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Abstract

This paper focuses on the existence of solutions for a higher-order coupled system of
fractional differential equations with Sturm-Liouville boundary value conditions at
resonance. By applying Mawhin continuation theorem, some new existence results
are established. Furthermore, two examples are supplied to demonstrate the main
results.
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1 Introduction

In the last two decades, fractional differential equations have been widely used in var-
ious fields of science, engineering and mathematics (see [1-7]). Based on the extensive
application of fractional differential equations, it is of great theoretical and practical sig-
nificance to study the boundary value problems (BVPs for short) of fractional differential
equations. Accordingly, the research of fractional BVPs has been paid attention to by many
scholars. At present, there have been many studies on various BVPs of fractional differ-
ential equations, for example, periodic BVPs (see [8-10]), anti-periodic BVPs (see [11,
12]), Dirichlet BVPs (see [13, 14]), multi-point BVPs (see [15-17]), impulsive BVPs (see
[18]), Sturm-Liouville BVPs (see [19-22]), etc. Among them, as a classical non-resonance
boundary value condition, the integer order Sturm-Liouville BVPs have been studied for a
long time. By comparison, the study of fractional Sturm-Liouville BVPs is still a new field.
In [23], Zhao considered the following fractional Sturm-Liouville BVP:

Dg u(t)+f(tu()=0, 0<t<l,
w(0)-pu€)=0,  u'@Q)+yun)=0,

where 1 < o <2, D§, is the Caputo fractional derivative, 0 <& <n <1, 0<8,y <1,

f:10,1] x R* — R* is continuous. On the basis of fixed point theorems and successive
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iteration method, the existence of positive solutions was obtained. On this foundation, Liu
[24] studied such problems further by applying the Avery-Peterson fixed point theorem.

Zhao [25] studied the existence of at least two positive solutions by the fixed point the-
orem in the cone of strict-set-contraction operators for the following BVP:

Di u()+f(t,uu,...,.u"?)=0, 0<t<l,
u(0) =/ (0)=---=u"3(0) = 0,
au"2(0) - BuD(0) = 0, yu2@) + su"V(1) =0,

where n —1<q <mn, Dg+ is the Caputo fractional derivative, n > 2, @, 8, y and § are non-
negative constants. Due to the widespread use of coupled system in the applications (see
[26-28]), it is important to study a coupled system of fractional differential equations and
some important results have been presented (see [29—-32]). Zhang and Bai [33] studied the
following equations:

D&, u(t) = f(t,v(t), D5 v(t)), 0<t<1,
Db v(t) = g(t,ut), D% ult)), 0<t<l,
u(0) =v(0) = 0, u(1) = oru(m), V(1) = o2v(n2),

where Df,, Dg+ are Riemann-Liouville fractional derivatives, 1 <, 8 <2, 0 < 1,12 < 1,
01,02 > 0, f,g:[0,1] x R? — R are continuous. The sufficient conditions for the exis-
tence of solutions of coupled fractional differential equations are obtained by applying the
Mawhin continuation theorem.

Recently, there have appeared some papers dealing with the existence of solutions for a
coupled system of higher-order fractional differential equations (see [34—38]). However,
there are few results concerning a higher-order coupled system of fractional differential
equations with Sturm-Liouville boundary value conditions at resonance. Motivated by the
above mentioned discussion, we consider the following BVP:

D, u(t) = f(t,v(t),V (t),...,v"V(2)),

D (t) = g(t,u(t), ' (¢), ..., u" (),
w(0)=u'(0)=---=u"(0)=0,

v(0) =v/(0) = --- = v"3(0) = 0,

u2(0) = yu" V&),  u" V() =8u"2 (),
V1=2(0) = (&), V=D(1) = 8,2 (i),

(11)

where 0<t<l,n-1<a,f <n n>2,Df, DgJr are Caputo fractional derivatives, f, g :
[0,1] x R" — R are continuous, yi,¥»,81,82 > 0, 0 < &,&, 11,12 < 1. Equation (1.1) is a
Sturm-Liouville semi-homogeneous BVP.

The major contributions given in this paper have some new features. Firstly, the frac-
tional differential equation established by us is a higher-order coupled system which is
more difficult to construct than a projection operator. In comparison with the previous
literature, the system is more general. Secondly, we also observe that few scholars have
ever considered the higher-order coupled system of fractional differential equations with
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Sturm-Liouville boundary value conditions at resonance before. So our results serve as a
further development for previous findings in this sense. In addition, we can also use the
method of this paper to discuss the following BVP, which is similar to (1.1):

D2, u(t) = f(£,v(t),V(t), ..., V" D(t)),

DS w(t) = gt, u(®), w (2), ..., u" D (t)),

w(0)=u'(0) =--- =u"3(0) =0,

v(0)=v'(0) = --- =v"3(0) = 0,

u" A1) = nu" V&),  u"(0) = 8,u" D (m),
V=2)(1) = 10 (Ey), WD(0) = 8,92 ().

2 Preliminaries

In order to facilitate understanding, we introduce the concepts and lemmas of fractional
derivatives and integrals related to this paper, and more details can be found in the recent
literature (see [39—41]).

Definition 2.1 ([39]) Let X, Y be real Banach spaces, and L : domL C X — Y be a
linear map. If dimKerLZ = codimImLZ < +0co and ImL is a closed subset in Y, then the
map L is a Fredholm operator with index zero. If there exists the continuous projections
P:X — X and Q:Y — Y satisfying ImP = KerZ and Ker Q = ImL, then L|gomrrKerp :
dom L N Ker P — ImL is reversible. We denote the inverse of this map by Kp, i.e. Kp = L;l
and Kp g = Kp(I - Q). If Q is an open bounded subset of X and domL N Q # &, then the
map N is L-compact on 2 when QN : Q — Y is bounded and Kp(/ - Q)N : Q — X is
compact.

Theorem 2.1 ([39]) Let L be a Fredholm operator of index zero and N be L-compact on
Q. Assume that the following conditions are satisfied:

(a1) Lx # ANx for any (x,A) € [(domL \ KerL) N d2] x (0,1);
(a2) Nx ¢ImL for any x € KerL N 9<;
(dg) deg(QN|KerLr QN KerL, 0) 7!0

Then the equation Lx = Nx has at least one solution in domL N Q.

Definition 2.2 ([40]) The Riemann-Liouville fractional integral of order « (« > 0) for the
function x : (0, +00) — R is defined as

1 t
I§ox(t) = — / (t — )" x(s) ds,
0 () Jo
provided that the right-hand side integral is defined on (0, +00).

Definition 2.3 ([41]) The Caputo fractional integral of order « (@ > 0) for the function
x:(0,+00) — R is defined as

d"x(t)
dt”

1 ! n—o—. n
“Df,x(8) = 15" = m/o (t—9)"*"x")(s)ds,

where 7 = [«] + 1, provided that the right-hand side integral is defined on (0, +00).
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Lemma 2.1 ([41]) Let n—1<a <n, if D&, x(t) € C[0,1], then

I8, D x(t) = x(t) + co + c1t + cot? + -+ + ¢, 1",
wherec; € R,i=0,1,...,n-1,n=[a] +1.

Lemma 2.2 ([41]) If n -1 < a < n, then the fractional differential D x(t) = 0 has the
following form:

x(t) =co + 1t + ot + -+ cyg ',

wherec; € R,i=0,1,...,n-1,n=[a] +1.

Lemma 2.3 ([41]) Let x(¢) € C[0,1], a > 0, then
€D IS x(t) = x(t).

Lemma 2.4 ([41]) Leta > 8 > 0, then for any x € C[0,1] N L}[0,1],
Dy I3, x(0) = I, P x().

Lemma 2.5 ([41]) Let x(¢t) € L[0,1], @, B > 0, then

1818 x(t) = ISP x(2).

3 Main result
In order to prove the solvability of BVP (1.1), some notations are introduced.

In this paper, we define X = C"1[0,1] with the norm |x|lx = max{||*|ls, % [lcs---»
x|} and Y = C[0,1] with the norm [|y]ly = [|¥]loo, Where [|x[loo = max;c(o, [x()]. It
is clear that (X, || - ||x) and (Y, || - |ly) are Banach space. Furthermore, we consider Banach
space X = X x X with the norm ||(«, v) || = max{||u||x, |Vl x} and Y = ¥ x Y with the norm

(e 9) 1l = max{[lxlly, [ylly}-
Define the linear operator L; : domL; C X — Y as

Liu=Dj,u,
where
domZL; = {u € X|Dg,u(t) € Y, u(0) = u/(0) = --- = u"3(0) = 0,

1" 2(0) = "D (&), u"D (1) = 81" ) ).

Define the linear operator L, :domL, C X — Y as

Ly = D§+V,
where
domL, = {ve X|Dh,v(t) € Y,v(0) =V (0) = --- =" ¥(0) = 0,

W2(0) =y (&), V() = 80" P () }.
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Define the operator L:domL C X — Y as
L(u,v) = (Liu, Lyv), (3.1)
where dom L = {(u,v) € X|u € domL,,v € dom L,}, and we define N : X — Y by setting
N(u,v) = (N1v, Nau),
where Nj : Y — X is defined as
Niv(t) = f (&, v(®), V(). V" (),
and N, : Y — X is defined as
Nou(t) = g(t, u(t), ' (¢),...,u" V().
Then BVP (1.1) is equivalent to the following operator equation:
L(u,v) =N(u,v), (u,v)edomlL.

Next we establish the existence results for BVP (1.1) in the following cases:

Case (i) y1=92=0,8m =8 =1;
Case (i) (Y1 +11)81= (2 +12)82 =1

Firstly, the main conclusions of Case (i) are given as follows.

Theorem 3.1 For Case (i), assume that the following conditions hold.

(Hy) Ifthefunctionsf,g:[0,1] x R" — R satisfy the Carathéodary condition, and there exist
nonnegative functions a;, d;, b1, by, 11,1, € Y and constant 01,0, € [0,1),i=0,n -1, for
Y(x0,%1,...,%,-1) € R”, t € [0,1], the following inequalities hold:

n-1 n-1

[ (& %0, 20, %2, ., 20 0)| <D @@l + 1) Y xl™ + 11 (0),
i=0 i=0
n-1

n-1
(6,0, %1, %, ., %0 0)| < D di@lil + ba(6) Y il 41 (8).
i=0 i=0

(Hy) There exists a constant M > 0 such that for ¥t € [0,1], if [u”" V()| > M and V"V (t)| >
M, then QN(u,v) #(0,0).

(H3) There exists a constant M* > 0 such that for Vcy, ¢p € R satisfying min{|c;|, |c2|} > M*,
one has either

ClNl (Cztn_l) >0, CzNz(Cltn_l) >0,
or

ClNl (Cgtn_l) <0, CgNz(Cltn_l) <0.
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-1 -1 -1 -1
(Ha) max{2a; 3710 llailloor a1 2550 ailloo + @23 0 dilloos 22 30 dilloo} < 1, where
a) =

a) =

1 1
Ia-n+2)’ r(B-n+2)*

Then BVP (1.1) has at least one solution.
To prove the above theorem, we begin with the following lemmas.
Lemma 3.1 Let L be defined by (3.1), then

KerL = (KerL;,KerL,) = {(u, v) € X|(u,v) = (clt”_l,czt”‘l),cl,cz € R},

ImL = (ImLy,ImLy) = {(x,y) € Y|T1x = 0, Toy = 0},

where

1 8 m
Tix = / 1 —=35)*"x(s)ds — 7/ (m =) x(s) ds,
0 0

a—-n+1

2

1
Toy = /0 A -s)f"y(s)ds - (2 — )" " y(s) ds.

82
B-n+1Jy
Proof According to Lemma 2.2, Lju = D§, u(t) = 0 has the solution

ul)=co+crt+ct’ +--+cyqt"t, ceRi=0,n-1
By the definition of dom Ly, we have ¢; = 0, i = 0, n — 2, thus
KerL; = {u € X|u(t) = cit" ', ¥t € [0,1],¢c; € R}.
For x € Im L,, there exists ¥ € domL; such that x = L ju € Y. From Lemma 2.1, we have
u(t) =I5, x(t) + co + c1t + Cot? + -+ ¢ L
Then by the definition of dom L; we have ¢; = 0,i = 0,7 — 2. Hence
u(t) = I, x(t) + Cpt" L.
According to Lemma 2.4, we obtain

u" D (t) = 137" x(t) + cpa (n - 1)),

u"2(t) = 127" 2x(t) + cpa (n = 1)t

Taking into account the boundary condition "~V (1) = 8,4~ (1;) and 8,7, = 1 of Case (i),
we see that x satisfies

1 5 m
Tix = / 1-5)"x(s)ds — 71/ (m = )" x(s) ds = 0.
0 a—-n+1lJy

On the other hand, assume that x € Y satisfies the equation T1x = 0. Let u(t) = I§, x(t),
then u € dom L;. By Lemma 2.3, we have D, u(t) = x(t), so x € ImL;. Then we get

ImL; = {x € Y|T1x = 0}.
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Similarly, we have

KerL, = {V e Xv(t) = crt" L,V € [0,1],¢; € R},

ImL, ={ye Y|T,y=0}.
Then, the proof is complete. 0

Lemma 3.2 Let L be defined by (3.1), then L is a Fredholm operator of index zero. The
linear continuous projector operators P: X — X and Q:Y — Y can be defined as

u(n—l)(o) tn—l V(n—l)(o) tn—l) ,

P(u,v) = (Pru, Prv) = ( (n—1)! " (m-1)

a—-n+l B-n+1
Q(x’y) = (ler QZy) = e Tix, ! sz ’

a—n+2 T B-n+2

and Kp : ImL — dom L N Ker P by

Kp(x,y) = (I, %(2), Ig+y(t)).

Proof Obviously ImP = Ker L and P(u,v) = P(u,v). Since (u,v) = (4, v) — P(u,v)) + P(u, v),
it is clear that X = Ker P + Ker L. By calculation, we get Ker L N Ker P = {(0,0)}. Thus, we
obtain

X =KerL & KerP.
For every (u,v) € X, we have
1P, v) | < max{|u”(0)], p"(0)|}. (3.2)
Taking (x,y) € Y, one has
Q'(x,3) = QUQux, Qy) = (Q1*x Q).

By the definition of Q;, we obtain

a-n+1l 1 8 n
Qx=Qx ——— (/ (1-s)"ds— ——— / (m —s)*"* dS) = Qux,
1 m 0 0

a—-—n+1
—n+2

. a-n+l .
where for the denominator 1 — —— > 0 can be verified.

Similarly, Q3y = Q,y. This gives Q*(x,y) = Q(x,7). Let (x,9) = ((x,5) — Q(x,9)) + Q(x,),
where (x,y) — Q(x,y) € KerQ = ImL, Q(x,y) € ImQ. It follows from KerQ = ImL and
Q*(x,9) = Q(x,y) that InQ N ImL = {(0,0)}. Then, we have

Y=ImL®ImQ.
Thus

dimKerL = dimIm Q = codimIm L.
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This means that L is a Fredholm operator of index zero.
Now we prove that Kp is the inverse operator of L|gomrrkerp- By Lemma 2.3, for (x,y) €
Im L, we obtain

LI(P(x’y) = (Dg+ (Ig+x)’Dg+ (Ig+y)) = (x,y)

Moreover, for (u,v) € dom L N Ker P, we have #"~Y(0) = v"*-Y(0) = 0. Together with the
boundary condition, we get

KpL(u,v) = (I2 D%, u(t), I, Df v(t)) = (u,v).

To summarize, I<P = (L|domLﬁKerP)7l'
Hence, for each (x,y) € Im L, by the definition of | - || we have

1Kp(x,9) |5 < maX{ 11| s

1
m”)’”w}
= max{ar %]l oo 2217110} (3.3)

1
IMNoa-—n+2)

where a; = 3 The proof is complete. O

1 g =1
T(a-n+2)’ %2 = T(B-n+2

The main proof of Theorem 3.1 is given by the following three steps.

Proof of Theorem 3.1
Step 1 Let

Q= {(u, v) € dom L\ KerL|L(u,v) = AN(u,v), A € (0,1)}.

For (u,v) € @1, we have L(u,v) = AN(u,v) € ImL = KerQ, thus QN(u,v) = (0,0), ie.
QiNv(t) = 0, QaNou(t) = 0. From (H;), we know there exists £y,% € (0,1), such that
W D(te)] < M and |u" V()| < M. It is easy to check that [u|lx = 4", [Vx =
[V« for all u € dom Ly, v € dom L,. Again for (u,v) € Q, then (I — P)(u,v) € domL N
Ker P and LP(u,v) = (0,0). Hence, from (3.3), we get

=Pt g = 1,200~ P = oL = [ Ko Lo

< max{a INi Yl oo, @2 IN> 1 }. (3.4)

By Liu = AN1u and u € dom L, we have

u(t) = ﬁ /0 t =9 (5,9(8),V(5),..., V" (s)) ds

u(n—l) (0) tn—l'

—u(0) -/ (0)t—--- - =)

Furthermore, we obtain

u" () = . +1) /ot (t—5)*7"f (s, v(8), V() ..., V(”‘l)(s)) ds — u"(0),

INa-n
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then substituting ¢ = ; into the above equation, we get

u" V() = ﬁ /0 ‘@ — )7 (5,1(8),V(8), ..., V" (s)) ds — u"D(0).

Together with | D (8)| <M and (H;), we get

" 0(0)] < + |V (8)]

A a , -
Ta—n+D /0 (- s)“‘”f(s, w(s), V' (s), ..., V" l)(s)) ds

1 i o—n ] n—
5m/0 t =9 |f (s, v(5),V(5),...,v" V(s)) | ds + M

1 31 n-1 ‘ nl .
[ _q)en , () i) |71
SF(a—n+1)/0 (t1—s) (;al(tﬂv |+b1(t)§|v "+ n(e) | ds

+M
1 n-1 ) n-1 -
P (ZO lailoo [V + 1611 ZO [Vl + ||r1||oo>

n
X / (t—5)"ds+M
0

Page 9 of 18

n-1 n-1
<a (Z lailloo |99 + b1l D V22 + ||r1||oo> +M, (3.5)
i=0 i=0

where a; = m Similarly, we obtain
n-1 n-1 ”
WD) <@ Y ldilloo || + 152Nl Y |62 + Iralloo | + M, (3.6)
o0 o0
i=0 i=0
where a, = m Combined with (3.2) and (3.4), we get

| @z = [P0 v) + (0= Py
[P )5+ [Py

max{ |u(”’1)(0)| + a1 |IN1V| o {M(’H)(O)| + as || Natt]| o

IA

IA

[P (0)] + a1 [IN1V ]l o

V1 D(0)] + a2 ||No | o, }-

Next, we will prove this conclusion in four cases.

Case 1 ||(u,v)lIx < 4" D(0)] + a1 | N1V o
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By (3.5) and (H;), we get

[ v) |5 < [6"7P(0)| + a1 I N1Vl

n-1 n-1
<m (Z lailloo |V o+ Balloe Y V@2 + ||r1||oo) +M
j= i=0

+a1|Lf(tvt)v( ”1) )||

n— n-1
<2 (Z lailloo [V + b1l D[V 2 + ||r1||oo) +M
i=0

i=0

n-1
< 2a1<Z laillo |V + b lloo V02 + ||r1||oo> M
i=0

n-1
6
<2a (Z lailloo IVlLx + llBa oo VIS + ||r1||oo> +M.

i=0

According to (Hy) and the definition of || (&, v)||x, from the above inequality, we can derive
that ||v||x is bounded. Therefore €2; is bounded.

Case 2 ||(u, V)|l < [W"*"D(0)| + a3 || Naut|| oo The proof is similar to Case 1. Here, we omit
it.

Case 3 ||(u,)llx < "D (0)] + a2 || Nau| o

From (3.5) and (Hj;), we get

[ av) |5 < |7 2(0)| + @ 1N oo
n- . n-1 -
<m (Z lailloo [V o + 1B1lloo D VO] 2 + ||r1||oo) M
i=0 i=0
+ | g(t,u(®), t ©),..,u" V)|

n-1 n-1
<a (Z lailloo |V + Ballo0 Y [ VO[22 + ||r1||oo> +M

i=0

1 n-1
(Z ldilloo |4 o, + 152lloe D [l 2 + ||r2||oo)
=0

i=0

-
<a (Z lalloo [V, + nllballo [P 2 2 + ||r1||oo> +M

n-1
+ay (Z ldlloo | V| + mllba oo | V|2 + nrznoo)
i=0

n-1
0,
=a (Z lailloo IVl + 2llBa oo IV + ||r1||m)

i=0

n-1
[%
+a (Z el el + o oo 2652 + ||r2||oo) + M.
i=0
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By (Ha), from the above inequality, we see that ||(&,v)||x is bounded. Therefore ; is
bounded.

Case 4 ||(u,v) |5 < [v""V(0)| + a1 |N1V||0o. The proof is similar to Case 3. Here, we omit
it.

According to the above arguments, we prove that 2; is bounded.

Step 2 Let

Q= {(u, v)|(u,v) € KerL,N(u,v) € ImL}.
For (u,v) € Q, we have (u,v) = (cit" L, c2t" 1), 1, ¢ € R. In view of N(u,v) = (N1v, Nou) €

ImL = Ker Q, we have QN (u,v) = (0,0), then Q;N1v(t) = 0, Q2Nou(t) = 0. Together with

(H,), there exist ¢y, £; € (0,1) such that [V D(¢))| <M, |u"D(t;)| < M, which imply |¢;| <

%, i=1,2. Thus, we get

[Ge vl < 2.

Hence, €2, is bounded.
Step 3 Let

Q3 = {(u,v) € Ker L|A(u,v) + (1 - )QN(%,v) = (0,0), 1 € [0,1]},
for (u,v) € 3, we get (i, v) = (c1t" L, c2t" 1), ¢c1, 2 € R, and

)\.Cltn_l + (1 — )\)QlNl(V) = O,

Aot + (1= A)QaNa(u) = 0,
that is to say,

1t = (1= M) QiNy (v)

a—-—n+1

=(1—)\)clj(/ L= "f(s,c28"ca(n = 1)s" 2, ..., co(m = 1)!) ds

S m
! / (m - s)“"‘*lf(s, 8" L ea(n—1)s"2,.. . co(m — 1)!) ds),

a-n+1Jy

~A* " = (1= A)eaQaNa (1)

1
=(1=XA)cy % (/ a- s)’g’”g(s, as"Lam-1s"2...,an- 1)!) ds
B-n+2
62 " a—n+l n-1 n—2 1
_ m /0 (92 —s) g(s,cls ,am=1s"7,...,an- 1).) ds).

If A =0, then Q;N;(v) = Q2N2(u) = 0, together with (H;), we have |u”‘1)(t)| <M,
[v=D(¢)| < M, which imply |¢;| < ,,z—l 2.If A € (0,1], then lcil < & ,,z—l 2. Oth-
erwise, if |¢;| > an -, i =1,2, in view of the first part of (Hs), the left of the above two
equations is less than 0, while the right is greater than 0, which is apparently contradic-
tory. Thus, Q23 is bounded.
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Let Q is a bounded open set of X, such that U,il Q; C Q. 1t follows from Lemma 3.2 that
L is a Fredholm operator of index zero. Based on the Arzela-Ascoli theorem, we obtain

the result that N is L-compact on . By Step 1 and Step 2, we see that the following two
conditions hold:

(a1) L(u,v) # AN (u,v), ((u,v), ) € [(domL\ KerL) N3] x (0,1),
(a3) Nx¢ImL, (4,v) € KerLNIQ2.

Let
H((u, V), A) =Mu,v) + (1 - A)QN (1, v).
According to Step 3, we get H((#,v),A) # 0 for (u,v) € KerL N d2. Therefore,

deg(QN|kerz, 2 NKerL, (0,0)) = deg(H(-,0), 2 N KerL, (0,0))
=deg(H(-,1), 2 NKerL,(0,0))
= deg (1,2 NKerL,(0,0))
0.
Hence, the condition (a3) of Theorem 2.1 is satisfied. By Theorem 2.1, we see that L(u, v) =

N(u,v) has at least one set of fixed points in dom L N €2, so BVP (1.1) has at least one set of
solutions. The proof is complete. d

Remark 3.1 If the second part of (H3) is satisfied, then the set
Q} = {(u,v) € Ker L|-A(u,v) + (1 = 2)QN (4, v) = (0,0), 1 € [0,1]}
is bounded.

Now we consider BVP (1.1) in the Case (ii); the main conclusion is given as follows.

Theorem 3.2 For Case (ii), assume that the following conditions hold.

(Hy)' Ifthe functionsf,g € [0,1] x R” — R satisfy the Carathéodary condition, and there ex-
ist nonnegative functions a;, d;, by, by, 11,1y € Y and constant 6,6, € [0,1),i=0,n-1,
forN(xo,%1,...,x,1) € R" , t € [0,1], the following inequalities hold:

n-1 n-1

(& %0, %1, 20 0)| <D ai®lsil + bi(e) Y |l ™ + (),
i=0 i=0
n-1 n-1

gt %0, %1, 20| < Y di(E)lasi] + ba(8) Y il + ra(0).
i=0 i=0

(Hy)' There exists a constant M > 0, such that, for vVt € [0,1], if [u" V()| > M and
[VD(8)| > M, then QN (u,v) #(0,0).
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(Hs3)" There exists a constant M* > 0 such that, for every c1, ¢, € R satisfying min{|c;|, |c2|} >
M*, one has either

aNi(e '+ (n-1D)yat"™) >0,  oNo(at™ +(n-1)yt"2) >0,
or

aNi(e(" ™ + (n-1)yat"?)) <0, oNy(a ("™ + (n - 1)yt"?)) <0.

(Ha)'
n-1 n-1 n-1
max{ 2+ mp)ar Y a1+ (1=Dp)ar Y lailloo + 1+ y2)az Y lldil oo,
i=0 i=0 i=0
n-1 n-1 n-1
A+a Y laillo + 1+ (=Dya)az Y lldilloo, 2+ mpa)az Y lldillo f <1,
i=0 i=0 i=0

_ 1 _ 1
where a, = [(e-n+2)’ az = r(B-n+2)"

Then BVP (1.1) has at least one solution.
To prove the above theorem, we have the following lemma, whose proof is similar to
that of Lemma 3.1, Lemma 3.2 and is omitted.

Lemma 3.3 Let L be defined by (3.1), then

KerL = (KerL;,KerL,)
={(wv) € X|(u,v) = (a1 (L‘”_1 +(n- l)ylt”_z),cz (t”_1 +(n—- l)yzt”_2)),
1,62 € R},

ImL = (ImLy;,ImLy) = {(%,9) € Y| T35 =0, T4y = 0},

where

1 61 m
Tyx = / A-9"x(s)ds— ———— [ (n—5)"""x(s)ds
0

a—-n+1Jy
51

—yé | (&1—9)""x(s)ds,

0
' B-n 82 " B-n+l
Ty [ -9 yods— 52 [T -9y ds
0 B-n+1),
&

— 202 (& — )P " y(s) ds.

0

For Vt € (0,1, the linear continuous projector operators P: X — X and Q:Y — Y can be
defined as

u"(0)
(n-1)

()
(n-1)!

) = B 2o = (=Lt =0 2), S ) ),

Q(x,y) = (Qux, Qo) = (A1T3x, Ay Tyy),
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where
A a-n+1 A B-n+1
1= 5 — _ ’ 2= — — .
1- a_nl+2nf( n+2_y181§-{x n+l 1- 13_5,127]5 n+2—)/2(32$2ﬂ n+l

Define the operator Kp : ImL — dom L N Ker P as

) 1 t ol yltn—Z &1 an
Kp(x,y) = (m /0 (t—95)"x(s)ds + PRI RSy /0 (&1 =) "x(s) ds,

1 ‘ B-1 )2
Tﬁ)./o =) y(s)ds+(n—2)!I‘(ﬁ—n+1) 0

tn—2 &

Next, we give the proof of Theorem 3.2 (similar to Theorem 3.1).

Proof Firstly, it will be proved that the set
Q1 = {(u,v) € dom L\ Ker L|L(u,v) = AN (u,v), A € (0,1)}

is bounded. If (&, v) € €, similar to Step 1 in the proof of Theorem 3.1, we get

n-1 —
W) <a (Z ladloo [V + Norlloo D [ ”i”'””“) i

i=0 i=0

where a; = m, and

n-1 —
(0)| < a <Z Ieloe [ o, + b2 loc 3 ”f’i”m“w) .

i=0 i=0

where a) = m
So

|P(u,v) |5 < max{(1+ (n - 1)) |u"(0)

,(1+ (= 1)) [V (0)] ).
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3.7)

(3.8)

(3.9)

On the other hand, for (x,y) € Im L, by the definition of | - ||y and Kp, it is easy to see that

1K (%, 9) || 5 < max{(L + y1)arl|#ll o, (1 + 2)a2 ]|yl o }- (3.10)

Hence,

| (T = P)(w, ) |5 = | KpL(I = P)(w, V) | = | KpL(1,v) | 5 = | Kp(Laut, Lov) |

< max{(1+ y)arINiVlloo, (1 + y2)as | Nl oo }- (3.11)
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Thus,

|G v) [ = | PG, v) + (I = Py, v) | 5
< [P, v) | + [ - P)wv) |5
< max{(L+ (n—1)y) | 0)] + @ + y1)a1 N1V o
(1+ (1 =) [u"(0)] + (1 + y2)as [ Na| oo
(1+ 0= )p) [V D(0)] + (1 + y1)ar [Ny V] oo

1+ (n=1)p) |y D0)| + A + y2)az I Notl . }-

Next we will prove this conclusion in four cases.
Case 1" ||(u,v)|lx < (1 + (1 = 1)y) " V(0)| + A + 1)1 || N1V| oo By (3.7) and (H,)', we get

i=0 i=0

n-1 n-1
@) < @+ -Dy)a (Z lailloo [0 + Ib1llso D_ V22 + ||r||oo)

+(1+ (=) M+ A+ pan||f (60, O, ... """ DO

n-1 n-1
<@+ np)a (Z ladlloo |V o + 1B1llo0 Y [ ||Z;+||n||oo)

+ (1 +(n— l)yl)M

n-1
<2+ ny)m (Z lalloo [V, + nllballo [ 2 2 + ||r1||oo>

i=0
+ (1 +(n- l)yl)M

n-1

= 2+ np)m (Z lailloo [VIx + mllbrlloo IVIIZ + nnnoo) +(1+(n-D)p)M

i=0

According to (Hs)' and the definition of ||(, v) |5, we see that ||v| x is bounded, therefore
Q; is bounded.

Case2' ||(u,v)|lx < [V""D(0)| + a3 || N2 ut|| oo The proof is similar to Case 1'. Here, we omit
it.

Case 3’ ||(u,v)|Ix < |u""D(0)| + a3 || Natt|| oo By (3.7) and (H;)', we get

|G, v) |5 < [u"(0)] + a2 IN>u]

n-1
<m (Z laglloo | o + ||b1||ooZ [ + ||n||oo) +M

i=0 i=0

+aa| gt u(e), o/ ©),....,u" V()|

n-1
<a1(Z||a,||oonv’>|| +||b1||ooZ||v ||"1+||r1||oo>+M

i=0 i=0

1 n-1
<Z il |4 + 1B2lloc > @) 2 + ||r2||oo>
i=0

i=0
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n-1
@ (Z lailloo [V o + 7oy lloo | V"0 |22 + ||r1||oc> +M
i=0
n-1 5
+a (Z Idilloo |||, + mllb2lloo | V]2 + ||rz||oo>
i=0

n-1
(%
=a (Z lailoollvilx + nll byl VIR + ||r1||oo>

i=0

n-1
o:
+az<Z ekill oo N2l x + 721l oo N6l + ||r2||oo> + M.

i=0

By (H4)', we get ||(u,v)||x is bounded, therefore €2, is bounded.

Case &' ||(u,v) |l < [V""D(0)| + a1 | N1V|| 0. The proof is similar to Case 3'. Here, we omit
it.

In summary, we proved that €2; is bounded. The remainder of the proof is just similar
to the proof of Theorem 3.1 and is omitted. O

4 Example
Example 4.1 Consider the following BVP:

D3¥>u(t) =f(t,v,v,v',V"), 0<t<l,
Dov(t) = glt,u, o/, u, u"), 0<t<],

u(0) =u/(0) =u"(0) = 0, u"(1) = 414”(%),
v(0) =v'(0) =v"(0) = 0, V") = 51//(%),

(4.1)

where = 3.5, B = 3.6, (£, %0, X1, %2, x3) = DECLIUIMED L 84 gin(xox, + Lxy), g(t,yo,yl,
yz,yg) =i 2 ;'6"% + ”Cgﬂ + 2253 it is easily figured out that y; = y, = 0, 8, = 4, 85 =

n = 4, 772 = 5, satisfy the condition of Case (i), [|@ollcc = |41 lco = @2 ]lco = %, llaslls = 5
Idolloo = 155 ldilloo = 5 dalloo = lldslloo = §» I1B1lloc = 1B2llec = 0, I71lloc = 1, I72lloo = 3,
6, =0,=0, M =64, M*=32,0<t<],itis easy to verify that the conditions satisfy all

assumptions of Theorem 3.1. Hence, BVP (4.1) has at least one set of solutions.

Example 4.2 Consider the BVP:

D3u(t) =f(t,v,V,v',V"), 0<t<],
D¥v(t) =g(t,u,u,u’,u"), 0<t<l,
W0)=w(©0)=0,  w(0)=3u"(L),  uw'1)=2u'(L),

w0)=v(0)=0, V(0)=2v"(3), V'1)=3(3),

(4.2)

where « = 3.3, B = 3.5, f(£,%0,%1, X, x3) = 2SnbHLCOSl 2 4 cos(x + tx2), g(t, yo,yl,

56
341 2t+d
yg,yg) =L 2 g“;(o” ) 4 COZ(S” ) 4 L3, it is easily figured out that 3 =3,y =2, 8, = 2

8y = 7, n = 2, Ny = l satlsfy the condltlon of Case (11) laolloo = lla1lloo = lla2lloo = 56,
lasllco = 25 1dollo = 355 ldhilloo = g5, 1dalloo = dsllo = 55, 1B1llo = 1B2]loc = O, [I71llo = 1,
2]l = % 61 =0, =0, M =120, M* =90, 0 < t <1, it is easy to verify that the conditions

satisfy all assumptions of Theorem 3.2. Hence, BVP (4.2) has at least one set of solutions.
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