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1 Introduction and main results
The discrete nonlinear Schrödinger equation is a very important discrete model, which
has many important applications in many fields, such as nonlinear optics [], biomolecular
chains [], Bose-Einstein condensates [], and so on.

In general, discrete nonlinear Schrödinger equation can be divided into two different
cases, the periodic and nonperiodic cases. So far, most results are all about the periodic
cases, such as [–] and so on. Only a few results are about the nonperiodic cases, such
as [–]; in paticular, the papers [, , , , ] are only about the case of one-
dimensional lattice (n ∈ Z).

Inspired by the papers mentioned, we study homoclinic solutions
(lim|n|=|n|+|n|+···+|nm|→∞ un = ) of the following nonperiodic discrete nonlinear equation:

–�un + vnun – ωun = fn(un), n ∈ Z
m, (.)

where

�un = u(n+,n,...,nm) + u(n,n+,...,nm) + · · · + u(n,n,...,nm+) – mu(n,n,...,nm)

+ u(n–,n,...,nm) + u(n,n–,...,nm) + u(n,n,...,nm–)

is the discrete Laplace operator in the m-dimensional space, ω ∈ R, V = {vn}n∈Zm and
{un}n∈Zm are sequences of real numbers, and the nonlinearities fn satisfy

fn
(
eiωs

)
= eiωfn(s), ∀ω ∈R,∀(n, s) ∈ Z

m ×R.
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Problem (.) comes from the study of standing waves for the discrete nonlinear Schrö-
dinger equation

iψ̇n = –�ψn + vnψn – fn(ψn), n ∈ Z
m. (.)

Clearly, (.) becomes (.) by the definition of standing waves (ψn = une–iωt with
lim|n|→∞ un = ). Therefore, the problem on the existence of standing waves of (.) re-
duces to that on the existence of homoclinic solutions of (.).

We use some suitable assumptions to overcome the difficulties caused by the unbound-
edness of Zm and the lack of periodic conditions. In particular, condition (F) is a new
superquadratic condition introduced by Tang and Wu [].

(V) V = {vn}n∈Zm satisfies

lim|n|→+∞ vn = +∞. (.)

(F) fn ∈ C(R,R), lim|s|→
fn(s)

s = .
(F) lim|s|→+∞ Fn(s)

|s| = +∞ for all n ∈ Z
m, where Fn(s) :=

∫ s
 fn(t) dt, (n, s) ∈ Z

m ×R.
(F) F̃n(s) = fn(s)s – Fn(s) ≥  for all (n, s) ∈ Z

m ×R, and there exist b >  and r∞ >  such
that

F̃n(s) ≥ b
Fn(s)
|s| , ∀n ∈ Z

m,∀|s| ≥ r∞. (.)

(F) Fn() ≡  for all n ∈ Z
m.

(F) There is L >  such that supn∈Zm ,|s|=r∞ Fn(s) ≤ L.

Theorem . Equation (.) possesses at least one nontrivial homoclinic solution u if con-
ditions (V) and (F)-(F) hold. Here, u is nontrivial, that is, un 	≡ .

Theorem . Equation (.) has infinitely many nontrivial homoclinic solutions if condi-
tions (V) and (F)-(F) hold and fn(–s) = –fn(s) for all (n, s) ∈ Z

m ×R.

Example . We give the following example to explain the rationality of the assumptions
for the nonlinear terms fn. Let

Fn(s) =

⎧
⎨

⎩
an[c|s| + c|s|], |s| ≤ ,

an[|s| ln( + |s|) + sin |s| – ln( + |s|)], |s| > ,

where s ∈ R,  < infn∈Zm an < supn∈Zm an < +∞, and c, c >  are two suitable constants. It
is not hard to check that it satisfies our conditions (F)-(F).

Remark . (Comparisons) We give detailed comparisons between our results and the
results [–, , , , ] for infinite m-dimensional lattices. Our Theorems . and
. generalize the results mentioned.
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() The results of [, , , , , ] are all based on conditions (V) and

(F′
) fn ∈ C(R,R), lim|s|→

fn(s)
s = , and there are a >  and ν >  such that

∣∣fn(s)
∣∣ ≤ a

(
 + |s|ν–), ∀(n, s) ∈ Z

m ×R. (.)

However, we remove condition (.).

() The authors of [, ] used the Ambrosetti-Rabinowitz superlinear condition

 < ν ′Fn(s) ≤ fn(s)s for some ν ′ > ,∀s ∈R \ {}. (.)

Obviously, (.) is stronger than our condition (F). Besides, the authors of [, ,
] used the condition

fn(s)
s

is increasing for s >  and decreasing for s < , (.)

the authors of [] used the condition

lim inf|s|→+∞
fn(s)s – Fn(s)

|s|� ≥ b for some b > ,� > max{,ν – }, ∀n ∈ Z
m, (.)

and the authors of [] used the condition

μFn(s) ≤ fn(s)s + κs, μ > ,κ > ,∀(n, s) ∈ Z
m ×R. (.)

It is not hard to check that the functions in our Example . do not satisfy conditions
(.)-(.), but they all satisfy our conditions (F)-(F). Therefore, our results extend
those in the papers mentioned.

In Section , we establish the variational framework of (.) and give some preliminary
lemmas. In Sections  and , we give detailed proofs of Theorems . and ., respectively.

2 Variational structure and preliminary lemmas
Let

lp ≡ lp(
Z

m)

:=
{

u = {un} : n ∈ Z
m, un ∈R,‖u‖lp =

( ∑

n∈Zm

|un|p
)/p

< ∞
}

, p ∈ [, +∞),

be real sequence spaces. The following elementary embedding relations hold:

lp ⊂ lq, ‖u‖lq ≤ ‖u‖lp ,  ≤ p ≤ q ≤ ∞, where ‖u‖l∞ := max
n∈Zm

|un|.

Let L := – + V be defined by Lun := –un + vnun for u ∈ l. Let E be the form domain
of L, that is, E := D(L/) (the domain of L/). Under our assumptions, the operator L is an
unbounded self-adjoint operator in l. Since the operator – is bounded in l, it is easy to
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see that E = {u ∈ l : V /u ∈ l}, where V /u is defined by V /un := v/
n un for u ∈ l. We

define respectively on E the inner product and norm by

(u, v)E := (u, v)l +
(
L/u, L/v

)
l and ‖u‖E = (u, u)/

E ,

where (u, v)l is the inner product in l. Then E is a Hilbert space.

Lemma . ([]) If (.) holds, then we have:
() The embedding maps from E into lp are compact for all p ∈ [,∞], and there exist

γq >  such that

‖u‖lq ≤ γq‖u‖, ∀u ∈ E.

() The spectrum σ (L – ω) consists of the eigenvalues:

λ – ω < λ – ω < · · · < λk – ω < · · · → +∞.

Let ek be the eigenfunctions with (L –ω)ek = (λk –ω)ek and ‖ek‖l = , k = , , . . . . More-
over, {ek : k = , , . . .} is an orthonormal basis of l. Let �(D) denote the number of i such
that i ∈ D. Let

k := �
({i : λi – ω < }),

k := �
({i : λi – ω = }),

k := k + k

(.)

and

E– := span{e, . . . , ek},
E := span{ek+, . . . , ek},
E+ := span{ek+, . . .},

where the closure is taken with respect to the norm ‖ · ‖E . Then we have the orthogonal
decomposition

E = E– ⊕ E ⊕ E+

with respect to the inner product (·, ·)E . Now, we introduce respectively on E the following
inner product and norm:

(u, v) :=
(
u, v)

l +
(
L


 u, L


 v

)
l , ‖u‖ = (u, u)


 ,

where u, v ∈ E = E– ⊕ E ⊕ E+ with u = u– + u + u+ and v = v– + v + v+. Clearly, the norms
‖ · ‖ and ‖ · ‖E are equivalent, and the decomposition E = E– ⊕ E ⊕ E+ is also orthogonal
with respect to both inner products (·, ·) and (·, ·)l .
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In view of the above arguments, we consider the functional � on E defined by

�(u) =


(
(L – ω)u, u

)
l –

∑

n∈Zm

Fn(un)

=


∥
∥u+∥

∥ –


∥
∥u–∥

∥ –
∑

n∈Zm

Fn(un). (.)

Under our assumptions, � ∈ C(E,R), and the derivative is given by

〈
�′(u), v

〉
=

(
u+, v+)

–
(
u–, v–)

–
∑

n∈Zm

fn(un)vn, (.)

where u, v ∈ E = E– ⊕ E ⊕ E+ with u = u– + u + u+ and v = v– + v + v+. The standard
argument shows that nonzero critical points of � are nontrivial solutions of (.).

Definition . We say that
() I ∈ C(X,R) satisfies (C)-condition if any sequence {uk} such that I(uk) is bounded

and

∥
∥I

′(
uk)∥∥(

 +
∥
∥uk∥∥) → , k → ∞, (.)

has a convergent subsequence.
() I ∈ C(X,R) satisfies (PS)-condition if any sequence {uk} such that I(uk) is bounded

and

I ′(uk) → , k → ∞,

has a convergent subsequence.

We shall use the following two lemmas to prove our main results:

Lemma . ([]) Let E be a real Banach space, and let I ∈ C(E,R) satisfy (PS)-condition.
Suppose I() =  and

() there are constants ρ,α >  such that I|∂Bρ ≥ α;
() there is e ∈ E \ Bρ such that I(e) ≤ . Then I possesses a critical value c ≥ α.

Moreover, c can be characterized as c = infg∈� maxu∈g([,]) I(u), where
� = {g ∈ C([, ], E) | g() = , g() = e}.

Lemma . ([]) Let X be an infinite-dimensional Banach space such that X = Y ⊕ Z,
where Y is finite-dimensional. Let I ∈ C(X,R) be an invariant functional. Suppose that,
for any k ∈ N , there exist ρk > rk >  such that

() I satisfies (C)-condition for all c > ;
() ak := maxu∈Yk ,‖u‖=ρk I(u) ≤ ;
() bk := infu∈Yk ,‖u‖=ρk I(u) → ∞, k → ∞.
Then I has an unbounded sequence of critical values.

Let {ej}∞j= be an orthonormal basis of E, and let Xj := Rej. Then Yk =
⊕k

j= Xj =
span{e, . . . , ek} and Zk =

⊕∞
j=k Xj = span{ek , . . .} for all k ∈ N.
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Lemma . If assumptions (V) and (F)-(F) hold, then � satisfies (C)-condition.

Proof We assume that, for any sequence {uk} ⊂ E, �(uk) is bounded and ‖�′(uk)‖( +
‖uk‖) → . Then there exists a constant M >  such that

∣∣�
(
uk)∣∣ ≤ M,

∥∥�′(uk)∥∥(
 +

∥∥uk∥∥) ≤ M. (.)

(i) First, we prove the boundedness of {uk}. If not, then ‖uk‖ → ∞ as k → ∞. Let vk =
uk

‖uk‖ . Then ‖vk‖ = . We can assume that vk ⇀ v = {vn}n∈Zm in E passing to a subsequence,
which, together with Lemma ., implies vk → v in lq for  ≤ q < ∞ and vk

n → vn for all
n ∈ Z

m. By the space decomposition we have

‖u‖ =
∥
∥u+∥

∥ +
∥
∥u– + u∥∥. (.)

Then, by (.), (.), and (.) we have

∑

n∈Zm

Fn(uk
n)

‖uk‖ =



–
�(uk)
‖uk‖ –




‖(uk)–‖ + ‖(uk)– + (uk)‖

‖uk‖ , (.)

which implies that, for k large enough, we have

∑

n∈Zm

Fn(uk
n)

‖uk‖ ≤ 


+
M

‖uk‖ ≤ . (.)

If v 	= , then we let A := {n ∈ Z
m : |vn| > }. For all n ∈ A, by vk

n = uk
n

‖uk‖ and ‖uk‖ → ∞ we
have limk→∞ |uk

n| = ∞. It follows from (F) that Fn(s) ≥  for all (n, s) ∈ Z
m ×R (see AX 

in Appendix) and the Fatou lemma that

lim
k→∞

∑

n∈Zm

Fn(uk
n)

‖uk‖ ≥ lim
k→∞

∑

n∈A

Fn(uk
n)

‖uk‖

= lim
k→∞

∑

n∈A

Fn(uk
n)

|uk
n|

∣∣vk
n
∣∣

= +∞,

which contradicts with (.). So, in this case, {uk} is bounded in E.
If v = , then vk →  in lq,  ≤ q < ∞, and vk

n →  for all n ∈ Z
m. Since dim(E– ⊕E) < ∞,

it follows from (.) and (.) that, for k large enough, there exists a constant l >  such
that

∑

n∈Zm

Fn(uk
n)

‖uk‖ ≥ 


–
M

‖uk‖ –
l


∑

n∈Zm

( |(uk
n)–| + |(uk

n)– + (uk
n)|

‖uk‖

)

=



–
M

‖uk‖ –
l


∑

n∈Zm

(∣∣(vk
n
)–∣∣ +

∣∣(vk
n
)– +

(
vk

n
)∣∣)

≥ 


. (.)
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Then by (F), for any ε > , there exists σ >  such that

∣
∣fn(s)

∣
∣ ≤ ε|s|, |s| ≤ σ , n ∈ Z

m.

It follows from Fn(s) ≥  for all (n, s) ∈ Z
m × R (see AX  in Appendix) and (F) that, for

all n ∈ Z
m and |s| ≤ σ ,

Fn(s) =
∣
∣Fn(s) – Fn()

∣
∣

=
∣
∣∣∣

∫ 


fn(ts)s dt

∣
∣∣∣

≤
∫ 



∣
∣fn(ts)

∣
∣|s|dt

≤
∫ 


ε|ts||s|dt ≤ ε|s|. (.)

Let ε = . Then there exists σ >  such that (.) holds for all n ∈ Z
m and |s| ≤ σ. By

(F) we have d
dϑ

ϑ–Fn(ϑs) ≥  for all ϑ ≥ , so ϑ–Fn(ϑs) is nondecreasing in ϑ for ϑ ≥ .
Then by (F), for all |s| ≤ r∞, we have

Fn(s) ≤ Fn

(
r∞s
|s|

)( |s|
r∞

)

≤ Fn

(
r∞s
|s|

)
≤ L. (.)

Then since Fn(s) ≥  for all (n, s) ∈ Z
m × R (see AX  in Appendix), by (F), (.), (.),

(.), (.), and the Sobolev embedding theorem, for k large enough, we have

 ≤
∑

n∈Zm

Fn(uk
n)

‖uk‖

≤
∑

{n∈Zm ,|uk |>r∞}

Fn(uk
n)

|uk
n|

∣
∣vk

n
∣
∣ +

∑

{n∈Zm ,|uk |≤σ}

Fn(uk
n)

‖uk‖

+
∑

{n∈Zm ,σ≤|uk |≤r∞}

Fn(uk
n)

‖uk‖

≤ ∥∥vk∥∥
l∞

∑

{n∈Zm ,|uk |>r∞}

Fn(uk
n)

|uk
n|

+
∑

{n∈Zm ,|uk |≤σ}

∣∣vk
n
∣∣

+
∑

{n∈Zm ,σ≤|uk |≤r∞}

Fn(uk
n)|uk

n|
σ 

 ‖uk‖

≤ ‖vk‖
l∞

b
∑

{n∈Zm ,|uk |>r∞}
F̃n(uk

n +
(

 +
L
σ 



)∥∥vk∥∥
l

≤ ‖vk‖
l∞

b
(
�

(
uk) –

〈
�′(uk), uk 〉) +

(
 +

L
σ 



)∥
∥vk∥∥

l

≤ M
b

∥∥vk∥∥
l∞ +

(
 +

L
σ 



)∥∥vk∥∥
l → . (.)

Clearly, (.) contradicts with (.). Thus ‖uk‖ is still bounded in this case.
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(ii) Second, we prove that {uk} has a convergent subsequence in E. The boundedness
of {uk} implies that uk ⇀ u in E+ passing to a subsequence, where u = {un}n∈Zm . Now we
have

∑

n∈Zm

[
fn

(
uk

n
)(

uk
n – un

)] → , k → ∞. (.)

Note that Lemma . implies that uk → u in lq for all  ≤ q < ∞, so we have

∥∥uk – u
∥∥

l → . (.)

The boundedness of {uk} and Lemma . imply that ‖uk‖q < ∞ for all  ≤ q < ∞. Then by
(F), (.), and the Hölder inequality, for ε > , there exists δ >  such that, for |s| < δ, we
have

∣
∣∣
∣
∑

n∈Zm

[
fn

(
uk

n
)(

uk
n – un

)]
∣
∣∣
∣ ≤

∑

n∈Zm

∣∣fn
(
uk

n
)(

uk
n – un

)∣∣

≤
∑

n∈Zm

(
ε
∣∣uk

n
∣∣∣∣uk

n – un
∣∣)

= ε
∑

n∈Zm

(∣∣uk
n
∣∣∣∣uk

n – un
∣∣)

≤ ε
∥
∥uk∥∥

l
∥
∥uk – u

∥
∥

l → . (.)

So (.) holds. Therefore, since �′(uk) → , uk ⇀ u in E+, by (.) and the definition of
�′ we have

 = lim
k→∞

〈
�′(uk), uk – u

〉

= lim
k→∞

(
uk , uk – u

)
– lim

k→∞
∑

n∈Zm

(
fn

(
uk

n
)(

uk
n – un

))

= lim
k→∞

∥
∥uk∥∥ – ‖u‖ – , (.)

that is,

lim
k→∞

∥
∥uk∥∥ = ‖u‖. (.)

Since uk ⇀ u in E+, it follows that

∥
∥uk – u

∥
∥ =

(
uk – u, uk – u

) → ,

that is, {uk} has a convergent subsequence in E+. Since dim(E– ⊕ E) < ∞, it follows that
{uk} has a convergent subsequence in E. Thus � satisfies (C)-condition. �

3 Proof of Theorem 1.1
Lemma . If assumptions (V), (F), (F), and (F) hold, then there exist constants �,α > 
such that �|S ≥ α, where S = {u ∈ E+|‖u‖ = �}.
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Proof In view of (.), let ε = 
γ 


, where γ is defined in Lemma .. Then there exists

σ >  such that Fn(s) ≤ ε|s| for all n ∈ Z
m and |s| ≤ σ. Let

ρ =
σ

γ∞
, α =




� > ,

where γ∞ is defined in Lemma .. This implies that  < ‖u‖l∞ ≤ σ for all u ∈ S. Then by
(.) we have

�(u) =


‖u‖ –

∑

n∈Zm

Fn(un)

≥ 

‖u‖ –


γ 



∑

n∈Zm

|un|

≥ 

‖u‖ –




‖u‖ =



‖u‖. (.)

Thus, by (.) and the definitions of � and α, the proof of the lemma is finished. �

Lemma . If assumptions (V) and (F)-(F) hold, then there exists ζ > � such that �|∂Q ≤
 with � defined in Lemma ..

Proof Let e ∈ E+ with ‖e‖ =  and K = E– ⊕ E ⊕ span{e}. Then there exists a small enough
constant ε >  such that

�
({

n ∈ Z
m : |un| ≥ ε‖u‖}) ≥ , ∀u ∈ K \ {}. (.)

The detailed proof of (.) is given in the Appendix.
For u = u+ + u + u– ∈ K , let �u = {n ∈ Z

m | |un| ≥ ε‖u‖}. By (F), for M = /ε
 > , there

exists L >  such that

Fn(s) ≥ M|s|, ∀|s| ≥ L,∀n ∈ Z
m.

Thus we have

Fn(un) ≥ M|un| ≥ Mε
 ‖u‖, ∀n ∈ �u,

where u ∈ K and ‖u‖ ≥ L/ε. It follows from (F) and (.) that

�(u) =


∥
∥u+∥

∥ –


∥
∥u–∥

∥ –
∑

n∈Zm

Fn(un)

≤ 

∥
∥u+∥

∥ –
∑

n∈�u

Fn(un)

≤ 

∥∥u+∥∥ – Mε

 ‖u‖ · �(�u)

≤ 

∥∥u+∥∥ – Mε

 ‖u‖ ≤  (.)
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for all u ∈ K and ‖u‖ ≥ L/ε. Let Q = {ηe| ≤ η ≤ ζ } ⊕ {u ∈ E– ⊕ E|‖u‖ ≤ ζ }. Then we
have

∂Q = Q ∪ Q ∪ Q,

where

Q =
{

u ∈ E– ⊕ E | ‖u‖ ≤ ζ
}

,

Q = ζ e ⊕ {
u ∈ E– ⊕ E | ‖u‖ ≤ ζ

}
,

Q = {ηe |  ≤ η ≤ ζ } ⊕ {
u ∈ E– ⊕ E | ‖u‖ = ζ

}
.

Then by (.), for all ζ ≥ L/ε, we have �(u) ≤  for all u ∈ Q ∪ Q. It follows from (F)
that �(u) ≤  for all u ∈ E– ⊕ E, which implies that �(u) ≤  for all u ∈ Q. Thus, for all
ζ > max{�, L/ε}, we have

�(u) ≤ , ∀u ∈ ∂Q.

The proof is finished. �

Proof of Theorem . Similarly to Lemma ., we can also prove that � satisfies (PS)-
condition. Then by Lemmas . and . conditions () and () of Lemma . hold, so
Lemma . implies that � possesses a critical point u such that �(u) ≥ α. Therefore u
is a homoclinic solution of problem (.). �

4 Proof of Theorem 1.2
Let

βk(p) = sup
u∈Zk ,‖u‖=

‖u‖lp , k ∈ N , q ∈ [, +∞].

Lemma . If assumptions (V), (F), and (F)-(F) hold, then bk → ∞ as k → ∞,
where

bk = inf
u∈Zk ,‖u‖=τk

�(u), τk = r∞/βk(∞).

Proof By Lemma ., E is embedded compactly into lp. Then βk(p) →  as k → ∞. For k
large enough, we choose k such that Zk ⊂ E+. Note that τk → +∞ as k → ∞, and so for
any u ∈ Zk with ‖u‖ = τk , we have

‖u‖l∞ ≤ r∞. (.)

Then by (.), there exists r∞ ≥ σ > , for all |un| ≤ σ, we have

Fn(un) ≤ |un|. (.)
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Then by (.), (.), (.), and (.), for any u ∈ Zk with ‖u‖ = τk , we have

�(u) =


‖u‖ –

∑

n∈Zm

Fn(un)

=


‖u‖ –

∑

n∈Zm ,|un|≤σ

Fn(un) –
∑

n∈Zm ,σ≤|un|≤r∞
Fn(un)

≥ 

‖u‖ –

∑

n∈Zm ,|un|≤σ

|un| –
∑

n∈Zm ,σ≤|un|≤r∞

|un|
σ 


Fn(un)

≥ 

‖u‖ – ‖u‖

l – L
∑

n∈Zm ,σ≤|un|≤r∞

|un|
σ 



=


‖u‖ – ‖u‖

l –
L
σ 



∑

n∈Zm ,σ≤|un|≤r∞
|un|

=


‖u‖ –

(
 +

L
σ 



)
‖u‖

≥ 

‖u‖ –

(
 +

L
σ 



)
(
βk()

)‖u‖
l

≥ 


‖u‖ =



τ 
k , k > k, k ∈ N .

Then we have

bk = inf
u∈Zk ,‖u‖=τk

�(u) ≥ 


τ 
k → +∞, k → ∞.

So the lemma is proved. �

Lemma . If assumptions (V) and (F) hold, then we have ak ≤  for all k ∈ N , where

ak = max
u∈Yk ,‖u‖=ρk

�(u).

Proof For any u ∈ Yk/{}, δ > , where u = u– + u + u+, let

�δ(u) =
{

n ∈ Z
m : |un| ≥ δ‖u‖}.

By (.), for all u ∈ Yk/{}, we obtain that there exists ε >  such that

�
(
�ε (u)

) ≥ . (.)

By (F), there exists γ >  such that , for all u ∈ Yk and n ∈ �ε (u) with ‖u‖ ≥ γ, we have

Fn(un) ≥ 
ε


|un| ≥ ‖u‖. (.)



Jia et al. Advances in Difference Equations  (2017) 2017:289 Page 12 of 15

We choose ρk > max{γ, τk}. It follows from (.), (.), (.), and Fn(s) ≥  for all (n, s) ∈
Z

m ×R (see AX  in Appendix) that, for any u ∈ Yk with ‖u‖ = ρk ,

�(u) =


∥∥u+∥∥ –

(


∥∥u–∥∥ +

∑

n∈Zm

Fn(un)
)

≤ 

‖u‖ –

∑

n∈�ε (u)

Fn(un)

≤ 

‖u‖ – ‖u‖�

(
�ε (u)

)

≤ –


‖u‖ ≤ ,

which means that ak ≤  for all k ∈ N , and the proof of the lemma is finished. �

Proof of Theorem . Let X = E, Y = Ym, and Z = Zm. By Lemma ., under our assump-
tions, � satisfies (C)-condition. Clearly, condition () of Lemma . holds. Besides, con-
ditions () and () of Lemma . hold by Lemmas . and ., respectively. So problem
(.) possesses infinitely many nontrivial solutions by Lemma .. Therefore, Theorem .
is true. �

Appendix
In this section, we prove the following facts.

AX  If assumptions (F), (F), and (F) hold, then Fn(s) ≥  for all (n, s) ∈ Z
m ×R.

Proof

g(t) =
Fn(ts)

t , (n, s) ∈ Z
m ×R, t > .

By condition (F) we have

g ′(t) =
fn(ts)ts – Fn(ts)

t ≥ , (n, s) ∈ Z
m ×R,

which implies that g(t) is nondecreasing in (, +∞). By (F) and (F) we have

lim
t→

∣
∣g(t)

∣
∣ = lim

t→

∣∣
∣∣
Fn(ts)

t

∣∣
∣∣ = lim

t→

∣∣
∣∣
fn(ts)s

t

∣∣
∣∣ ≤ lim

t→

|fn(ts)|
ts

|s|


= 

for all (n, s) ∈ Z
m ×R/{}. Thus limt→ g(t) = , which shows that g(t) ≥  for all t >  and

(n, s) ∈ Z
m ×R/{}. It follows from (F) that

Fn(s) = g() ≥ , (n, s) ∈ Z
m ×R.

Thus the proof is finished. �

AX  The fact (.) in Lemma . holds.
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Proof If not, for any positive integer k, there exists uk ∈ K \ {} such that

�

({
n ∈ Z

m :
∣
∣uk

n
∣
∣ ≥ 

k
∥
∥uk∥∥

})
= .

Let vk = uk/‖uk‖, then ‖vk‖ = , and for all k, we have

�

({
n ∈ Z

m :
∣
∣vk

n
∣
∣ ≥ 

k

})
= . (A.)

Since dim K < ∞, we may assume that vk ⇀ v = {vn}n∈Zm in W passing to a subsequence,
and thus ‖v‖ = . By Lemma . we have vk → v in l and vk

n → vn for all n ∈ Z
m, so that

∑

n∈Zm

∣∣vk
n – vn

∣∣ → , k → ∞. (A.)

The fact that ‖v‖ =  implies ‖v‖l∞ = maxn∈Zm |vn| > . By the definition of norm ‖ · ‖l∞

there exists a constant δ >  such that

�
({

n ∈ Z
m : |vn| ≥ δ

}) ≥ . (A.)

Let

� =
{

n ∈ Z
m | |vn| ≥ δ

}
,

�k =
{

n ∈ Z
m

∣
∣∣
∣
∣vk

n
∣
∣ <


k

}
,

�c
k = Z

m \ �k =
{

n ∈ Z
m

∣∣∣
∣
∣vk

n
∣
∣ ≥ 

k

}
.

By (A.) and (A.) we have

�(�k ∩ �) = �
(
� \ �c

k ∩ �
) ≥ �(�) – �

(
�c

k
) ≥  –  = .

Next, we may assume that δ – 
k ≥ 

δ for k large enough. Then we have

∣
∣vk

n – vn
∣
∣ ≥ ∣

∣
∣
∣vk

n
∣
∣ – |vn|

∣
∣ ≥

(
δ –


k

)

≥ 


δ
 , ∀n ∈ �k ∩ �,

and thus, for all large k, we have

∑

n∈Zm

∣
∣vk

n – vn
∣
∣ ≥

∑

n∈�k∩�

∣
∣vk

n – vn
∣
∣ ≥ 


δ

 · �(�k ∩ �) ≥ 


δ
 > .

Clearly, it is a contradiction to (A.). Thus (.) holds. �
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