‖∞,

∣
∣v(n–)()

∣
∣ + a‖Nv‖∞,

∣
∣v(n–)()

∣
∣ + a‖Nu‖∞

}
.

Next, we will prove this conclusion in four cases.
Case  ‖(u, v)‖X ≤ |u(n–)()| + a‖Nv‖∞.
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By (.) and (H), we get

∥
∥(u, v)

∥
∥

X ≤ ∣
∣u(n–)()

∣
∣ + a‖Nv‖∞

≤ a

( n–∑

i=

‖ai‖∞
∥
∥v(i)∥∥∞ + ‖b‖∞

n–∑

i=

∥
∥v(i)∥∥θ

∞ + ‖r‖∞

)

+ M

+ a
∥
∥f

(
t, v(t), v′(t), . . . , v(n–)(t)

)∥
∥∞

≤ a

( n–∑

i=

‖ai‖∞
∥
∥v(i)∥∥∞ + ‖b‖∞

n–∑

i=

∥
∥v(i)∥∥θ

∞ + ‖r‖∞

)

+ M

≤ a

( n–∑

i=

‖ai‖∞
∥
∥v(i)∥∥∞ + n‖b‖∞

∥
∥v(n–)∥∥θ

∞ + ‖r‖∞

)

+ M

≤ a

( n–∑

i=

‖ai‖∞‖v‖X + n‖b‖∞‖v‖θ
X + ‖r‖∞

)

+ M.

According to (H) and the definition of ‖(u, v)‖X , from the above inequality, we can derive
that ‖v‖X is bounded. Therefore 	 is bounded.

Case  ‖(u, v)‖X ≤ |v(n–)()| + a‖Nu‖∞. The proof is similar to Case . Here, we omit
it.

Case  ‖(u, v)‖X ≤ |u(n–)()| + a‖Nu‖∞.
From (.) and (H), we get

∥
∥(u, v)

∥
∥

X ≤ ∣
∣u(n–)()

∣
∣ + a‖Nu‖∞

≤ a

( n–∑

i=

‖ai‖∞
∥
∥v(i)∥∥∞ + ‖b‖∞

n–∑

i=

∥
∥v(i)∥∥θ

∞ + ‖r‖∞

)

+ M

+ a
∥
∥g

(
t, u(t), u′(t), . . . , u(n–)(t)

)∥
∥∞

≤ a

( n–∑

i=

‖ai‖∞
∥
∥v(i)∥∥∞ + ‖b‖∞

n–∑

i=

∥
∥v(i)∥∥θ

∞ + ‖r‖∞

)

+ M

+ a

( n–∑

i=

‖di‖∞
∥
∥u(i)∥∥∞ + ‖b‖∞

n–∑

i=

∥
∥u(i)∥∥θ

∞ + ‖r‖∞

)

≤ a

( n–∑

i=

‖ai‖∞
∥
∥v(n–)∥∥∞ + n‖b‖∞

∥
∥v(n–)∥∥θ

∞ + ‖r‖∞

)

+ M

+ a

( n–∑

i=

‖di‖∞
∥
∥u(n–)∥∥∞ + n‖b‖∞

∥
∥u(n–)∥∥θ

∞ + ‖r‖∞

)

= a

( n–∑

i=

‖ai‖∞‖v‖X + n‖b‖∞‖v‖θ
X + ‖r‖∞

)

+ a

( n–∑

i=

‖di‖∞‖u‖X + n‖b‖∞‖u‖θ
X + ‖r‖∞

)

+ M.
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By (H), from the above inequality, we see that ‖(u, v)‖X is bounded. Therefore 	 is
bounded.

Case  ‖(u, v)‖X ≤ |v(n–)()| + a‖Nv‖∞. The proof is similar to Case . Here, we omit
it.

According to the above arguments, we prove that 	 is bounded.
Step  Let

	 =
{

(u, v)|(u, v) ∈ Ker L, N(u, v) ∈ Im L
}

.

For (u, v) ∈ 	, we have (u, v) = (ctn–, ctn–), c, c ∈ R. In view of N(u, v) = (Nv, Nu) ∈
Im L = Ker Q, we have QN(u, v) = (, ), then QNv(t) = , QNu(t) = . Together with
(H), there exist t, t ∈ (, ) such that |v(n–)(t)| ≤ M, |u(n–)(t)| ≤ M, which imply |ci| ≤

M
(n–)! , i = , . Thus, we get

∥
∥(u, v)

∥
∥

X ≤ M.

Hence, 	 is bounded.
Step  Let

	 =
{

(u, v) ∈ Ker L|λ(u, v) + ( – λ)QN(u, v) = (, ),λ ∈ [, ]
}

,

for (u, v) ∈ 	, we get (u, v) = (ctn–, ctn–), c, c ∈R, and

λctn– + ( – λ)QN(v) = ,

λctn– + ( – λ)QN(u) = ,

that is to say,

–λc
tn– = ( – λ)cQN(v)

= ( – λ)c
α – n + 

 – ηα–n+

α–n+

(∫ 


( – s)α–nf

(
s, csn–, c(n – )sn–, . . . , c(n – )!

)
ds

–
δ

α – n + 

∫ η


(η – s)α–n+f

(
s, csn–, c(n – )sn–, . . . , c(n – )!

)
ds

)

,

–λc
tn– = ( – λ)cQN(u)

= ( – λ)c
β – n + 

 – ηβ–n+

β–n+

(∫ 


( – s)β–ng

(
s, csn–, c(n – )sn–, . . . , c(n – )!

)
ds

–
δ

β – n + 

∫ η


(η – s)α–n+g

(
s, csn–, c(n – )sn–, . . . , c(n – )!

)
ds

)

.

If λ = , then QN(v) = QN(u) = , together with (H), we have |u(n–)(t)| ≤ M,
|v(n–)(t)| ≤ M, which imply |ci| ≤ M

(n–)! , i = , . If λ ∈ (, ], then |ci| ≤ M
(n–)! , i = , . Oth-

erwise, if |ci| > M
(n–)! , i = , , in view of the first part of (H), the left of the above two

equations is less than , while the right is greater than , which is apparently contradic-
tory. Thus, 	 is bounded.
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Let 	 is a bounded open set of X, such that
⋃

i= 	i ⊂ 	. It follows from Lemma . that
L is a Fredholm operator of index zero. Based on the Arzela-Ascoli theorem, we obtain
the result that N is L-compact on 	. By Step  and Step , we see that the following two
conditions hold:

(a) L(u, v) 	= λN(u, v), ((u, v),λ) ∈ [(domL\Ker L) ∩ ∂	] × (, ),
(a) Nx /∈ Im L, (u, v) ∈ Ker L ∩ ∂	.

Let

H
(
(u, v),λ

)
= λ(u, v) + ( – λ)QN(u, v).

According to Step , we get H((u, v),λ) 	=  for (u, v) ∈ Ker L ∩ ∂	. Therefore,

deg
(
QN |KerL,	 ∩ Ker L, (, )

)
= deg

(
H(·, ),	 ∩ Ker L, (, )

)

= deg
(
H(·, ),	 ∩ Ker L, (, )

)

= deg
(
I,	 ∩ Ker L, (, )

)

	= .

Hence, the condition (a) of Theorem . is satisfied. By Theorem ., we see that L(u, v) =
N(u, v) has at least one set of fixed points in dom L ∩ 	, so BVP (.) has at least one set of
solutions. The proof is complete. �

Remark . If the second part of (H) is satisfied, then the set

	′
 =

{
(u, v) ∈ Ker L|–λ(u, v) + ( – λ)QN(u, v) = (, ),λ ∈ [, ]

}

is bounded.

Now we consider BVP (.) in the Case (ii); the main conclusion is given as follows.

Theorem . For Case (ii), assume that the following conditions hold.

(H)′ If the functions f , g ∈ [, ]×R
n → R satisfy the Carathéodary condition, and there ex-

ist nonnegative functions ai, di, b, b, r, r ∈ Y and constant θ, θ ∈ [, ), i = , n – ,
for ∀(x, x, . . . , xn–) ∈R

n , t ∈ [, ], the following inequalities hold:

∣
∣f (t, x, x, . . . , xn–)

∣
∣ ≤

n–∑

i=

ai(t)|xi| + b(t)
n–∑

i=

|xi|θ + r(t),

|g(t, x, x, . . . , xn–)| ≤
n–∑

i=

di(t)|xi| + b(t)
n–∑

i=

|xi|θ + r(t).

(H)′ There exists a constant M > , such that, for ∀t ∈ [, ], if |u(n–)(t)| > M and
|v(n–)(t)| > M, then QN(u, v) 	= (, ).
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(H)′ There exists a constant M∗ >  such that, for every c, c ∈R satisfying min{|c|, |c|} >
M∗, one has either

cN(c(tn– + (n – )γtn–)) > , cN(c(tn– + (n – )γtn–)) > ,

or

cN(c(tn– + (n – )γtn–)) < , cN(c(tn– + (n – )γtn–)) < .

(H)′

max

{

( + nγ)a

n–∑

i=

‖ai‖∞,
(
 + (n – )γ

)
a

n–∑

i=

‖ai‖∞ + ( + γ)a

n–∑

i=

‖di‖∞,

( + γ)a

n–∑

i=

‖ai‖∞ +
(
 + (n – )γ

)
a

n–∑

i=

‖di‖∞, ( + nγ)a

n–∑

i=

‖di‖∞

}

< ,

where a = 
�(α–n+) , a = 

�(β–n+) .

Then BVP (.) has at least one solution.
To prove the above theorem, we have the following lemma, whose proof is similar to

that of Lemma ., Lemma . and is omitted.

Lemma . Let L be defined by (.), then

Ker L = (Ker L, Ker L)

=
{

(u, v) ∈ X|(u, v) =
(
c

(
tn– + (n – )γtn–), c

(
tn– + (n – )γtn–)),

c, c ∈R
}

,

Im L = (Im L, Im L) =
{

(x, y) ∈ Ȳ |Tx = , Ty = 
}

,

where

Tx =
∫ 


( – s)α–nx(s) ds –

δ

α – n + 

∫ η


(η – s)α–n+x(s) ds

– γδ

∫ ξ


(ξ – s)α–nx(s) ds,

Ty =
∫ 


( – s)β–ny(s) ds –

δ

β – n + 

∫ η


(η – s)β–n+y(s) ds

– γδ

∫ ξ


(ξ – s)β–ny(s) ds.

For ∀t ∈ [, ], the linear continuous projector operators P : X → X and Q : Y → Y can be
defined as

P(u, v) = (Pu, Pv) =
(

u(n–)()
(n – )!

(
tn– + (n – )γtn–),

v(n–)()
(n – )!

(
tn– + (n – )γtn–)

)

,

Q(x, y) = (Qx, Qy) = (�Tx,�Ty),
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where

� =
α – n + 

 – δ
α–n+ηα–n+

 – γδξ
α–n+


, � =
β – n + 

 – δ
β–n+η

β–n+
 – γδξ

β–n+


.

Define the operator KP : Im L → dom L ∩ Ker P as

KP(x, y) =
(


�(α)

∫ t


(t – s)α–x(s) ds +

γtn–

(n – )!�(α – n + )

∫ ξ


(ξ – s)α–nx(s) ds,


�(β)

∫ t


(t – s)β–y(s) ds +

γtn–

(n – )!�(β – n + )

∫ ξ


(ξ – s)β–ny(s) ds

)

.

Next, we give the proof of Theorem . (similar to Theorem .).

Proof Firstly, it will be proved that the set

	 =
{

(u, v) ∈ dom L\Ker L|L(u, v) = λN(u, v),λ ∈ (, )
}

is bounded. If (u, v) ∈ 	, similar to Step  in the proof of Theorem ., we get

∣
∣u(n–)()

∣
∣ ≤ a

( n–∑

i=

‖ai‖∞
∥
∥v(i)∥∥∞ + ‖b‖∞

n–∑

i=

∥
∥v(i)∥∥θ

∞+‖r‖∞

)

+ M, (.)

where a = 
�(α–n+) , and

∣
∣v(n–)()

∣
∣ ≤ a

( n–∑

i=

‖di‖∞
∥
∥u(i)∥∥∞ + ‖b‖∞

n–∑

i=

∥
∥u(i)∥∥θ

∞+‖r‖∞

)

+ M, (.)

where a = 
�(β–n+) .

So

∥
∥P(u, v)

∥
∥

X ≤ max
{(

 + (n – )γ
)∣
∣u(n–)()

∣
∣,

(
 + (n – )γ

)∣
∣v(n–)()

∣
∣
}

. (.)

On the other hand, for (x, y) ∈ Im L, by the definition of ‖ · ‖X and KP , it is easy to see that

∥
∥KP(x, y)

∥
∥

X ≤ max
{

( + γ)a‖x‖∞, ( + γ)a‖y‖∞
}

. (.)

Hence,

∥
∥(I – P)(u, v)

∥
∥

X =
∥
∥KPL(I – P)(u, v)

∥
∥

X =
∥
∥KPL(u, v)

∥
∥

X =
∥
∥KP(Lu, Lv)

∥
∥

X

≤ max
{

( + γ)a‖Nv‖∞, ( + γ)a‖Nu‖∞
}

. (.)
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Thus,

∥
∥(u, v)

∥
∥

X =
∥
∥P(u, v) + (I – P)(u, v)

∥
∥

X

≤ ∥
∥P(u, v)

∥
∥

X +
∥
∥(I – P)(u, v)

∥
∥

X

≤ max
{(

 + (n – )γ
)∣
∣u(n–)()

∣
∣ + ( + γ)a‖Nv‖∞,

(
 + (n – )γ

)∣
∣u(n–)()

∣
∣ + ( + γ)a‖Nu‖∞,

(
 + (n – )γ

)∣
∣v(n–)()

∣
∣ + ( + γ)a‖Nv‖∞,

(
 + (n – )γ

)∣
∣v(n–)()

∣
∣ + ( + γ)a‖Nu‖∞

}
.

Next we will prove this conclusion in four cases.
Case ′ ‖(u, v)‖X ≤ ( + (n – )γ)|u(n–)()| + ( + γ)a‖Nv‖∞. By (.) and (H)′, we get

∥
∥(u, v)

∥
∥

X ≤ (
 + (n – )γ

)
a

( n–∑

i=

‖ai‖∞
∥
∥v(i)∥∥∞ + ‖b‖∞

n–∑

i=

∥
∥v(i)∥∥θ

∞ + ‖r‖∞

)

+
(
 + (n – )γ

)
M + ( + γ)a

∥
∥f

(
t, v(t), v′(t), . . . , v(n–)(t)

)∥
∥∞

≤ ( + nγ)a

( n–∑

i=

‖ai‖∞
∥
∥v(i)∥∥∞ + ‖b‖∞

n–∑

i=

∥
∥v(i)∥∥θ

∞+‖r‖∞

)

+
(
 + (n – )γ

)
M

≤ ( + nγ)a

( n–∑

i=

‖ai‖∞
∥
∥v(n–)∥∥∞ + n‖b‖∞

∥
∥v(n–)∥∥θ

∞ + ‖r‖∞

)

+
(
 + (n – )γ

)
M

= ( + nγ)a

( n–∑

i=

‖ai‖∞‖v‖X + n‖b‖∞‖v‖θ∞ + ‖r‖∞

)

+
(
 + (n – )γ

)
M.

According to (H)′ and the definition of ‖(u, v)‖X , we see that ‖v‖X is bounded, therefore
	 is bounded.

Case ′ ‖(u, v)‖X ≤ |v(n–)()| + a‖Nu‖∞. The proof is similar to Case ′. Here, we omit
it.

Case ′ ‖(u, v)‖X ≤ |u(n–)()| + a‖Nu‖∞. By (.) and (H)′, we get

∥
∥(u, v)

∥
∥

X ≤ ∣
∣u(n–)()

∣
∣ + a‖Nu‖∞

≤ a

( n–∑

i=

‖ai‖∞
∥
∥v(i)∥∥∞ + ‖b‖∞

n–∑

i=

∥
∥v(i)∥∥θ

∞ + ‖r‖∞

)

+ M

+ a
∥
∥g

(
t, u(t), u′(t), . . . , u(n–)(t)

)∥
∥∞

≤ a

( n–∑

i=

‖ai‖∞
∥
∥v(i)∥∥∞ + ‖b‖∞

n–∑

i=

∥
∥v(i)∥∥θ

∞ + ‖r‖∞

)

+ M

+ a

( n–∑

i=

‖di‖∞
∥
∥u(i)∥∥∞ + ‖b‖∞

n–∑

i=

∥
∥u(i)∥∥θ

∞ + ‖r‖∞

)
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≤ a

( n–∑

i=

‖ai‖∞
∥
∥v(n–)∥∥∞ + n‖b‖∞

∥
∥v(n–)∥∥θ

∞ + ‖r‖∞

)

+ M

+ a

( n–∑

i=

‖di‖∞
∥
∥u(n–)∥∥∞ + n‖b‖∞

∥
∥u(n–)∥∥θ

∞ + ‖r‖∞

)

= a

( n–∑

i=

‖ai‖∞‖v‖X + n‖b‖∞‖v‖θ
X + ‖r‖∞

)

+ a

( n–∑

i=

‖di‖∞‖u‖X + n|b‖∞‖u‖θ
X + ‖r‖∞

)

+ M.

By (H)′, we get ‖(u, v)‖X is bounded, therefore 	 is bounded.
Case ′ ‖(u, v)‖X ≤ |v(n–)()| + a‖Nv‖∞. The proof is similar to Case ′. Here, we omit

it.
In summary, we proved that 	 is bounded. The remainder of the proof is just similar

to the proof of Theorem . and is omitted. �

4 Example
Example . Consider the following BVP:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

D.
+ u(t) = f (t, v, v′, v′′, v′′′),  < t < ,

D.
+ v(t) = g(t, u, u′, u′′, u′′′),  < t < ,

u() = u′() = u′′() = , u′′′() = u′′( 
 ),

v() = v′() = v′′() = , v′′′() = v′′( 
 ),

(.)

where α = ., β = ., f (t, x, x, x, x) = x cos t+x sin t+x
 + x

 + sin(xx + tx), g(t, y, y,
y, y) = t

 + y sin t
 + y cos t

 + y+y
 , it is easily figured out that γ = γ = , δ = , δ = ,

η = 
 , η = 

 , satisfy the condition of Case (i), ‖a‖∞ = ‖a‖∞ = ‖a‖∞ = 
 , ‖a‖∞ = 

 ,
‖d‖∞ = 

 , ‖d‖∞ = 
 , ‖d‖∞ = ‖d‖∞ = 

 , ‖b‖∞ = ‖b‖∞ = , ‖r‖∞ = , ‖r‖∞ = 
 ,

θ = θ = , M = , M∗ = ,  < t < , it is easy to verify that the conditions satisfy all
assumptions of Theorem .. Hence, BVP (.) has at least one set of solutions.

Example . Consider the BVP:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

D.
+ u(t) = f (t, v, v′, v′′, v′′′),  < t < ,

D.
+ v(t) = g(t, u, u′, u′′, u′′′),  < t < ,

u() = u′() = , u′′() = u′′′( 
 ), u′′′() = 

 u′′( 
 ),

v() = v′() = , v′′() = v′′′( 
 ), v′′′() = 

 v′′( 
 ),

(.)

where α = ., β = ., f (t, x, x, x, x) = x sin t+x cos t+x
 + x

 + cos(x + tx), g(t, y, y,
y, y) = t

 + y sin(t+)
 + y cos(t+)

 + y+y
 , it is easily figured out that γ = , γ = , δ = 

 ,
δ = 

 , η = 
 , η = 

 satisfy the condition of Case (ii), ‖a‖∞ = ‖a‖∞ = ‖a‖∞ = 
 ,

‖a‖∞ = 
 , ‖d‖∞ = 

 , ‖d‖∞ = 
 , ‖d‖∞ = ‖d‖∞ = 

 , ‖b‖∞ = ‖b‖∞ = , ‖r‖∞ = ,
‖r‖∞ = 

 , θ = θ = , M = , M∗ = ,  < t < , it is easy to verify that the conditions
satisfy all assumptions of Theorem .. Hence, BVP (.) has at least one set of solutions.
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