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Abstract
We propose a mathematical model that can control the stability of an unstable
system. Periodicity is an important feature of the system. We add a continuous control
to the first half of each period of the system and then add an impulse control J1 at the
1/2 period time. Again, we do not control the rest half of each period of the system.
Finally, we add an impulse control J2 at the end of each period of the system. The
system is called an alternate-continuous-control systemwith double-impulse. We study
the stability of the current system by constructing the Lyapunov function. Using the
proposed method, we can control the Chua oscillator. The system has two impulse
inputs per period, which is more in line with natural law than the system that only has
a single-impulse input. Therefore, the system proposed in this paper is more practical
than current mature control systems.

Keywords: alternate control; continuous control; double-impulse; Lyapunov
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1 Introduction
At present, the stability of the nonlinear system control methods are: intermittent control
[–], adaptive fuzzy control [, ], alternate control [, ], impulsive control [–],
nonimpulsive control, continuous control, and so on [–] and so on. Our goal is a good
system control. We will design some better control systems by studying the system control
methods that are currently commonly used.

To make a nonlinear system stable, in this paper, first of all, each system period is divided
into two equal parts. In the first part of the period, there are continuous inputs Cx(t), and
in the other part, there is no input. We call it intermittent control system. Figure  provides
the working principles of the intermittent control system. Next, we can add the impulsive
control in the intermittent control system to control its better stability. We add an in-
put of the impulsive J to the system at the middle of each period. Similarly, we add an
impulse J at the end of each period of the system. In this way, there are a continuous
control Cx(t) and impulsive controls J and J in each period of the system. We call it an
alternate-continuous-control system with double-impulse. Figure  provides the working
principles of alternate-continuous-control systems with double-impulse. The mathemat-
ical model proposed in this paper can be applied in many fields. In the medical field, it
can be used in large-scale surgery to control patient’s life characteristics. In the field of
electronics, it can be used to control a variety of chaotic circuits, such as circuits that in-
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Figure 1 Working principle of the intermittent control system:
in the first part of the period, there are continuous inputs Cx(t),
and in the other part, there is no input (we can write 0).

Figure 2 Alternate-continuous-control systems with
double-impulse: in the first part of the period, there are
continuous inputs Cx(t), and in the other part, there is no input
(we can write 0). We add an impulse J1 to the system at the middle
of each period and an impulse J2 at the end of each period.

corporate memristors. In the field of intelligent robots, it can be used to control the robot
walking gait in real time. It can also play a great advantage in the field of environmental
pollution control [–].

In this paper, we construct alternate-continuous-control systems with double-impulse.
We investigate the stability of the systems and get an exponential stability criterion in
terms of a set of linear matrix inequalities. Some mathematical proofs make our conclu-
sions reliable. At last, the Chua oscillator is controlled by using the results obtained.

The rest of this paper is organized as follows. In Section , we introduce some basic
mathematical knowledge and mathematical symbols about system control, and two com-
monly used mathematical lemmas will be involved. In Section , we give the results of this
paper and an exponential stability criterion, the main theory of this paper. In Section , we
use this conclusion to control the Chua oscillator. Lastly, we give a summary of this paper.

2 Problem formulation and preliminaries
A classic nonlinear system can be described as

⎧
⎨

⎩

ẋ(t) = Hx(t) + f (x(t)) + u(t),

x(t) = x,
()

where x ∈ Rn is a state vector, H ∈ Rn×n is a constant matrix, f : Rn → Rn is a continuous
nonlinear function satisfying f () = ; we assume that there exists a diagonal matrix L =
diag(a, a, . . . , an) ≥  such that ‖f (x)‖ ≤ xT Lx for all x ∈ Rn. Hx(t) is the linear part of
the system, f (x(t)) is the nonlinear interference, and u(t) is the external input to system ().

To stabilize the origin of system () by means of alternate-continuous-control systems
with double-impulse, we impose two kinds of control, that is, assuming that the period of
the system is T and m is a nonnegative integer, from mT to mT + T

 , we set u(t) = Cx(t),
where C ∈ Rn×n is a constant matrix, at time mT + T

 , an impulse J given, from mT + T
 to

(m + )T , no input to the system is given, and an impulse J is given to the system at time
(m + )T .

So system () can be redefined as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = Hx(t) + f (x(t)) + Cx(t), mT < t < mT + T
 ,

x(t) = x(t–) + Jx(t–), t = mT + T
 ,

ẋ(t) = Hx(t) + f (x(t)), mT + T
 < t < (m + )T ,

x(t) = x(t–) + Jx(t–), t = (m + )T ,

x(t) = x, t = ,

()
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where C, J, J ∈ Rn×n are constant matrices, and T >  denotes the period of control.
We will use the following two mathematical lemmas.

Lemma  (Sanchez and Perez []) For any three real matrices �,�,� of appropriate
dimensions and a scalar ε ≥  such that  < � = �T

 , we have the following inequality:

�T
 � + �T

 � ≤ ε�T
 �� + ε–�T

 �–
 �. ()

Lemma  (Boyd et al. []) The LMI

[
W (x) Z(x)
ZT (x) R(x)

]

> ,

where W (x) = W T (x), R(x) = RT (x), and Z(x) depend affinely on x, is equivalent to

R(x) > , W (x) – Z(x)R–(x)ZT (x) > .

We denote by λm(D), λM(D), and DT the minimum eigenvalue, the maximum eigenvalue,
and the transpose of a square matrix D, respectively. The Euclidean norm of the vector x
is denoted ‖x‖. The matrix norm ‖ · ‖ is also referred to the Euclidean norm. We will
use D >  to display a symmetric positive definite matrix D, D <  to display a symmetric
negative definite matrix D, D ≤  to display a symmetric seminegative definite matrix D,
and D ≥  to display a symmetric semi-positive definite matrix D. We denote f (x(a–)) =
limt→a f (x(t)).

3 Main results
Theorem  Suppose that a symmetric and positive definite matrix D ∈ Rn×n and positive
scalar constants h > , h > , ε > , and ε >  satisfy the following conditions:

() DH + HT D + DC + CT D + εD + ε–
 L + hD ≤ ,

() DH + HT D + εD + ε–
 L – hD ≤ ,

() h
T
 – h

T
 – lnλ – lnλ > ,

where λ = λM(D–(I + J)T D(I + J)), λ = λM(D–(I + J)T D(I + J)). Then the origin of
system () is exponentially stable.

Proof First, we construct the Lyapunov function

V
(
x(t)

)
= xT (t)Dx(t), ()

so that

λm(D)
∥
∥x(t)

∥
∥ ≤ V

(
x(t)

) ≤ λM(D)
∥
∥x(t)

∥
∥. ()

If mT < t < mT + T
 , then by (), (), and () we get

V̇ (x) = xT Dẋ

= xT D
[
Hx + f (x) + Cx

]
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= xT DHx + xT Df (x) + xT DCx

= xT [DH + DC]x + xT Df (x)

= xT[
DH + HT D + DC + CT D

]
x + xT Df (x)

≤ xT[
DH + HT D + DC + CT D

]
x

+ εxT Dx + ε–
 xT Lx

= xT[
DH + HT D + DC + CT D + εD + ε–

 L
]
x

= –hV (x) + xT[
DH + HT D + DC + CT D

+ εD + ε–
 L + hD

]
x

≤ –hV (x),

where DH + HT D + DC + CT D + εD + ε–
 L + hD ≤ . We get

V
(
x(t)

) ≤ V
(
x
(
(mT)+))

exp
(
–h(t – mT)

)
, ()

where mT < t < mT + T
 .

If t = mT + T
 , then we get

V (x)|t=mT+ T


=
(
x
(
t–)

+ Jx
(
t–))T D

(
x
(
t–)

+ Jx
(
t–))

= x
(
t–)T (I + J)T D(I + J)x

(
t–)

≤ λV
(
x
(
t–))

. ()

If mT + T
 < t < (m + )T , then we get

D+V (x) = xT Dẋ

= xT D
[
Hx + f (x)

]

= xT DHx + xT Df (x)

≤ xT[
DH + HT D

]
x + εxT Dx + ε–

 xT Lx

= xT[
DH + HT D + εD + ε–

 L
]
x

= hV (x)

+ xT[
DH + HT D + εD + ε–

 L – hD
]
x

≤ hV (x),

where DH + HT D + εD + ε–
 L – hD ≤ . We get

V
(
x(t)

) ≤ λV
(

x
((

mT +
T


)–))

exp

(

h

(

t – mT –
T


))

, ()

where mT + T
 < t < (m + )T .
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If t = (m + )T , then we get

V (x)|t=(m+)T =
(
x
(
t–)

+ Jx
(
t–))T D

(
x
(
t–)

+ Jx
(
t–))

= x
(
t–)T (I + J)T D(I + J)x

(
t–)

≤ λV
(
x
(
t–))

. ()

We can do the following mathematical induction through (), (), (), and ().
Case : m = .
Subcase . If  < t < T

 , then we get

V
(
x(t)

) ≤ V (x) exp(–ht).

So

V
(

x
(

T


–))

≤ V (x) exp

(

–h
T


)

.

Subcase . If T
 ≤ t < T , then we get

V
(
x(t)

) ≤ λV
(

x
(

T


–))

exp

(

h

(

t –
T


))

≤ λV (x) exp

(

–h
T


+ h

(

t –
T


))

and

V
(
x
(
T–)) ≤ λV (x) exp

(

–h
T


+ h
T


)

.

Subcase . If t = T , then we get

V
(
x(T)

) ≤ λV
(
x
(
T–))

≤ λλV (x) exp

(

–h
T


+ h
T


)

.

Case : m = .
Subcase . If T < t < T + T

 , then we get

V
(
x(t)

) ≤ V
(
x
(
T+))

exp
(
–h(t – T)

)

≤ V
(
x(T)

)
exp

(
–h(t – T)

)

≤ λλV (x) exp

(

–h

(

t –
T


)

+ h
T


)

and

V
(

x
((

T +
T


)–))

≤ λλV (x) exp

(

–hT + h
T


)

.
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Subcase . If T + T
 ≤ t < T , then we get

V
(
x(t)

) ≤ λ
λV (x) exp

(
–hT + h(t – T)

)
.

So

V
(
x
(
(T)–)) ≤ λ

λV (x) exp(–hT + hT).

Subcase . If t = T , then we get

V
(
x(T)

) ≤ λV
(
x
(
(T)–))

≤ λ
λ


V (x) exp(–hT + hT).

Case : m = .
Subcase . If T < t < T + T

 , then we get

V
(
x(t)

) ≤ V
(
x
(
(T)

))
exp

(
–h(t – T)

)

≤ λ
λ


V (x) exp

(
–h(t – T) + hT

)
.

So

V
(

x
((

T +
T


)–))

≤ λ
λ


V (x) exp

(

–h

(

T +
T


)

+ hT
)

.

Subcase . If T + T
 ≤ t < T , then we get

V
(
x(t)

) ≤ λ
λ


V (x) exp

(

–h

(

T +
T


)

+ h

(

t –
T


))

.

So

V
(
x
(
(T)–)) ≤ λ

λ

V (x) exp

(

–h

(

T +
T


)

+ h
T


)

.

Subcase . If t = T , then we get

V
(
x(T)

) ≤ λ
λ


V (x) exp

(

–h

(

T +
T


)

+ h
T


)

.

Case : m = .
Subcase . If T < t < T + T

 , then we get

V
(
x(t)

) ≤ V
(
x
(
(T)

))
exp

(
–h(t – T)

)

≤ λ
λ


V (x) exp

(

–h

(

t –
T


)

+ h
T


)

.

So

V
(

x
((

T +
T


)–))

≤ λ
λ


V (x) exp

(

–hT + h
T


)

.
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Subcase . If T + T
 ≤ t < T , then we get

V
(
x(t)

) ≤ λ
 λ


V (x) exp

(
–hT + h(t – T)

)
.

So

V
(
x
(
(T)–)) ≤ λ

 λ

V (x) exp(–hT + hT).

Subcase . If t = T , then we get

V
(
x(T)

) ≤ λ
 λ


V (x) exp(–hT + hT).

Through the above induction, we get the following.
Case k + : m = k.
Subcase . If kT < t < kT + T

 , then we get

V
(
x(t)

) ≤ λk
λ

k
V (x) exp

(

–h

(

t –
kT


)

+ h
kT


)

. ()

Subcase . If kT + T
 ≤ t < (k + )T , then we get

V
(
x(t)

) ≤ λk+
 λk

V (x) exp

(

–h
(k + )T


+ h

(

t –
(k + )T



))

. ()

Subcase . If t = (k + )T , then we get

V
(
x(t)

)|t=(k+)T ≤ λk+
 λk+

 V (x) exp

(

–h
(k + )T


+ h

(k + )T


)

. ()

From () we get that if kT < t < kT + T
 , then we let t = kT , so that

V
(
x(t)

) ≤ λk
λ

k
V (x) exp

(

–h

(

t –
kT


)

+ h
kT


)

≤ λk
λ

k
V (x) exp

(

–h
kT


+ h
kT


)

≤ exp(k lnλ + k lnλ)V (x) exp

(

–h
kT


+ h
kT


)

≤ V (x) exp

(

–
(

h
T


– h
T


– lnλ – lnλ

)

k
)

()

for kT < t < kT + T
 .

From () we get that if kT + T
 ≤ t < (k + )T , then we let t = (k + )T , so that

V
(
x(t)

) ≤ λk+
 λk

V (x) exp

(

–h
(k + )T


+ h

(

t –
(k + )T



))

≤ λk+
 λk

V (x) exp

(

–h
(k + )T


+ h

(k + )T


)
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≤ V (x) exp

(

–h
(k + )T


+ h

(k + )T


+ (k + ) lnλ + k lnλ

)

≤ V (x) exp

(

–h
T


– h
kT


+ h
kT


+ h
T


+ lnλ + k lnλ + k lnλ

)

≤ V (x) exp

(

–h
T


+ h
T


+ lnλ –
(

h
T


– h
T


– lnλ – lnλ

)

k
)

()

for kT + T
 ≤ t < (k + )T .

From () we get that, for t = (k + )T ,

V
(
x(t)

)|t=(k+)T ≤ λk+
 λk+

 V (x) exp

(

–h
(k + )T


+ h

(k + )T


)

≤ exp

(

(k + ) lnλ + (k + ) lnλ – h
(k + )T


+ h

(k + )T


)

V (x)

≤ V (x) exp

(

–
(

h
T


– h
T


– lnλ – lnλ

)

(k + )
)

. ()

From (), (), (), and the conditions of Theorem  we conclude that k → ∞ as t → ∞.
So

lim
t→∞ V

(
x(t)

)
= ,

which ends the proof. �

Corollary  As a consequence of Lemma , the first two conditions of Theorem  are equiv-
alent to the following two LIMs:

[
DH + HT D + DC + CT D + ε–

 L + hD –D
–D –ε–

 I

]

≤ , ()

[
DH + HT D + ε–

 L – hD –D
–D –ε–

 I

]

≤ . ()

4 Numerical example
Studying system examples, we can define the original and dimensionless form of Chua’s
oscillator [] as follows:

⎧
⎪⎪⎨

⎪⎪⎩

ẋ = ω(x – x – g(x)),

ẋ = x – x + x,

ẋ = –γ x,

()

where ω and γ are two parameters, g(x) is a piecewise linear characteristic of Chua’s diode.
It can be defined by

g(x) = bx + .(a – b)
(|x + | – |x – |), ()

where a and b are two constants such that  > b > a.
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Figure 3 The Chua’s oscillator with the initial
condition x(0) = (22, –2, –15)′ is a chaotic
phenomenon.

Next, we choose the parameters ω = ., γ = ., a = –., and b =
–., which make Chua’s circuit () chaotic []. Figure  shows that Chua’s oscilla-
tor with the initial condition x() = (, –, –)′ is a chaotic phenomenon.

We can redefine system () as follows:

ẋ = Hx + f (x), ()

where

H =

⎡

⎢
⎣

–ω – ωb ω 
 – 
 –γ 

⎤

⎥
⎦

and

f (x) =

⎡

⎢
⎣

–.ω(a – b)(|x + | – |x – |)



⎤

⎥
⎦ .

So we get

∥
∥f (x)

∥
∥ = .ω(a – b)[(x + ) + (x – ) – 

∣
∣(x + )(x – )

∣
∣
]

= .ω(a – b)(x
 +  –

∣
∣x

 – 
∣
∣
)

=

⎧
⎨

⎩

ω(a – b), x
 > ,

ω(a – b)x
 , x

 ≤ 

≤ ω(a – b)x
 .

Thus we set L = diag(ω(a – b), , ) and choose

C = diag(–, –, –),

J =

⎡

⎢
⎣

–  –.
 . .

.  .

⎤

⎥
⎦ ,

J =

⎡

⎢
⎣

–  –.
 . .

.  .

⎤

⎥
⎦ .
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Figure 4 Time response curves of Chua’s
oscillator with alternate-continuous-control
system with double-impulse.

With T = ., solving LMIs () and () and the inequality h
T
 – h

T
 – lnλ – lnλ > ,

we obtain a feasible solution

ε = ., ε = ., h = , h = ,

and

D =

⎡

⎢
⎣

. . .
. . –.
. –. .

⎤

⎥
⎦ .

Thus, by Theorem  we know that the origin of system () becomes exponentially sta-
ble. The time response curves of Chua’s oscillator with the proposed method is shown in
Figure .

5 Conclusions
We proposed a new model of a control system named an alternate-continuous-control sys-
tem with double-impulse. The introduction of an impulse input has played a positive role
in the stability control of the system. Theorem  gives stability criteria of the current new
system control. Moreover, the chaotic Chua circuit can be controlled by the new method.

Through the control method of this paper, we can control most of the nonlinear systems.
The method can be used in physics, electronics, robotics, and other fields. Later, we can
design more control methods to stabilize nonlinear systems by combining impulse control
and intermittent control.
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