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Abstract
In this paper, we investigate the control of 4-D nonautonomous fractional-order
uncertain model of a PI speed-regulated current-driven induction motor (FOIM) using
a fractional-order adaptive sliding mode controller (FOASMC). First, we derive a
dimensionless fractional-order model of the induction motor from the well-known
integer -model of the induction motor. Various dynamic properties of the
fractional-order induction motor, such as stability of the equilibrium points, Lyapunov
exponents, bifurcation, and bicoherence, are investigated. An adaptive controller is
derived to suppress the chaotic oscillations of the fractional-order model of the
induction motor. Numerical simulations of the adaptive chaos suppression
methodology are depicted for the fractional-order uncertain model of the induction
motor to validate the analytical results of this work. A genetically optimized
fractional-order PID (FOPID) controller is also derived to stabilize the states of the
FOIM system. FPGA implementation of the proposed FOASMC is also presented to
show that the proposed controller is hardware realizable.
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1 Introduction
Electric motors consume approximately % to % of the electric energy []. Industry
and household applications depend mostly on alternating current (AC) electric motors. It
is well known that % of these AC electric motors are induction motors. A majority of
modern devices use induction motors, and the motor drive operates under various loads.
A rapid change of load allows one to increase the productivity of the motor, but at the
same time it may lead to various undesirable effects such as motor stopping, vibration,
damage, or failure of the device itself. So the investigation of induction motor operation
under sudden changes of load becomes a critical issue. Mathematical models of induction
motor with various rotors and analysis of their stability and oscillations were studied by
Solovyeva []. The control of an induction motor is a very complicated research problem
due to highly nonlinear characteristics, coupling, and time varying dynamics [].
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Fractional-order calculus developed from ordinary calculus is a generalization of the in-
tegration and differentiation to the noninteger-(fractional-)order generalization operator
aDq

t in which a and t are limits and q is the order of the operator. This notation is used for
both the fractional derivatives and fractional integrals in a single expression []. Two gen-
eral fractional-order integral/differential operations are commonly discussed, viz. Caputo
and Riemann-Liouville (R-L) fractional operators. Physically, the R-L fractional operator
has an initial value problem []. Thus, the Caputo fractional operator is more practical
than the R-L fractional one.

The benefits of using fractional-order models of real dynamical objects and processes of
applications appear in various fields of science and technology []. The synchronization
of chaotic systems has been implemented in many engineering applications with integer-
order derivatives [–]. However, only a few works have been reported on the synchro-
nization of fractional-order chaotic systems, since the proof of stability of fractional-order
systems is more complex than the chaotic systems with integer-order derivatives []. Syn-
chronization of chaotic systems deals with asymptotically synchronizing the state trajec-
tories of a pair of chaotic systems called the master and slave systems. Many control tech-
niques have been developed for the chaos synchronization of integer-order chaotic sys-
tems such as active control [–], adaptive control [–], sliding mode control [–
], backstepping control [–], fuzzy control [, ], and so on.

A bifurcation diagram shows the long-term qualitative changes (equilibria or periodic
orbits) of a system as a function of a bifurcation parameters of the system. The complete
dynamics of the system with variation of parameters can be studied with the help of bi-
furcation diagrams [, ]. Nonlinear dynamical system undergoes abrupt qualitative
changes when crossing bifurcation points []. For a more exhaustive qualitative analy-
sis of a nonlinear dynamic system, it is compulsory to identify both singularities of the
parameter plane and singularities of the phase plane [, ].

The stability of fractional-order systems using Lyapunov stability theory has been in-
vestigated in the literature [, ]. A fractional-order controller to stabilize the unstable
fixed points of an unstable open-loop system was proposed by Tavazoei and Haeri [].
A delayed feedback control (DFC) based on the act-and-wait concept for nonlinear dy-
namical systems was proposed by Konishi et al. [], who reduce the dynamics of DFC
systems to that of discrete-time systems.

With the LabVIEW simulation module, we can investigate the dynamic behavior of
complex engineering systems. An experimental study of the fractional-order proportional
derivative (FO-PD) controllers using LabVIEW was investigated by Jin et al. []. Digital
implementation of a -D chaotic system with three quadratic nonlinearities using Lab-
VIEW was studied by Vaidyanathan et al. []. The control and synchronization of an
induction motor system was investigated by Chen et al. []. Fractional-order systems
were investigated by many methods in the literature [–]. Many chaotic systems with
hidden attractors were investigated by Jafari et al. [–]. Analysis of chaotic systems
with multistability helps researchers in nonlinear controller design to modify the algo-
rithms with reference to the parameter selections [, ]. Asymptotic stability of Ca-
puto fractional derivatives are recently investigated []. Some recent works discussed
the fractional-order applications in financial models [].

This paper is organized as follows. In Section , we derive a fractional-order model of
the induction motor system [, ]. In Section , we investigate the dynamic properties of
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the fractional-order induction motor system (FOIMS). In Section , we derive fractional-
order controllers for suppressing the chaotic oscillations of the FOIMS. In Section , we
derive the stability of the controllers, and Section , we numerically check the results. In
Section , we derive PID control [] optimized by genetic optimization algorithm [–
]. In Section , we implement adaptive sliding mode controllers in FPGA [] using
Xilinx vivado tools to show that the controller is hardware realizable.

2 Fractional-order current driven induction motor
The nonlinear dynamical model of a current-driven induction motor system in a rotating
reference frame is given by

φ̇qr = –
Rr

Lr
φqr – ωstφdr +

Lm

Lr
RrIqs,

φ̇dr = –
Rr

Lr
φdr – ωstφqr +

Lm

Lr
RrIds,

ω̇r = –
Rω

J
ωr +


J

[

L

Lm

Lr
ηp(iqsφdr – idsφqr) – TL

]
,

()

where Rr is the rotor resistance, Lr is the rotor self-inductance, Lm is the rotating frame
mutual inductance, ηp is the number of pole pairs, ωst is the slip frequency, J is the inertial
coefficient, TL is the load, φqr and φdr are the quadratic and direct axis components, ωr is
the rotor angular speed, and Rω is the rotating resistance.

Let us define c = Rr
Lr

, c = Lm
Lr

Rr , c = Rw
J , c = 

J , c = 


Lm
Lr

ηp, u = ωst , u = ids, u = iqs and
the new state variables as x = φqr , x = φdr . Let the PI speed control strategy be defined as

u = ĉ
u

u
,

u = u
,

u = kp(ωref – ωr) + ki

∫ t



(
ωref (τ ) – ωr(τ )

)
dτ ,

()

where ĉ is the estimate of c, ωref is the constant reference velocity, u
 is the constant

reference for the rotor flux magnitude, kp, ki are the proportional and integral gains of the
PI controller. Using () in () with the defined new states and coefficients, the dimension-
less integer-order model of a PI speed-regulated current-driven induction motor [, ]
is defined as

ẋ = –cx + cx –
kc

u


xx,

ẋ = –cx + cu
 +

kc

u


xx,

ẋ = –cx – c

[
c

(
xx – xu


)

– TL –
c

c
wref

]
,

ẋ = (ki – kpc)x – kpc

[
c

(
xx – xu


)

– TL –
c

c
wref

]
.

()
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System () undergoes chaotic behavior when the parameters take the following values:

c = . s–, c = . Hs–, c = . s–,

c =  Kg–m–, c = ., u
 =  A,

kp = ., ki = ., k = ., TL = ., wref = . rad/s.

The fractional-order differential operator is a generalization of an integer-order differ-
ential operator. There are three commonly used definitions of the fractional-order differ-
ential operator, viz. Grunwald–Letnikov, Riemann–Liouville, and Caputo [, ]. How-
ever, in applications of fractional calculus in science and engineering, the Caputo deriva-
tive and Riemann-Liouville are mostly used. In the literature [–], mostly the Caputo
derivative is preferred since the initial value of a fractional differential equation with Ca-
puto derivative is the same as that of an integer differential equation. Hence we derive
the fractional-order model of PMSG from () with the Caputo fractional order definition,
which is defined as

Dα
t f (t) =


�( – α)

∫ t

t

ḟ (τ )
(t – τ )α

dτ , ()

where α is the order of the system, t and t are limits of the fractional-order equation, and
ḟ (t) is the first-order derivative of the function. For numerical calculations, equation () is
modified as

(t–L)Dα
t f (t) = lim

h→

{
h–α

N(t)∑
j=

bj
(
f (t – jh)

)}
. ()

Theoretically, fractional-order differential equations use infinite memory. When we
wish to numerically calculate or simulate fractional-order equations, we have to use
finite-memory principle, where L is the memory length, and h is the time sampling as
N(t) = min{[ t

h ], [ L
h ]}, bj = ( – a+α

j )bj–.
Applying these fractional-order approximations of the derivatives in system (), we ob-

tain the fractional-order model of the chaotic induction motor given by the following dy-
namics:

Dq
t x = –cx + cx –

kc

u


xx,

Dq
t x = –cx + cu

 +
kc

u


xx,

Dq
t x = –cx – c

[
c

(
xx – xu


)

– TL –
c

c
wref

]
,

Dq
t x = (ki – kpc)x – kpc

[
c

(
xx – xu


)

– TL –
c

c
wref

]
,

()

where q, q, q, q are the fractional orders of the derivatives, and parameter values are
taken as in the integer-order model.

System () is chaotic when the parameter values are taken as in () and the commensu-
rate fractional orders are taken as

q = ., q = ., q = ., q = .. ()
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Figure 1 2-D state portraits of the fractional-order induction motor.

For numerical simulations, we take the initial conditions

x = , x = ., x = –, x = . ()

Figure  shows the -D chaotic phase portraits of the fractional induction motor system
() in (x, x), (x, x), (x, x), and (x, x) planes.

3 Dynamical analysis of the fractional-order system
In this section, we analyze the fractional-order induction motor system () for various
properties of chaotic behavior like equilibrium points, Lyapunov exponents, bifurcation,
and bicoherence.

3.1 Equilibria points and Lyapunov exponents
The equilibrium points of the induction motor system () can be found by solving the
following system of nonlinear equations:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

 = –cx + cx – kc
u


xx,

 = –cx + cu
 + kc

u


xx,

 = –cx – c[c(xx – xu
) – TL – c

c
wref ],

 = (ki – kpc)x – kpc[c(xx – xu
) – TL – c

c
wref ].

()

The induction motor system () has a unique real equilibrium point

E = [–., ., , .]. ()
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Figure 2 Lyapunov exponents of the fractional-order induction motor system.

The Jacobian matrix of the induction motor system () is calculated as

J =

⎡
⎢⎢⎢⎢⎣

–c
–kc
u


x  c – kc

u


x
kc
u


x –c  kc

u


x

ccu
 –ccx –c –ccx

kpcu
 –kpccx ki – kpc –kpccx

⎤
⎥⎥⎥⎥⎦ . ()

The initial conditions are chosen as in (), and the commensurate fractional or-
ders of the system are taken to be .. The eigenvalues of system () at E are λ, =
. ± .i,λ = –., and λ = –.. System () shows a dissipative structure
as div V =

∑
i=

∂ ẋi
∂xi

< . The Lyapunov exponents of the fractional-order system () are
L = ., L = , L = –., and L = –.. Figure  shows the Lyapunov
exponents of the fractional-order induction motor system ().

3.2 Bifurcation and bicoherence
By fixing all the other parameters, TL is varied, and the behavior of the fractional-order
induction motor system () is investigated. The bifurcation plot for various states versus
load TL is given by Figures  and . Generally speaking, when the greatest Lyapunov ex-
ponent of the system is larger than zero and the points in the corresponding bifurcation
diagram are dense, a chaotic attractor is found to exist in this system. Therefore, from the
Lyapunov exponents and bifurcation diagrams in these figures we conclude that chaos ex-
ists in the fractional-order system () when selecting a certain range of parameters. Next,
the individual state responses are studied in detail by varying the parameters.

The second important bifurcation analysis is with the fractional order q, and to investi-
gate this, we derive the bifurcation of FOIM with commensurate fractional order as shown
in Figures  and . As can be seen from the figures, the FOIM system shows routine period
doubling route to chaos and shows chaotic oscillations for q ≥ ..
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Figure 3 Bifurcation of state X1 versus TL .

Figure 4 Bifurcation of state X2 versus TL .

Figure 5 Bifurcation of state X1 versus q.

The bicoherence or the normalized bispectrum is a measure of the amount of phase
coupling that occurs in a signal or between two signals [, ]. Both bicoherence and
bispectrum are used to find the influence of a nonlinear system on the joint probability
distribution of the system input. Phase coupling is the estimate of the proportion of en-
ergy in every possible pair of frequency components f, f, f, . . . , fn. Bicoherence analysis
is able to detect coherent signals in extremely noisy data, provided that the coherency
remains constant for sufficiently long times, since the noise contribution falls off rapidly
with increasing N . The auto- and cross-bispectrum of a nonlinear system is presented by
Pezeshki [, ]. He derived the bispectrum with the Fourier coefficients

B(ω,ω) = E
[
A(ω)A(ω)A∗(ω + ω)

]
, ()
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Figure 6 Bifurcation of state X4 versus q.

Figure 7 Bicoherence of the state x1 of the fractional-order system.

Figure 8 Bicoherence of the state x2 of the fractional-order system.

where ωn is the radian frequency, and A is the Fourier coefficients of the time series.
The normalized magnitude spectrum of the bispectrum known as the squared bicoher-

ence is given by

b(ω,ω) =
∣∣B(ω,ω)

∣∣/P(ω)P(ω)P(ω + ω), ()

where P(ω) and P(ω) are the power spectrums at f and f.
The bicoherence of the states of the fractional-order induction motor system () is

shown in Figures -.



Rajagopal et al. Advances in Difference Equations  (2017) 2017:273 Page 9 of 20

Figure 9 Bicoherence of the state x3 of the fractional-order system.

4 Stability analysis of FOIM system
Commensurate Order: For a commensurate FOIM system of order q, the system is stable
and exhibits chaotic oscillations if | arg(eig(JE))| = | arg(λi)| > qπ

 , where JE is the Jacobian
matrix at the equilibrium E, and λi are the eigenvalues of the FOIM system, where i =
, , , . As seen from the FOIM system, the eigenvalues should remain in the unstable
region, and the necessary condition for the FOIM system to be stable is q > 

π
tan–( | Imλ|

Reλ
).

As the eigenvalues of the system are λ, = .±.i,λ = –., and λ = –., it
is clearly seen that λ, is a complex pair of eigenvalues and remains in the unstable region
contributing to the existence of chaotic oscillations.

Incommensurate Order: The necessary condition for the FOIM system to exhibit
chaotic oscillations in the incommensurate case is π

M – mini(| arg(λi)|) > , where
M is the LCM of the fractional orders. If qx = ., qy = ., qz = ., qw = ., then
M = . The characteristic equation of the system evaluated at the equilibrium is
det(diag[λMqx ,λMqy ,λMqz ,λMqw ] – JE) = , and by substituting the values of M and the frac-
tional orders, det(diag[λ,λ,λ,λ]– JE) = , the characteristic equation is λ +.λ +
.λ + .λ + .λ + λ + .λ + .λ + ,λ + .λ + λ +
.λ + ,λ + ,λ + ,. The approximated solution of the characteristic
equation is λ = –., its argument is zero, which is the minimum argument, and
hence the necessary stability condition becomes π

 –  > , that is, . > . Hence, the
FOIM system is stable, and chaos exists in the incommensurate system.

5 Chaos suppression of the fractional-order system using adaptive sliding
mode control (ASMC)

The control goal of this paper is to design a suitable adaptive sliding mode controller for
suppression of chaotic oscillations in the fractional-order induction motor (). For deriv-
ing the robust ASMC controller for system (), let us redefine the fractional-order system
with a sliding mode controller u(t).:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

c
aDq

t x = –cx + cx – kc
u


xx + u(t),

c
aDq

t x = –cx + cu
 + kc

u


xx + u(t),
c
aDq

t x = –cx – c[c(xx – xu
) – TL – c

c
wref ] + u(t),

c
aDq

t x = (ki – kpc)x – kpc[c(xx – xu
) – TL – c

c
wref ] + u(t).

()
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Let us define the integral sliding mode surface as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

s = x + k
∫ t

 x(τ ) dτ ,

s = x + k
∫ t

 x(τ ) dτ ,

s = x + k
∫ t

 x(τ ) dτ ,

s = x + k
∫ t

 x(τ ) dτ .

()

The parameter estimation error for the variable uncertain load TL is defined as

eTL = T̂L – TL. ()

The fractional derivative of the estimation error is

DqeTL = DqT̂L. ()

The fractional derivatives of the sliding surface () are

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Dq s = Dq x + kx,

Dq s = Dq x + kx,

Dq s = Dq x + kx,

Dq s = Dq x + kx.

()

Let us consider the following Lyapunov function:

V =


[
s

 + s
 + s

 + s
 + e

TL

]
. ()

The first derivative of the Lyapunov candidate function is

V̇ = sṡ + sṡ + sṡ + sṡ + eTL ėTL . ()

By the definition of fractional calculus [, ] we obtain

ẋ(t) = D–q
t · Dq

t x(t). ()

Applying () in (), we have

V̇ = sD–q
t · Dq

t s + sD–q
t · Dq

t s + sD–q
t · Dq

t s + sD–q
t · Dq

t s + eTL D–q
t · Dq

t eTL . ()

Thus, it is clear that stability calculations with () are very difficult. So, we use modified
Lyapunov stability theory as given in [, , ].

Let e(t) be a continuous and differentiable function.
As proved in [], for any time instant t ≥ t, we have




Dq
t e(t) ≤ e(t) × Dq

t e(t) ∀q ∈ (, ). ()
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Using () in (), we have

V̇ = s
[
Dq x + kx

]
+ s

[
Dq x + kx

]
+ s

[
Dq x + kx

]
+ s

[
Dq x + kx

]
+ eTL DqT̂L. ()

Applying () in (), we have

V̇ = s

[
–cx + cx –

kc

u


xx + u(t) + kx

]

+ s

[
–cx + cu

 +
kc

u


xx + u(t) + kx

]

+ s
[
–cx – cc

(
xx – xu


)

+ cT̂L + cWref + u(t) + kx
]

+ s

[
(ki – kpc)x – kpcc(xx – xu

) + kpcT̂L

+ kpcWref + u(t) + kx

]
+ eTL DqT̂L. ()

Let us define the adaptive controllers as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(t) = cx – cx + kc
u


xx – kx – η sgn(s) – ρs,

u(t) = cx – cu
 – kc

u


xx – kx – η sgn(s) – ρs,

u(t) = cx + cc(xx – xu
) – cT̂L – cWref

– kx – η sgn(s) – ρs,

u(t) = –(ki – kpc)x + kpcc(xx – xu
) – kpcT̂L

– kpcWref – kx – η sgn(s) – ρs.

()

Let us define the parameter estimation law as

DqT̂L = c[s + kps]. ()

By applying the parameter update law () and adaptive controllers () in (), we have

V̇ ≤ –η|s| – η|s| – η|s| – η|s| – ρs
 – ρs

 – ρs
 – ρs

. ()

As ρi and ηi are positive for i = , , , , the Lyapunov first derivative () is a negative
definite function. This establishes that the closed-loop control system is asymptotically
stable for all initial conditions.

6 Numerical simulations of ASMC
The fractional-order induction motor (FOIM) given by equation () with the robust adap-
tive sliding mode controller () is implemented in LabVIEW for numerical analysis and
validation.

The initial conditions are chosen as in (), and the parameter values are chosen as in
(). The fractional orders of system () are chosen as in (). The controller gains are
taken to be k = , k = , k = , k = .
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The initial condition of the FOIM states are selected as in (), and the initial condi-
tion for the uncertain load is selected as TL = , and the load to be estimated is TL = ..
The state trajectories of the controlled fractional-order induction chaotic system () are
shown Figure , where the controller is switched at t =  s. Figure  shows the parame-

Figure 10 Fractional-order system states oscillations without and with controller (t = 10 s).

Figure 11 Estimated unknown load values with controller in action at t = 0.1 s.
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ter estimate with controller in action from t = . s. It can be clearly observed that the state
trajectories converge to zero as soon as the controller is introduced, which clearly shows
that the fractional-order system () is well controlled by the adaptive controller with the
uncertainty in the Load Torque.

7 Chaos suppression using genetically optimized fractional-order PID
controllers

Fractional-order PID controllers described by using fractional calculus are the most com-
mon and useful algorithms in control system engineering. In most cases, feedback loops
are controlled using PID Algorithms, designed to correct error(s) between instant value(s)
in a system and chosen set point values. Design of FOPID controller using Genetic Algo-
rithms (GAs), which are a stochastic global search method that mimics the process of
natural evolution. It is one of the methods used for optimization successfully applied in
[–].

A genetic algorithm has to be initialized before the algorithm can proceed. The Initial-
ization of the population size, variable bounds, and the evaluation objective functions are
required to evaluate the best gain values of FOPID controller for the system. An objec-
tive function can created to find a FOPID controller that gives a minimal error. The error
functions such as sum absolute error (SAE) are used as objective functions in this work.

Let us define the fractional-order PID controllers as

ui = KPei + KI

∫ t


ei dτβ + KD

dδei

dtδ
, i = x, x, x, x, ()

where ui is the fractional-order PID action control for i = x, x; x; x δ,β are the
fractional-order differential and integral operators [, ], ei is the error signal, and
KP, KI , KD are the proportional, integral, and derivative gains to suppress the nonlinearity
in the fractional-order current-driven induction motor (FOIM).

MATLAB is used for numerical simulation with the following options:
Variable bound matrix of the proportional, integral, and derivative gains is [–.,

.], but for the states (x, x), the values are multiplied by hundred and ten for the
difference of variation range.

The population size is . Generally, the greater the population size, the better is
the final approximation, and the number of generations is . The selection function
is Stochastic uniform. The crossover fraction is .. The mutation function is Gaussian.
The stopping criterion is Error performance criterion. The length of the chromosome is
, decimal coding. The objective function is written based on the error performance cri-
terion sum absolute error as

fitness =
∑
(ei)

, ()

where ei = abs(ex) + abs(ex) + abs(ex) + abs(eX).
Table  shows the FOPID gain values after running the GA solver from the optimization

tool with the options cited before. We get the best solutions tracked over generations for
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Table 1 FOPID controller gain values optimized with GA

FOPID controller KP KI KD

ux1 0.0023 0.0128 0.0076
ux2 –0.0028 –0.0110 0.0052
ux3 1.29 0.98 2.02
ux4 0.065 0.106 0.045

Figure 12 Time response of chaos suppression (x1, x2, x3, x4).

the complete chaos suppression of the FOIM system via fractional-order PID controllers
using gains values genetically optimized, Figure  shows the time history of the FOIM
states (x, x, x, x), and Figure  shows the time response of fractional-order PID con-
trollers (ux , ux , ux , ux ).

Many real dynamic systems are better characterized using a noninteger-order dynamic
model based on fractional calculus or differentiation or integration of noninteger order.
Therefore fractional-order PID controllers are the future of nonlinear control theory.

8 FPGA implementation of the FOASMC
In this section, we discuss the implementation of the FOIM and FOASMC models in
FPGA [] using the Xilinx (Vivado) System Generator toolbox in Simulink. First, we con-
figure the available built-in blocks of the System Generator toolbox. The Add/Sub blocks
are configured with zero latency and /-bit fixed-point settings. The output of the
block is configured to rounded quantization to reduce the bit latency. For the multiplier
block, a latency of  is configured, and the remaining settings are as in Add/Sub block.
Next, we have to design the fractional-order integrator, which is not a readily available
block in the System Generator. Hence we implement the integrators using the mathemat-
ical relation discussed in () and () with the memory element required for configuring
the fractional order with memory coefficients described by a combination of forward reg-
isters with h = . and the initial conditions fed into the forward register. Figure 
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Figure 13 Time history of action controls (ux1, ux2, ux3, ux4).

Figure 14 Xilinx RTL schematics of the FOIM system.

shows the Xilinx RTL schematics of the FOIM system implemented in Kintex  (Device =
kt, Package = fbg S), and Figure  shows the Xilinx RTL Kintex  schematics
of the FOASMC with fractional-order integrators. Figure  shows the parameter update
laws for estimating the unknown load. Figure  shows the RTL shematics of sliding sur-
faces with the sliding reaching laws. Figure  shows the controlled states of the FOIM
system using FOASMC controllers implemented using Xilinx System Generator.
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Figure 15 Xilinx RTL schematics of the ASMC.

Figure 16 Xilinx RTL schematics of the parameter update law.

9 Conclusion
This paper investigates the control of dimensionless nonautonomous fractional-order un-
certain load torque model of an induction motor via an adaptive control technique. First,
the dimensionless fractional-order model of the induction motor is derived from the
integer-order model discussed in the literature using the Caputo-Riemann-Liouville frac-
tional derivatives. To study the effects of variation of parameters on the fractional-order
system performance, we have investigated the bifurcation analysis of a fractional-order
system with respect to the load torque. It is also shown that the fractional-order induction
motor is not only prone to instability due to Hopf bifurcation, but it also exhibits limit
cycles and chaos due to bifurcation other than Hopf bifurcation, which is shown by the
bicoherence plots. This bispectrum analysis helps us in choosing the appropriate param-
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Figure 17 Xilinx RTL schematics of the Sliding surfaces with fractional integrators.

eters for the proper work of the motor. As understood from the dynamic analysis of the
fractional-order system, it is seen that chaos oscillations are exhibited for a particular se-
lection of parameters. To suppress such chaotic oscillations, we have derived an adaptive
control technique assuming that the operating load torque parameters of the fractional-
order induction motor system are unknown. Numerical results are shown to illustrate the
adaptive controller derived in this work.
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Figure 18 FPGA implemented ASMC controller in action at t=85 s.
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