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Abstract

The equivalent integral equation of a new form for a class of fractional evolution
equations is obtained by the method of Laplace transform, which is different from
those given in the existing literature. By the monotone iterative method without the
assumption of lower and upper solutions, we present some new results on the
existence of positive mild solutions for the abstract fractional evolution equations on
the half-line.
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1 Introduction
In this paper, we are concerned with the following fractional evolution equation in the

Banach space E:

D, u(t) = Au(t) + f(t, u(t)), te(0,+00),
u(0) = pu(p),

(1.1)

where €Dg, is the Caputo fractional derivative, 0 < < 1, 4 > 0, 8 > 0, A is the infinitesimal
generator of a Cy semigroup {7'(¢)};>o of operators on Banach E, and f : [0, +00) x E — E
satisfies certain conditions.

Fractional calculus, a generalization of the ordinary differentiation and integration, has
played a significant role in science, economy, engineering, and other fields (see [1-3]). To-
day there is a large number of papers dealing with the fractional differential equations (see
[4-16]) due to their various applications. One of the branches is the research on the the-
ory about the evolution equations of fractional order, which comes from physics. Recently,
fractional evolution equations have attracted increasing attention around the world, see
[7-16] and the references therein. Among the existing literature, most of them are focused
on the existence of the solutions on the finite interval, see [7-16].
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In [8], El-Sayed investigated the Cauchy problem in a Banach space for a class of frac-
tional evolution equations

L = Au(t) + B(t)u(t), tel0,T),

M(O) = Uo,

where 0 < ¢ <1, T > 0. The existence and uniqueness of the solution for the above Cauchy
problem were studied for a wide class of the family of operators {B(t) : t > 0}.

As far as we know, for the first time, the equivalent integral equation of the above equa-
tion was given in terms of some probability densities by the method of Laplace transform.
And since then, most of the research in this direction has been based on this paper. How-
ever, many of the previous papers about the existence of solutions of fractional evolution
equations are only on the finite interval, and those presenting the existence results on the
half-line are still few.

Motivated by [8, 9,17], in this paper, we study the differential equation (1.1) under certain
conditions on the unbounded domains. Here, by a method similar to that used in [8, 9],
we give a corrected form of the equivalent integral equation of the main problem (1.1),
which is different from those obtained in the existing literature. Employing the monotone
iterative method, without the assumption of lower and upper solutions, we present some
new results on the existence of positive mild solutions for the abstract evolution equations
of fractional order. And to our best knowledge, there is not any paper to deal with the
abstract problems of fractional order on the unbounded domains.

The rest of the paper is organized as follows. In Section 2, we introduce the definitions
of fractional integral and fractional derivative, some results about fractional differential
equations and some useful preliminaries. In Section 3, we obtain the existence result of
the solution for problem (1.1) by the monotone iterative method. Then an example is given

in Section 4 to demonstrate the application of our result.
2 Preliminaries
First of all, we present some fundamental facts on the fractional calculus theory which we

will use in the next section.

Definition 2.1 ([1-3]) The Riemann-Liouville fractional integral of order v > 0 of a func-

tion /1 : (0,00) — R is given by

I, h(t) = Dy h(t) = ﬁ /0 (t—5)""h(s) ds, 21)

provided that the right-hand side is pointwise defined on (0, c0).

Definition 2.2 ([1-3]) The Caputo fractional derivative of order v > 0 of a continuous

function % : (0,00) — R is given by

Cryv _; ! _o\tv-lpn
D) = 50— /0 (t— )" (s) ds, (2.2)

where n = [v] + 1, provided that the right-hand side is pointwise defined on (0, 00).
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Lemma 2.1 ([1, 3]) Assume that D} h(t) € L}(0,+00), v > 0. Then we have
I(‘,’+CD(‘;+h(t) =h(t)+C + Cat+---+ CytVY, >0, (2.3)
forsome C; e R,i=1,2,...,N, where N is the smallest integer greater than or equal to v.

If i1 is an abstract function with values in the Banach space E, then the integrals appear-
ing in Definition 2.1, Definition 2.2 and Lemma 2.1 are taken in Bochner’s sense. And a
measurable function / is Bochner integrable if the norm of /4 is Lebesgue integrable.

Now let us recall some definitions and standard facts about the cone.

Let P be a cone in the ordered Banach space E, which defines a partial order on E by
x <y if and only if y — x € P. P is normal if there exists a positive constant N such that
0 <x <y implies ||x|| < N||y|, where 6 is the zero element of the Banach space E. The
infimum of all N with the property above is called the normal constant of P. For more
details on the cone P, we refer readers to [18, 19].

Throughout the paper, we set E to be an ordered Banach space with the norm || - | and
the partial order ‘<’ Let P = {x € E | x > 0} be a positive cone, which is normal with normal
constant N. Let J = [0, +00). Set

BC(J,E) = {u(t) | z(¢) is continuous and bounded on ]}.
Obviously, BC(/, E) is a Banach space with the norm ||u||pc = sup,; [|u(t)]. Let
Pyc ={ue€BC(,E) | ut) > 0,t€]}.

It is easy to see that Pgc is also normal with the same normal constant N of the cone P.
Besides, BC(J, E) is also an ordered Banach space with the partial order ‘<’ induced by the
positive cone Pgc (without confusion, we denote by ‘<’ the partial order on both E and
BC(J,E)).

We denote by [v, w] the order interval {z € Pgc | v <u <w,v,w € BC(J,E)} on BC(J, E),
and use [v(¢), w(t)] to denote the order interval {z € E | v(t) <z <w(t)}on Efort €.

Next, we give some facts about the semigroups of linear operators. These results can be
found in [20, 21].

For a strongly continuous semigroup (i.e., Co-semigroup) {7'(¢)};>0, the infinitesimal
generator of {T'(¢)};>o is defined by

T(t)x —
Ax = lim y, x€eE.

t—0%

We denote by D(A) the domain of A4, that is,

T(t)x —
D(A) = {er‘ lim O)x - exists}.
t—0%
Lemma 2.2 ([20, 21]) Let {T(t)};>0 be a Cy-semigroup, then there exist constants C > 1
and w € R such that | T(t)|| < Ce*’,t > 0.
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Lemma 2.3 ([20, 21]) A linear operator A is the infinitesimal generator of a Cy-semigroup
{T(£)}e>0 if and only if

(i) A is closed and D(A) = E.
(i) The resolvent set p(A) of A contains R* and, for every X > 0, we have

1
RMA)| < —,
&6, 4)] < 5
where
+00
R(MA) = -A)" = / eMT(t)xdt, xeE.
0

Definition 2.3 ([20, 21]) A Cp-semigroup {T'(£)};>o is said to be uniformly exponentially
stable if wg < 0, where wy is the growth bound of {T'(¢)};>0, which is defined by

wo = inf{w € R | 3C > 1 such that | T(8)|| < Ce”’,t > 0}.

Definition 2.4 ([17]) A Cyp-semigroup {T'(¢)}:>0 is said to be positive on E if order inequal-
ity T(t)x>0,x € Eand ¢t > 0.

According to Lemma 2.2 and Definition 2.3, if {T(t)};>0 is a uniformly exponentially
stable Cy-semigroup with the growth bound wy, there exists a constant C > 1 such that

IT@®)| < Ce®,t >0, for any w € (0, |wp|]. Now, we define a norm in E by

ll%ll, = supl|e” T(¢)x|.
t>0

Evidently, [x|| < |[x]l, < C|lx||, that is to say, the norms || - ||, and || - || are equivalent. We

denote by || T(¢)||, the norm of T'(¢) induced by the norm || - ||, then
|70, <e, t=o0. (2.4)
Also, we can define the equivalent norm on BC(J, E) by

u € BC(J,E).

llullgc,, = supl|u()|,,
te]
3 Main results
In this section, we present the existence theorem for the abstract fractional differential
equation on the half-line. In order to prove our main result, we need the following facts
and lemmas.
Consider the one-sided stable probability density [9, 10, 22]

Y (0) = % Zeﬂflw sin(mra), 6 € (0,00),

n=1

where 0 <o < 1.
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From [9, 10, 22], the Laplace transform of the one-sided stable probability density v, (0)
is given by

LY. 0)] = /ooe-“’%(e)de =e™, O<a<l. (3.1)

0

By Remark 2.8 in [10], for 0 < y <1, one has

/ oy 6)do = LY (3:2)
0

rl+ay)

In the following, we assume that {T'(¢)};>0 is a uniformly exponentially stable Cj-

semigroup with the growth bound wy, and w € (0, |wp|].

Lemma 3.1 Define a linear operator V : E — E as

N Ya0) L, vt g 1= T)*
Vx—u/O/O ri-a) 6 1 -1) T(ﬁ 9—a>xd9dt.

Then V is bounded and ||V ||, < jv. Besides, if 0 < i1 < 1, then (I - V)7} is a linear bounded

operator and

1
-1

Proof Since

LI a0
o =i [ [ g e e a- o (PO ) | et dor

1 o0 . 9 o (1_p)
= [/ / e deT}Hxnw
0 JO

Fl-a) 6“
o ! > Y (0)
< (1 - 1)t 2240 ) d ©
—"“m_a)[/o’ (1-) (/0 < )r}uxu
< wllxlle-
Hence, V is bounded and || V||, < u. O

Lemma 3.2 Set
(Q)(®) = /Ot/()ma'”;—ff)(t—s)“-lT((t%y)h(s)de ds, heBCU,E).
Then Q:BC(J,E) — BC(J,E) and

1
”(Qh)(t)Hw < ;m 2llBc,;

1
@]y, =+

— |l .
o T o1 e
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Proof Since

=/t RIS lT((t S)a>h(s)d(9ds

o Jo o g
1 o] o

:/ / a‘”‘”—(e)taa-z)aIT(M)h(n)dedf,
o Jo 0 o

then
00 a 0 (] - 1)
[, / / 1# ( ) - T(t (I1-17) )
0« ©
/ / 1ﬁa( ) r)“‘le_‘”ta(:ﬁf)a |n(ex)], d6 dx
1 00 1 () ta 1-— o o 9
< _”h”BCw‘/ [(/ e—a)( %Q) )d<—a) ( T) >)W ( ):|d0
[ 0 0 90{ 60[
1 o0 a1, (0
- ihle, [ (e el as
= am”h”ch'
Therefore,
1 1
”(Qh) ”Bcw = ;m”hHBCw‘ O

Lemma 3.3 Let h € BC(J,E) and uy € D(A). Then the linear fractional evolution equa-

tion
Cna —
{ DY u(t) = Ault) + (), ¢ € (0,+00), .
M(O) = Uo,
has a unique solution u € BC(J, E) of the following form:
(t- s)"‘ -1 (£=s) s
/ / [ WQ(G)T< )(F(l_a)uo+h(s)>:|d(9ds
o Ya0) w1 EA-T)"
/ / F(l %) 6@ T%1-1) IT(T)uondr
)(8). (3.4)

Proof In view of Definitions 2.1, 2.2 and Lemma 2.1, equation (3.3) can be rewritten by

the equivalent integral equation as follows:

_ L ‘ _ a-1
u(t) = up + @) /0 (t-s) [Au(s) + h(s)] ds. (3.5)

Denote by U()\) and H(A) the Laplace transforms of u(¢) and /(t), respectively, using a
similar method as that in [7, 8], with the Laplace transform, then we can rewrite the above
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equation as
1 1 1
U = Xuo + A—aAL[(A) + }L—aH()L), A>0. (3.6)
Hence,
(AT =A)UQ) = 2" ug + H(R).
By virtue of (3.1) and Lemma 2.3, we obtain

UQ) = (AT - A) 2% ug + (AT - A) T H()

:)\0“1/ e ST (8)uo ds+/ e ST (s)H (1) ds
0 0

=t f / e-“”"‘ewa(e)T(s)uo do ds

/ / Py ) T()H () do ds
= lf e”[/ooo ta_l%(é’)T( a)uod0:|d
/ [/ Gk %(G)T(( ))h(s)deds}dt

By the definition of Laplace transforms and the convolution theorem, applying

Lemma 3.2 and the inverse Laplace transforms, one can derive that

u(t) = LA = L7 [/ooe-“[/oo e — ()T (ta)uo de] dt]
[ e[ [ (5 )
- Fiee U G I/’“(9)T(9_w> }
// _S)Mw//a(e)T(( 2k
// ri a) —)“ (e)T( )uod9d5+(Qh)(t)

o (- S)Ol_1 (t—s)
Z/ / T 1—0[)s g Wa(e)T( g )M0d9d5+(Qh)( )

@ Va0 w1 EA=T)*
f/ Fa—a) 6o © 477 T(T)uod9d1+(Qh)(t)

)h( )db ds

Since

o wa() (1 - 1)
// F(l ot -0 T( o )”(Jw

9wy e YalO) o,
5/0/0 F(l—a)T (1-1) g ¢ dodr + ||(Qm)(®)],,

dodr + ||(Qh)(1)|,
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o ! - a1
Sm””OHw/ (1-7) (

1
< luollw + —=——= k8,

wT(x+1)

1//a(9) d9> ” Qh) L‘)”

Therefore, u € BC(J, E). Then we complete the proof. d

Lemma 3.4 Let h € BC(J,E) and uy € D(A). Let 0 < 1 < 1. Then the linear fractional evo-
lution equation

DY u(t) = Au(t) + h(t), te(0,+00),
u(0) = pu(B),

has a unique solution u € BC(J, E) of the following form:
u(t) = (Lah)(¥)

= s)‘)‘1 (t—s)® s ~
/ [ [ )T( - )(m_a)[u—w Q)]

+ h(s))] do ds

¢ a- LA=-17)
/ / Mi-a P 1T< 5= )[(1 V)™ (Q)(B)] db d
+(QW)(0). (3.8)

Also, Ly is a linear operator on the Banach space BC(J,E) and
K
ILallec, < —»
1)

where

1 1
Ki= —————.
MMae+1)1-pu

Proof In view of Lemma 3.3, one can obtain

ﬁ)—// [ wa(e)T<(ﬁ 5)a>( s u(0)+h(s)>}d9ds.

ge rl-a)
From u(0) = nu(B), we have

/ / o vfa(e) _a(ﬂ_s)a-lT(‘ﬁe”a)()dedsw(ah)(ﬂ)
(1-

- o )"
// r1- a) ga 1-1) 1T<ﬁ oa )(O)dedru(Qh)(ﬂ)
= Vu(0) + n(Qh)(B).

Therefore,

(I = V)u(0) = (Qh)(B).
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So, we obtain
u(0) = u(l - V)™ (Qh)(B).

Then (3.8) is followed.
By (3.8), one has

1 o) 2] _ o\
lZam @], 5/0 /0 1_(1“_ 3 ‘ﬂgi )T—w(l—r)a—l T(ta (! Qar) )

x [[a -V w@n®],d6 dr + [(Qh)@)|,

1 o) o (1_)
< / / a  Yu(0) (1 -yl
0 0

w

rld-oa) 6«
x [ = vy, | n@mp)],] 46 dx + | (@m®)],,
1 1
< hoTasD e + S oo i,
1 1 1
" oT@rD1=p e
= Zlile, .
w
Therefore,
[€am e, = = hlac, .

Now, we state the main result on the existence of the positive solutions to problem (1.1)

in the following.

Theorem 3.1 Let E be a Banach space, and P is its positive normal with N as the normal
constant. Let {T(t)};>0 be a uniformly exponentially stable Cy-semigroup with the growth
bound wq (wo < 0), and A is the infinitesimal generator of {T (t)};>0. Let 0 < . < 1. Provided
that f(t,u) :] x E —> E is continuous and f(t,0) > 0 is bounded on ]. If f(t, u) satisfies the
following conditions:

(a) There exists a constant Ky < —wq such that for

f&y) —ftx) <Kiy-x), 6=<x<y.

(b) There exists a constant Ky > max{—ICy, wo} such that for

fy) —flt,x) = -Kaly-x), 0<x<y.

’C1+’C2

0<
Ko — o

1
<—.
K

Then problem (1.1) has a unique positive mild solution in BC(J, E).

Page 9 of 14
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Proof For simplicity of notation, we denote fy(¢) = f(¢,0), then we have fy(t) € BC(J, E) and
fol®)=0,t€].

In the following, similar to the methods used in [17], we deduce the result of the theorem
in four steps.

Step 1: Consider the abstract fractional differential equation

D%, u(t) = Au(t) + Kiu(t) + fo(t), te(0,+00),
u(0) = pu(p).

(3.9)

By virtue of the theory of semigroups, we can get that {¢X1*T'(£)} ;- is a uniformly expo-
nentially stable Cy-semigroup on Banach E generated by A + K;1. Besides, the semigroup
is positive with the growth bound X5 + wg (K1 + wp < 0). In view of Lemma 3.4, equation
(3.9) has a unique mild solution ¥ € BC(J, E) and ¥y > 6 as a result of fo(¢) > 0,t € J.

Step 2: For a given function g € BC(J,E), consider the abstract fractional differential

equation

D% u(t) + Kou(t) = Au(t) + g(t), t e (0,+00),
u(0) = pu(p).

(3.10)

It is obvious that A — K5I generates a uniformly exponentially stable Cy-semigroup
{e 2t T(t)}e>0 on Banach E. Also, it is positive with the growth bound —/Cy + wg (—/Ca + g <
0).

Based on Lemma 3.4, the unique mild solution of (3.10) is given by u# = L4_x, g, where
La_x,1 : BC(J,E) — BC(J,E) is a positive bounded linear operator (similar to the operator
L,) with the property that

K
La- < , forw =K, - wo.
ILa-rc51llBC,, < Ko —on =Ky —wo

Combined with the first step, one can notice that 9 is the mild solution of problem
(3.10) for g = fy + K199 + K299, so

190 = LA—/CZI(fO + K:lﬁo + ICZl?O). (311)

Step 3: Take G(u) = f(t,u) + Kyu. Evidently, G(0) = f(¢,0) = fo(¢) > 6 and G : BC(J,E) —
BC(/, E) is continuous due to conditions (a), (b) and the normality of the cone Ppc.

By condition (b), for 6 <x <y, one can obtain

G(y) — Gx) =f(t,y) + Koy —f(t,x) - Kax =f(t,y) = f(t,%) + Koy —x) > 6,

that is, G is an increasing operator on the positive cone Pgc.

Let vy = 0. Taking account of a composition operator defined by F = Ly_x,; o G on
the order interval [0, U], it is easy to see that the fixed point of F is the mild solution of
problem (1.1). Now, our task is to demonstrate that the operator F has at least one fixed

point.
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Consider the following two sequences:
Wy = F(Py1), n=123,..., (3.12)
and
Up=Fup), n=12,3,.... (3.13)
By condition (a), we have
F(£,90(8)) —£(£,0) < Kido(2),
then
F(90(0) < K1do(®) + fo(0).
So, we can get
G(D0) =£ (£, 90(0)) + Kao(£) < K10o(2) + Koo (2) + fo(2).
By the fact that G is an increasing operator on the cone P, therefore, we can obtain
0 <fo(t) = G(0) < G(¥) < K190 + K2 +fo. (3.14)

Combining (3.11), (3.14) and the positivity of the linear bounded operator L4_x,;, one
can get

0 <La_i,10G0) = F(0) < Laic,1 0 G(Do) = F(Vo) < La_rc,1(K19o + Koo + fo) = Do,
that is,
0 =vg <th <. (315)

As F is an increasing operator on the order interval [0, 9], by the definition of 7 and

(3.15), we can get two sequences {,,} and {v,} (n=0,1,2,3,...) satisfying
O=vy<v << <Y, < <P < <P < <P
According to the above facts, by condition (a), one can get that

0 <V —vy = F(Op1) — F(Uy1)
= Ly x,1 0 G(¥4-1) — La—xcyr 0 G(Up-1)
= La—icpr[f (5 On1) + Ka®uor = f (5 Unat) = Ko ]

< (K1 + Ka)La—ic,1(0n-1 — Unr).
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Thus, by induction, we have
0 <y — vy < (K1 + K2)" La-rcpr(Po — vo) = (Ky + K2)"Ly i, /(D).

On account of the fact that the cone Ppc is normal with the normal constant N, by virtue

of condition (c), we get

19 = valle, < N1+ o) [ L i1 (90) | e,
< N(K1 + Ko)"[| Li e, ]| s, 190 lBc,

< N(Ky + K2)"ILa-rc,yrlIse, 10 llBc,

K n
< N(Ky + Ky)" (m) IPollBC,
2 — W

Ko — o

- N(M) 1ollc, — 0, 1 — +00. (3.16)

Thus, from (3.16), analogous to the nested interval method, there exists a unique u* €
Mooy [um 9] such that u* = lim,,_, o0 ¥, = lim,_, o Up.
By (3.12) and (3.13), taking limit of n — 0o, we obtain that

namely, #* is a fixed point of the operator F. Thus, #* is a mild positive solution of problem
(1.1).

Step 4: In this part, we certify the uniqueness of the mild solution for problem (1.1).

By using reduction to absurdity, suppose that u} and u} are two different positive mild
solutions for the fractional evolution equation (1.1), thus, ||z} — u|[c, > O.

Replace ¥y by u} and u} in (3.12), respectively. Following the same steps as above, for
each u} (i =1,2), we can get that u} = F(u), |u} — v,llgc, = 0 (n — 00) and ¥, = u for
each n € N (i = 1,2). Therefore,

0< H”T_”;”Bcw = ””T_U"”Bcw + ”u;_U"HBCw =0, n— oo,

which is a contradiction.
Hence, problem (1.1) has a unique positive solution. The proof is completed. 0

4 Examples
To illustrate our main result, we present an example. Consider the following partial frac-

tional differential equation.

Example 4.1

3%z(t,x) = 32z(t,x) + F(t,z(t,x)), t€[0,+00),
z(¢,0) = z(t, ) = 0, t €[0,+00), (4.1)
Z(Orx) = /,LZ(,B,X), X € [Or 77]:
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where 9 is the Caputo fractional partial derivative of order « € (0,1).

Set E = L*([0,7],R) and Az = 92z, according to [23], then A : D(A) —> E is a linear op-
erator with domain D(A) = {u € E | v’ € E,u(0) = u(r) = 0}. Besides, the operator A gen-
erates a uniformly exponentially stable Cyp-semigroup {7'(¢)};>0 with the growth bound
wo < -1.

Let u(t) = z(¢,-), f(t, u(t)) = F(t,z(¢, -)), then problem (4.1) can be written as

D% u(t) = Au(t) + f(t,u(t)), te(0,+00),

(4.2)
u(0) = pu(p).

Take oo =1/2, ; = 3/4, B =1, then we can get

1 18
Ma+)1-pu 7

Consider the following function:

ft,x) = (—IC2 + L)x,

a*(t)

where a € C[0, +00) is bounded and

]Cl = 2(1)0;

2
K:2=—<2+ )a)o.
k-1

It is easy for us to certify that

’C1+’C2 2 1
0< = < —.
Ko—wo 3k-1 «
Since
o wo
Ky - =12 - <2w =K,
T k-1 (+K—1)w0 Kk-17 @0 !

then, for 6 <x <y,

K Sf(t’y) _f(t’x)

)

(1+a2<t>)(x—1>](y"‘)
S(—’Cz— @0 )(y—x)

= |:—’C2 +

k-1

<Kily-w).

Noting that f(¢,0) = 0. Thereby, f satisfies the conditions of Theorem 3.1, we can con-
clude that problem (4.1) has a unique positive mild solution.
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